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Abstract. Stress has become part of the day-to-day life in the modern
world. A major pathological repercussion of chronic stress(CS) is Type 2
Diabetes (T2D). Modelling T2D as a complex biological system involves
combining under-the-skin and outside-the-skin parameters to properly
define the dynamics involved. In this study, a compartmental model is
built based on the various inter-players that constitute the hallmarks
involved in the progression of this disease. Various compartments that
constitute this model are tested in a glucose-disease progression setting
with the help of an adjacent minimal model.Temporal dynamics of the
glucose-disease progression was simulated to explore the contribution of
different model parameters to T2D onset. The model simulations reveal
CS as a critical modulator of T2D disease progression.

Keywords: Diabetes · Computational modelling · Chronic stress · Al-
lostatic Load · Disease progress · in-silico tool

1 Introduction

Type 2 Diabetes(T2D) is a slowly progressing metabolic disease characterized
by elevated blood glucose [22]. Hyperglycemia(HG) in individuals can lead to
devastating long-term and even irreversible complications. Metabolic disorders
such as T2D are growing more common across the world, where 6.28% of the
world population have developed T2D symptoms or disease on-set by 2017 [9].
No detailed data was released since, but global forecasts already predict numbers
to reach around 8000±1500 cases of T2D cases per million population by 2040
[9]. With no apparent cure in sight, clinicians can only intervene at early stages
of the disease, through behavioural changes. However, this “chance” at disease
reversal is not fully explored and exploited in the healthcare system due to the
complexity of all the inter-players in T2D pathogenesis [22].

CS is linked to the pathogenesis of T2D through a multitude of metabolic
ways including the Central Nervous System(CNS) and partially the Periph-
eral Nervous System(PNS). In the pathogenesis of T2D, insulin production
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and sensitivity, Glucocorticoids(GC), cortisol and the Hypothalamic–Pituitary
–Adrenal(HPA)-Axis play major roles. An in-silico modelling approach to fil-
ter the most significant inter-players and the feasible actions that can be taken
towards minimizing T2D disease progress(DP) is imperative. Such methodol-
ogy would be useful in a clinical decision making process after being carefully
explored[17]. In this study, a new mechanistic computational model capable of
relating each inter-player to its contribution towards T2D on-set and DP is pro-
posed.

The hallmarks of T2D related to Chronic stress

β-cells are responsible for synthesizing, storing and releasing insulin [11]. Glucose[11],
Free Fatty Acids(FFAs)[7] and Glucagon-1[21] play key roles in the process.
β-cells can be generated by replication of the existing β-cells depending non-
linearly on glucose concentration in-medium[20]. Human β-cell proliferative ca-
pacity is small and decreases with age, but when metabolic demand is high such
as in obesity or during pregnancy, replication may increase [2]. β-cell mass can
decrease by undergoing apoptosis(regulated cell death) or necrosis(unregulated
cell death), which may be dependent on glucose concentration [20].

In a healthy person, the levels of circulating glucose are well regulated. When
plasma glucose increases above 90 mgdL−1, β-cells sense this and produce and
secrete insulin, a hormone that triggers glucose absorption by the adipose, liver
and muscle tissue, decreasing glucose in circulation. In normal circumstances this
is easily kept in balance with a healthy diet [15], if no other disturbances affect
the system. During T2D progression, insufficient insulin secretion and insulin
resistance give rise to hyperglycemia [1].

In general, when the HPA-axis is activated, it responds by producing and
releasing GC, such as cortisol. While this is a healthy and natural reaction to
short-term stress, it becomes dysfunctional when the stress signal is prolonged
[8], like in the case of CS. Studies show that CS causes HPA-axis dysfunction
and increases GC levels[4] and suggest that there is a link between increased
GCs and T2D progression, demonstrating how GC excess leads to metabolic
dysfunction [3]. Exposure to stressful conditions, an imbalance in effort, psycho-
logical traumatic experiences, low socio-economic status or even higher incidence
of discrimination can be such examples of stress paradigms that could trigger
CS on-set [14]. Continuous recursive activation of the SNS and HPA-axis occurs
during CS and can cause physiological long term consequences that may result in
accumulated small disturbances signified by “allostatic load” [10]. This concept
is now put in use to help operationalize CS into measurable physiological units
that allow identification of the relationships between different stressor types and
the pathophysiology stages of T2D[6]. There are many hallmarks that can be
associated with T2D progression. In this study we suggest 5 hallmarks that em-
pirically were included in many other papers as pro-T2D progression based on
Allostatic load [5,6]. These are Insulin Resistance(IR), HG, Low Grade Inflam-
mation(LGI), Hypercortisolism(HC) and Hyperglucagonemia(HGC). These hall-
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marks, are connected through complex interactions and create feedback loops,
which potentiate their impact when CS comes into play.

