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Abstract. Artificial neural networks (ANNs) can learn via experience
to solve almost every problem. However, the ANN application in a new
task entails a necessity to perform some additional adaptations. First is
fitting the ANNs type or structure by applying the various number of
hidden layers and neurons in it or using different activation functions or
other parameters, allowing ANN to learn the stated task. The second is
the validation and verification methods of the ANN quality that should
be suited to the stated task. Occasionally the differences between the
ANNs output are significant, and it is easy to choose the best network.
However, sometimes the differences pronounced by standard performance
parameters are minor, and it is difficult to distinguish which ANN has
reached the best level of training. This paper presents the results of train-
ing the ANN to predict the spatial and temporal evolution of the airborne
contaminant over a city domain. Statistical performance measures have
validated the trained ANNs performance. Finally, new measures allowing
to judge of both time and spatial distribution of the ANN output have
been proposed and used to select the prior ANN.

Keywords: Neural network model · Validation methods · Dispersion
model .

1 Introduction

The study presented in this paper was initiated by the willingness to create an
emergency-response system able to localize the airborne toxin source in the ur-
ban terrain in real-time. The most probable contamination source location should
be indicated based on the concentration data reported by the sensor network.
Moreover, the process should be quick to ensure the fast action of the emergency
response group. In the literature, the process of the contamination source local-
ization based on the outcome is classified as the backward problem and referred
to as source term estimation (STE), e.g., [1]. The goal is to find the best or most
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likely match between the predicted (by the applied dispersion model) and ob-
served data, i.e., concentration in the sensor location. Consequently, the model
parameters space scanning algorithm guided by the likelihood function is used.
This requires many thousands of dispersion model runs. In [2] the localization of
the contaminant in the highly urbanized terrain using the approximate Bayesian
computation algorithm is presented. Although the results are satisfactory, the
computational time of the reconstruction is extended. Thus, urban reconstruc-
tion in real-time is not possible, even with the distributed system.

The solution might be an application of the trained Artificial Neural Net-
works (ANNs) in the place of the dispersion model in the STE algorithm. ANNs
are learning by example. Thus, they can be skilled with known examples to solve
almost any task. Once well-trained ANNs can solve the stated task very quickly.
These characteristics make the ANNs an excellent tool in real-time working sys-
tems. The ANN must learn to simulate airborne contaminant transport to be
used in the emergency response localization system. The contaminant concen-
tration distribution function is multidimensional and depends on spatial coordi-
nates and time. Additionally, its value depends on external parameters like the
contaminant source characteristics (location, release rate, release duration), me-
teorological conditions, and the domain’s geometry. The challenge is the urban
geometry, which is very complicated as far the wind field structure on which the
contaminant is spread is site-dependent. The ANN training is computationally
expensive, but once trained, the ANN would be a high-speed tool that estimates
the contaminant concentration distribution.

The first results confirming that ANN has the potential to replace the dis-
persion model in the contaminant source localization systems are presented in
[3]. The comparison of various architectures of ANNs in forecasting the contam-
inant strength correctly is presented in [4]. The results revealed that standard
performance measures like correlation R and mean square error are fallible in
pointing out the quality of ANN. In none of the mentioned papers the more
profound validation of the proposed ANN models was not presented. This work
is aimed at fulfilling at least some of these gaps.
Thus, apart from the known statistical measures, we propose the new ones being
able to verify the dynamic agreement between the ANN output and the target
both in space and time. Moreover, we propose a method to improve the trained
ANN quality when a value of zero represents a large proportion of the training
data.

2 ANN model

Feedforward neural networks (FFNNs) are often applied for prediction and func-
tion approximation. The first layer of FFNNs consists of the neurons representing
the input variables based on which the network should produce the neurons in
the output layer. Between the input and output layers, the hidden layers are
placed. ANN performance depends on the chosen architecture, i.e., the num-
ber of neurons, hidden layers, and the structure of connections. The aim is to
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teach the ANN to predict the contaminant concentration at a specific time and
location for the assumed release scenario. Thus, the structure of the input vec-
tor is following Inputi ≡ {Xs, Ys, Q, d, x, y, v, t}. Based on the input vector for
the contamination source at the coordinates (Xs, Ys) (in meters within a do-
main) and release lasting through d seconds with the release rate equal Q under
wind blowing from the v direction the trained network should return the output
neuron Outputi ≡ C

Sj(x,y)
i (t) denoting the concentration C at sensor Sj with

coordinates (x, y) in t -seconds after starting the release.

3 Domain, Training, and Testing Dataset. Data
Preprocessing

The central part of London was chosen as a domain for the training dataset
generation. The reason was a willingness to train the ANN using the real field
tracer experiment DAPPLE. Unfortunately, about 600 point concentrations were
insufficient to train the ANN properly. Thus, the learning dataset was generated
using the QUIC Dispersion Modeling System [5]. The details on the domain and
simulations setup are presented in [4] with the difference that the assumed re-
lease rate is within interval Q ∈ ⟨100mg, 999mg⟩.

The obtained set covering about 5 × 107 vectors was divided into training
- 66%, validation and testing datasets 17% each. The target function is a mul-
tidimensional and time-dependent function. However, the neurons in the input
layer do straightforwardly reflect this time dependency. Each input vector cor-
responds to the concentration for a fixed point in time and space for a unique
release scenario. The data included in the training and validation dataset were
randomly drawn from the whole dataset. However, the testing dataset was care-
fully selected to judge how well the trained ANN reflects the time dynamics, i.e.,
whether the ANNs prediction is correct in subsequent time intervals. Thus, the
testing dataset contains the vectors covering the whole 67 simulations. To ap-
propriately validate and compare the ANNs, the same testing dataset was used
to estimate the performance measures described in Section 4 for all analyzed
ANNs architectures.

To give all variables equal weight in the input neuron vector, they have been
scaled to the interval (0, 1⟩. In addition, the target concentration was logarith-
mized [6]. Moreover, the noise was introduced to the target concentration C and
release rate Q. These two variables were chosen for noise introduction due to
their inseparable connection. The spatial distribution of concentration on the
sensors will depend on the strength of the released substance. The noise was
introduced after normalizing the ANN input data as Ċ = C ± δ × C, where δ
was drawn uniformly from the interval ⟨0, 15⟩.

4 ANN model validation

The model validation aims to evaluate how useful a model is for a given purpose,
thereby increasing confidence in model outputs. The verification and validation
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Table 1: The measures calculated for the ANNs models. The ANN colors denote
the best values of the measures among other ANNs for training using the noised
and orginal data.

trained using noised data trained using orginal data
Network 24-16-8 24-16-8-

4-2
24-20-16-
12-8-4-2

48-24-
16-8-4 24-16-8 24-16-8-

4-2
24-20-16-
12-8-4-2

48-24-
16-8-4

R training 0.8296 0.8381 0.8591 0.8787 0.8780 0.8814 0.9008 0.9292
R test 0.5881 0.7922 0.7054 0.5549 0.7517 0.7613 0.6765 0.4695
MSE 0.0252 0.0242 0.0213 0.0185 0.0189 0.0184 0.0156 0.0111

RMSE×10−7 28.21 3.25 3.26 3.31 3.25 3.25 4.11 10.79
CE -73.729 0.0065 -0.0006 -0.0303 0.0071 0.0066 -0.5834 -9.9266

ρ(d1:tANN , d1:ttarget)) 0.2027 0.1533 0.1587 0.1795 0.7029 0.6639 0.9616 0.9689
MSSDLEx⃗ 0.1508 0.1016 0.1008 0.1251 0.6417 0.6031 0.8924 0.8920
MSSDLEy⃗ 0.1460 0.0963 0.0994 0.1211 0.6515 0.5871 0.8886 0.8882
MSDLE 0.1718 0.1157 0.1181 0.1399 0.6663 0.6611 0.8790 0.8790
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Fig. 1: The measure (a) ρ(dtANN , dttarget) (Eq. 1), and (b) MSSDLEx⃗ (Eq.
3)in subsequent time steps for a few considered ANNs. Profile of the measure
MSSDLEy⃗ is analogous. The solid lines correspond to the networks trained
using noised data, while the dashed lines correspond to the ANNs trained using
original data.

process is indispensable when the single best model has to be indicated from the
subset of models. The selection is more difficult when the primary differences
are minor. Here we propose the measures helpful to validate which of the trained
ANNs has learned to predict best the spatial and time evolution of the target
function.