2 Methods

2.1 Model definitions

A summary of the model parameters and interconnected compartments is pre-
sented in SM-Figure 2(Supplementary Material4(SM)-Section 1.2). Computa-
tional modelling can help identify the underlying mechanisms of any phenome-
non[16], like CS, which can lead to the development of new therapies[18] and
interventions[18,17]. As the study CS is complex and extensive, a short review on
the computational models that relate it to T2D can be found in SM-Section 1.1.
To simulate the healthy and diseased state dynamics we opted to use a simpler
and well established minimal model firstly developed by Topp et al., 2000, for
which the concept of added stress was then implemented by Mohammed et al.,
2019. This model can emulate some of the connections in our conceptual model,
for which we could apply our DP calculations on. The coupled SM-Equations 2,
3 and 4 and the parameters listed in SM-Table 6(SM-Section 1.3) were used to
carry out the simulations in this study.

By simulating the dynamics of Glucose, Insulin and β-cell mass we were
able to replicate a healthy a individual dynamics for the first 15 days, only to
introduce forced disturbances of the system of ODEs later on with ’simulated
stress’, and to some extent by inclusion of periodic behaviour. We used k0 from
the Compartmental model(Figure 2) to represent food intake in the form of
periodic glucose spikes, that varies within normal range in a non-CS situation
and increases above 140 mgdL−1 for a chronically stressed individual. This is
also the variable that varies between individuals being simulated, as different
people have different meals and different peaks of glucose. At each meal time(5
meals per day), the individual receives a glucose peak between 100mgdL−1 and
170mgdL−1 for non-stress situation(larger sample). A mix of the latter with glu-
cose peaks between 225mgdL−1 and 350mgdL−1 for the stress situation(smaller
sample). In both cases, glucose pick values a uniformly distributed. There is
no simple minimal model that can include all the hallmarks we aim to use for
DP calculation, however by using the model developed by Mohammed et al.,
2019 [13] we are able to replicate at least 2 hallmarks.

2.2 Algorithm definitions

Based on the works of Benthem et al., 2022 [5], a methodology was built that
would make use of threshold values for each of the following hallmarks which
allow the calculation of Allostatic load within SM-Algorithm 2(SM-Section 1.3).
These are: Hyperglycemia, where the high Glucose levels at certain time points
are monitored; Insulin resistance, by using the Homeostasis model assessment
4 Supplementary Material(SM) available at Github link
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insulin resistance index(HOMA-IR) applying SM-Equation 1 [12]; Low grade
inflammation, by using the measure of the output from CCRP (from SM-Figure
2); Hypercortisolism, based on the output of high cortisol level from the Cor-
tisol compartment(CC) and Hyperglucaconemia, based on outputs from high
glucagon level from Glucagon compartment(CE). The threshold values are the
values for which the max peaks for different compartments are "surpassed" at
time t, considering a broken elasticity phase where some "wear and tear" is in-
flicted. By using SM-Algorithm 2 the calculations were ran for Hyperglycemia
and Insulin Resistance. This application would correspond to links regarding the
CG, βMD, CI , CX compartments disregarding constants k9, k10, k17, k41, k42, k43,
k51, k52, k53, k55, k58 in the compartmental diagram in SM-Figure 2. A coupled
Euler integration method(SM-Algorithm 1) was applied to solve the model SM-
Equations 2, 3 and 4. By using the simulated values of Glucose and Insulin, the
calculation of HOMA-IR is possible by using SM-Equation 1(SM-Section 1.3).