The most common measure used to judge the level of ANN training is the
correlation coefficient R between the actual output and the output predicted by
the ANN. Usually, after training different ANNs, the final one is chosen based
on the highest value of R. The R = 1 denotes the ideal fit. The twin measure is
the mean square error MSE = 1

n

∑n
i=1(Ci − Ĉi)

2 denoting difference between
the ANN output Ĉi and target Ci. The MSE is typically used as the stopping
criterion for the ANN training process. However, using MSE means assuming
that the underlying data has been generated from a normal distribution. In
reality, a dataset rarely fulfills that requirement. It is better to report RMSE =√

1
n

∑n
i=1(Ci − Ĉi)2, rather MSE; because RMSE is measured in the same units
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as the original data, and is thus more representative of the size of a ’typical’ error.
To distinguish the ANNs quality deeper, more measures should be considered.

Model Selection Measure The coefficient of efficiency (CE) is one of the
model selection measures: CE = 1−

∑n
i=1(Ci−Ĉi)

2∑n
i=1(Ci−C̄)2

. CE is intended to range from
zero to one, but negative scores are also permitted. The maximum positive score
of one represents a perfect model. The negative scores are unbounded, indicating
that the model performs worse than a ’no knowledge’ model. CE is sensitive to
differences in the observed and modeled means and variances.

Measures estimating the time dynamic The statistical measures described
above do not provide information on the quality of the spatial and temporal dis-
tribution of the ANN prediction. Therefore, we propose introducing additional
measures to verify whether trained ANN can correctly reproduce the concen-
tration gradient (both spatial and time). The focus is put on the agreement in
the successive intervals of simulations. The first proposed formula based on a
fractional bias is:

ρ(d1:tANN , d1:ttarget) =
1

SN

SN∑
j=1

[
1

t

t∑
i=1

|CSj
i − ĈSj

i |
CSj

i + ĈSj
i

]
, (1)

with assumption that if CSj
i = 0 and ĈSj

i = 0 then fraction |CSj
i −ĈSj

i |
CSj

i +ĈSj
i

= 0. In
Eq. 1 i denotes the subsequent time intervals in which the concentration in Sj
point representing the sensor location is estimated. The SN indicates the total
number of sensors, ĈSj

i concentration in time i in point Sj of domain predicted
by ANN, while CSj

i the represents the target concentration. The measure ρ fits
into the interval [0, 1]. If the ANN model prediction is ideal, then ρ = 0, and if
the model predictions are completely wrong, it equals 1.
The following measure Mean Squared Derivative Logarithmic Error (MSDLE)
is proposed to describe the level of agreement of the target function change in
the time between modeled dataset and observed in each point of the 2D space.
In each point Sl of the space the MSDLE is calculated as follows:

MSDLE(Sl) =
1

M

M∑
m=1

[
1

t− 1

t∑
j=2

(
ln(CSl,m

j − CSl,m
j−1 )− ln(ĈSl,m

j − ĈSl,m
j−1 )

ln(CSl,m
j − CSl,m

j−1 ) + ln(ĈSl,m
j − ĈSl,m

j−1 )

)2]
. (2)

The M denotes the number of simulations run over t time steps, ĈSl,m
j the ANN

prediction of the target value in time j at the point Sl for the simulation m.
The observed value is CSl,m

j . The result of Eq. 2 is the 2D map of the measure
distribution. To characterize the measure by a single value, the averaging over
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the number of SN space points is performed MSDLE = 1
SN

∑SN
l=1 MSDLE(l).

The MSDLE is scaled to the [0, 1] interval and equals 0 for the ideal model.
The last proposed measure is aimed to represent how well in each time-step t the
spatial gradient of the target function is reproduced. The Mean Squared Spatial
Derivative Logarithmic Error (MSSDLE) is estimated in two main directions
and y⃗ of the 2D domain. The corresponding formula for x⃗-direction is following:

MSSDLEx⃗(t = j) =
1

M

M∑
m=1

[
1

NL

NL∑
L=1

[
1

NK − 1

NK∑
K=2

( ln

(
(C

m(K,L)
j −C

m(K−1,L)
j )

∆K

)
− ln

(
(Ĉ

m(K,L)
j −Ĉ

m(K−1,L)
j )

∆K

)
ln

(
(C

m(K,L)
j −C

m(K−1,L)
j )

∆K

)
+ ln

(
(Ĉ

m(K,L)
j −Ĉ

m(K−1,L)
j )

∆K

))2]]
. (3)

The NK denotes the number of points on a grid in x⃗ direction. Taking into
account the presence of buildings in the domain, the distance between the points
of the grid (sensors) ∆K ((x1, y1), (x2, y2)) = |x2−x1| is included in the measure.
The MSSDLEy⃗(t = j) is calculated analogously in the y⃗ direction. To represent
the measure by a single value, the averaging over the time steps of simulations
T is performed MSSDLE = 1

T

∑T
t=1 MSSDLE(t). The MSSDLE is scaled to

the [0, 1] interval and equals 0 for the ideal model.