Going forward, we hypothesized that each hallmark would be present in this
conceptual model. To develop SM-Algorithm 2, we assume that there is a need
to quantify damage to the system modelled [5]. At the healthy state, the system
remains in stable steady state. Therefore, in order for a change in state to occur,
successive damage(WS) under some weight(w). Moreover, there is always some
resistance and resilience to this damage [19], under repair or healing(CS). When
the damage inflicted is higher than the recovery, some threshold T is surpassed
and there is some damage to the system in the form of strain(e). To represent that
a certain strain value(e) in case some threshold T would be reached or surpassed,
a strain event (Es) is evaluated at time t for each a strain calculation(St(t)) for
each hallmark. Where el is low strain, ei is intermediate strain and eh represents
the high strain of that hallmark towards DP. To calculate the DP for T2D we
used SM-Algorithm 2, where w(ex) is the weight of a certain strain towards DP
and x is the equivalent to intensity of the strain(low, intermediate or high) and
DP is the T2D progress estimation in % based on a cumulative sum of all counts
for all hallmarks.

3 Results

The system was simulated for 100 different cases(Figures 1, 2 and 3) where only
active components were taken into consideration. We resorted to this simple but
effective model to extract and test the Event-Driven approach that calculates
the DP over 45 days, while the model has a fixed minimal time of one day.
To this experiment were added event-driven meal-like instances of increase in
Glucose, firstly in a non-stress setup for 15 days. In Figure 1 we see the dy-
namics means corresponding to SM-Equations 2(A - The dynamics of Glucose
over time), 3(B - The dynamics of Insulin over time) and 4(C - The dynamics
of β-cell mass over time). After 15 days, a CS on-set is induced by adding only
disease-like values reached after meals(a direct consequence of CS). In Figure 2
we see the result of direct application of SM-Algorithm 2 to extract DP based
on Allostatic load. On the x-axis(left) labeled as % is the % of DP and on the
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Fig. 1. Glucose(A), Insulin(B) and β-cell mean mass(C) dynamics simulation for 100
different cases during 45 days. The blue, purple and green bold line is the mean of the
100 different cases for Glucose, Insulin and β-cell mean mass, respectively. Each plot
containing the bold line, also has an area around, representing the standard deviation
between the 100 different cases relative to the mean. (A) Labeled on the y-axis, Glucose
concentration in mgdL−1 units on an interval between 100 and 310. (B) Labeled on
the y-axis, Insulin concentration in µUmL−1 units on an interval between 5 and 30.(C)
Labeled on the y-axis, β-cell mass ratio at an interval between -1 and 1, with 0 being the
baseline β-cell mass. All plots are on the same labeled x-axis, the time-span simulated
in days. The red intermittent line represents the day of CS induction. The time-step
between calculation of one time-point to the other in all the plots is 24/60/60 ≈ 0.0066
days.

Fig. 2. DP mean simulation for 100 different cases during 45 days.

x-axis(right) labeled as proportion are proportions related to contribution of
Hallmark at time t for DP calculation from each hallmark. On the x-axis the
time-span simulated in days.

We tested whether SM-Algorithm 2 would be dependent on the time-span of
simulation and if more accurate DP would be achieved if 100 different cases were
simulated for 10 days(before CS-on set), 1

2 year, 1 year and 1.5 years (Figure 3).
Simulation of 100 different cases for different time-spans. Labeled as samples,
on the y-axis the different time-span samples are shown, while on the x-axis
the time-span simulated in days. Note that the length of each candle shows the
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Fig. 3. Simulation of 100 different cases for different time-spans.

variation minimum and maximum peaks and, in red, the density distribution of
each sample in terms of DP %. Notice that each candle has a mean DP value
for each sample, shown by a vertical line inside the candle plot.

4 Discussions and Conclusions

The main research question was conceptualizing a model that could encompass
the inter-players between T2D and CS and calculate the DP. The concept has
been proven to work and disease progression calculation has been successfully
achieved by using a simpler modelling approach. Biologically relevant results
were obtained this way. In Figure 1A and 1B, we can observe normal behaviour
of Glucose and Insulin dynamics, respectively. This is hinted by the peaks, which
would show how individuals can sometimes have meals richer in carbohydrates
that result in higher glucose and insulin peaks. To accompany this, enclosed
by the normal individual dynamics, we see normal increase in mass of β-cells
in Figure 1C. This dynamic ,in reality, has a plateau and in this setting in
particular, represents that there is no stress to the β-cell mass(it increases). The
same can be captured by our SM-Algorithm 2. Notice in Figure 2, that DP only
decreased into a normalized value and no significant strain(under small stress
events) can increase this value. Insulin(Figure 1B) also stays in the normal range
of a healthy person and follows Glucose peaks.

After day 15, we emulate CS, where after each meal, the peak values of Glu-
cose and Insulin become aberrant and switch to diseased state values, surpassing
disease thresholds and creating strain on the system. This can be clearly seen
in Figures 1A and 1B, where mean Glucose can rise up to 350 mgdL−1 or even
beyond and Insulin level reach 20 µUmL−1. As per randomization of Glucose
values, we see that the mean deviates from the standard deviation in some cases,
this is a sign of the difference between individual cases simulated, which is crucial
to have when HG states are reached for different reasons. Within this implemen-
tation, we see a direct consequence of CS applied to β-cell mass production that
fails to keep β-cell mass stable, as shown in Figure 1C. This would imply that
in a case of decrease in β-cell mass, we would also observe a decrease in Insulin
secretion. However this is not the case. Induced CS not only damages the β-cell
mass, but also indirectly makes the remaining β-cell mass compensate for the
loss in mass, keeping the Insulin/Glucose dynamics unchanged(Figure 3). This
finding has the capability to represent one more of the Hallmarks discussed in
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Section 2, under the name of LGI which in most cases is usually ignored as it
takes part in the cellular stress. This hallmark was not possible to introduce into
our calculation as there are no suggested LGI measures other than C-Reactive
Protein(CRP) in a clinical setup. In the future, we intend to fix this by applying
separate compartments for Cell Stress(CCSG), LGI(CCRP as an input from data
and CIG as a stand-in that holds general body inflammation events) shown in
SM-Figure 2. As the CS induced dynamics unfold, in Figure 2 we can already
observe the counts being introduced as proportions for the calculation of DP.
Hallmark HG is more evident since Insulin dynamics are able to closely follow
HG in order to not count as IR markers. To this effect, we can observe a slowly
increasing mean DP depending solely on two hallmarks. Moreover, we questioned
whether the mean of DP would eventually find a steady-state if the time-span
of simulation would be increased or decreased as well. This is shown in Figure
3, as we took different time-spans and sampled 100 different cases. Results show
that for a sample of 10 days(before CS induction), DP mean is lower than in
the case of 1 year and 1.5 years samples. This suggests that the initial 15 days
can be used as calibration for the algorithm following introduction of real data.
The 0.5 year sample mean is very close to the one for 10 day, but a very big
variation between cases is observed which is most probably the main cause for
this mean value. Beyond that, the 1 year and 1.5 years samples are the best
time-span samples to give closer results of DP to the mean for 45 days in Fig-
ure 2. This suggests that 45 days is not enough as time-span. Variation for 1.5
years in Figure 3 is also lower, additional testing is needed to verify whether this
value is just a minimum value needed for subject following or larger time-span
is needed. The experimental setup points towards a successful application and
evaluation of SM-Algorithm 2. This indicates that SM-Algorithm 2 has adaptive
plasticity to drastic changes in dynamics(favored by nature), producing limiters
to DP inherently. This hints at the need of very critical behaviour to change
and overcome disease on-set and disease un-set which is suggested in other CS
studies. Empirically, the need of real life data is evident for subjects at differ-
ent CS stages, with or without T2D on-set or even in other disease cases in
order to observe differences as well as different hallmarks and fixed clinically
observed threshold values to use as indicators for our SM-Algorithm 2. At this
stage, in-silico simulated data can only provide limited information. However,
a methodology is already being developed to account for this need as the con-
ceptual model in SM-Figure 2 now exists. The randomness in the simulations
clearly affects the variation of our calculation, nevertheless it is clear that this
effect decreases with increased period of simulation and this is essential when
searching for most favorable inter-players in disease progression later on. The
next steps are being taken towards acquisition of data that can be used to fur-
ther develop the conceptual model(SM-Figure 2) into a better T2D simulation
tool which can be used to further ameliorate Algorithm 2, culminating into an
ultimate tool for T2D appraisal and search of key inter-players to which the DP
can decrease.
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