5 Results

We have trained the multiple ANNs using the dataset described in Section 3
and Matlab Deep Learning Toolbox. Among tested activation functions in the
hidden layers, the hyperbolic tangent, and the linear function in the output layer
performed the best. The network training was stopped at the lowest possible
MSE of the validation test, assuming the upper limit of epochs to 70, with the
target MSE set to 1e − 08 value. We have trained the ANNs with the same
architectures using the original and noised datasets. The measures described in
Section 4 were calculated for each developed ANN model. Table 1 presents the
values of the estimated measures for four ANNs with the highest R-value. The
differences in R-values are pretty slight. In such cases, selecting the prior ANN
is complicated and must be done carefully. The proposed additional measures
should help facilitate the selection of the best-trained ANNs. Table 1 is divided
into two parts. The left side presents the measures for the ANNs trained using
the noised data, and the right side for the same ANNs trained on the origi-
nal data. Analyzing this table carefully, we can see that we get the highest R
(R = 0.8787 and R = 0.9292) for the training set for the network with the
highest number of neurons in the hidden layers, i.e., 48-24-16-8-4. However, the
RMSE, representing the level of overall agreement between the target and mod-
eled dataset, are the smallest for the ANN 24-16-8-4-2. The CE also supports the
preference of this ANN. Moreover, the CE for the ANN 48-24-16-8-4 is negative,
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Fig. 2: The measure MSSDLE (Eq. 2) distribution in the 2D city domain for
the ANN with hidden layers 24 − 16 − 8 − 4 − 2 trained on (a) noised and (b)
original data.

which suggests that this network performs worse than the ’no knowledge’ model.
It means that the specific task of the ANN model, i.e., correct forecasting of the
contaminant concentration’s spatial and time gradient, is not achieved. Using
the same testing dataset, we verified each ANNs quality by the dynamical mea-
sures ρ, MSSDLEx,y and MSDLE. The time profile of the ρ and MSSDLEx

for a subset of the analyzed ANNs architectures is presented in Fig. 1. The first
look at the figure shows that the networks trained on the noised data (solid
lines) perform better than those trained on the original data (dashed lines), re-
gardless of the ANN architecture. Moreover, the ρ value is 2-3 times smaller.
The reason is that the ANNs can better learn to forecast small concentrations
thanks to introducing the noise. Adding the noise after re-scaling gives a di-
verse set of small numbers representing the close-to-zero concentrations instead
a constant one. The noise contribution to the ANN knowledge is greatly seen
in Fig. 2 presenting the 2D distribution of the MSDLE (Eq.2) for ANNs with
the same architectures but trained on original and noised data. The agreement
of the ANN trained using noised data is almost perfect, as far as its values are
close to zero for nearly the whole domain. The result is much worse for the ANN
with the same architecture but trained using original data. The above-described
results conclude that the ANN 24-16-8-4-2 trained using the noised data seems
to be the best-trained network among the considered ones.

6 Summary

We have presented the results of training the FFNN to simulate airborne contam-
inant transport in highly urbanized terrain. The applied ANN structure allowed
training the FFNN to simulate the time-dependent nonlinear function in two
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spatial dimensions. The training dataset consisted of independent vectors repre-
senting the point concentration for the assumed release scenario. On the other
side, we require the ANN to simulate the contaminant distribution correctly for
spatial and time gradients. It occurred that in such a task, classical measures
like R and MSE cannot indicate the best ANN reliably. Therefore, we proposed
additional measures to verify the quality of the ANN model. Beneficial are the
measures estimating the time dynamic of the ANN model like ρ(dtANN , dttarget),
MSSDLEx,y and MSDLE. These measures, as the best one, pointed to the
ANN 24-16-8-4-2. This network was not the most extensive and was not char-
acterized by the highest R-value in training. We have presented a significant
increase in the ANN quality trained using the noised data. The reason was that
the small diversity in the re-scaled target values of concentrations allowed the
ANNs to fit the weights in the learning process better.

The presented results lead to the conclusion that the application of ANNs in
a new field should be followed by a careful analysis of the verification methods
and maybe an adaptation of additional measures as a stopping criterion in the
ANN training process.
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