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Abstract. The concept of extended cloud requires efficient network in-
frastructure to support ecosystems reaching form the edge to the cloud(s).
Standard network load balancing delivers static solutions that are insuf-
ficient for the extended clouds, where network loads change often. To
address this issue, a genetic algorithm based load optimizer is proposed
and implemented. Next, its performance is experimentally evaluated and
it is shown that it outperforms other existing solutions.
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1 Introduction

Today, typical “data processing systems” consist of “distributed data sources” and
(a) “central cloud(s)”. However, the advent of Internet of Things forces changes,
since the “decision loop”, from the “sensor(s)” to the cloud and back to the “ac-
tuator(s)”, may take too long for (near-)real time applications. This problem
materializes in, so called, Extended Cloud (EC). The EC encompasses highly
heterogeneous hardware, which is very often managed using Software Defined
Networking (SDN) architecture. One of the keys to effective management of SDN
network is load balancing achieved, inter alia, by elimination of overloaded links,
through dynamic adaptation of the routing policy. This requires an “arbitrator”,
which collects information about communication requests and dynamically man-
ages routing [14]. This, in turn, allows balancing loads in the aggregation layer,
connecting EC elements, including IoT and control devices [17].

Separately, note that classic load balancing algorithms, when applied to the
SDN-based networks, are NP-hard [20]. Therefore, a genetic algorithm-based
approach to SDN network load balancing (the SDNGALB algorithm), is being
proposed [10, 5, 13, 12]. Note that optimization of weights, in MPLS and OSPF
networks, is a separate research area. However, it is directly related to the topic
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discussed here and it is also NP-hard [7, 9]. Many works proposed heuristic al-
gorithms to optimize the link weights in the OSFP protocol, to minimize the
maximum load of the links [16, 15]. Overall, based on a comprehensive analysis
of works related to use of standard, and metaheuristics-based, approaches to
network load balancing, it can be stated that: (I) found solutions are focused
mainly on use of static values of weights for communication links. This results
in, temporarily optimal, but static, connection structure, and leaves an open
research gap. (II) Special attention should be paid to the possibility of applying
the developed solutions in the environment consisting of real network devices. To
address found limitations, and to deliver solution applicable to real-world ECs,
a genetic algorithm, with high implementation potential, is proposed.

2 Problem formulation and proposed solution

In what follows, computer network will be represented by a directed graph
G(N,E), where N is a set of nodes, representing network devices, and E is
a set of edges representing network links. Each edge eij ∈ E is assigned a weight
wij , the modification of which will affect the current shaping of the routing pol-
icy. Moreover, the following assumptions have been made: (1) Communication
channels, represented as eij ∈ E, have the same bandwidth; (2) G (N,E) is a
directed graph (capturing asymmetry of flows); (3) Network switches, routers
and intermediary nodes are treated as “identical network devices” because, from
the point of view of SDN network control, their distinction is irrelevant [18].

Network topology is represented by a graph adjacency matrix G(N,E), de-
noted as M , with size N×N . For a connection between two nodes i and j, value
eij = 1 is assigned, while eij = 0 otherwise. Note that matrix M is not symmet-
ric. To optimize the routing of flows, weights wij are assigned to the transmission
channel. Here, wij are natural numbers from the range (1, v), where v can take
any value. Weight matrices W have size N ×N . The weighted adjacency matrix
MW is determined as the Hadamard product [19] of matrices M and W .

MW = M •W =

 w11 · e11 . . . w1N · e1N
...

. . .
...

wN1 · eN1 · · · wNN · eNN

 (1)

For vertex pairs (s, d), where s, d ∈ N , homogeneous traffic flow f specifies
requests to transmit information, as represented by a flow matrix Fsd.

Fsd =

 p11 . . . p1N
...

. . .
...

pN1 · · · pNN

 (2)

where: s = d → psd = 0; psd = m · f , m ∈ N. Homogeneous flow f corresponds
to the granularity of flows in the network, as is the case with queues, e.g. in the
Ethernet network (f = 64kB). Total flow psd, is therefore defined as a multiple
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of the base flow f . When, a unit value f is assumed, then psd = m. For example,
for channels 100 Mb/s and granulation f = 64kb, for any edge maxm = 1563.
In what follows, such network will be named a network with homogeneous flow
structure. The flow matrix can change over the life time of the network. The
values of the elements of this matrix can also be predicted in advance [8]. The
matrix L determines the current link load eij of the network topology. Here, it is
assumed that it will be systematically modified, as a result of the modification
of weights in the matrix W and the distribution of flows defined in the matrix
Fsd. The path between the vertices s, d, for a given flow psd, will be determined
using the Dijkstra algorithm [6]. However, other algorithms can also be used.
Thus, the value for lij is determined as the sum of flows psd passing through the
edge eij . Taking into account the need of dynamic control of link weights, the
problem of network load balancing becomes: seeking a set of link weights W , for
which the maximum number of flows passing through the “busiest edge” in the
network has been minimized. Therefore, the problem can be formulated as:

min (max (lij)) (3)

Note that, in the algorithm, the load matrix L is represented as a load vector
V L = [l11, l12, ..., l1N , ..., lN1, lN2, ..., lNN ]

T . As noted, the problem of balancing
loads of links in the network is NP-hard. Hence, the SDN Genetic Algorithm
Load Balancer (SDNGALB) is proposed. It is characterized by low computa-
tional complexity; allowing implementation of the balancing algorithm, and ac-
tual deployment in production systems.

2.1 SDNGALB algorithm description

Initially, values of elements wij are randomly populated, with natural numbers
from the range (1, v). In what follows, max v = 9 was used. However, for very
large networks, with high connectivity, a larger range of weights may be needed.
However, this must be determined experimentally, or based on the designers’
intuition. The following decisions outline the design of SDNGALB (Figure 1).

1. The chromosome is the weight list VW , of individual network links, obtained
from matrix MW , according to the rule: if for any x, y ∈ (1, N), wxy ·exy = 0
weight is omitted; if wxy · exy > 0 the weight is added to the list (the length
of the chromosome is equal to the number of edges in the network graph).

2. The initial chromosomes are randomly generated, from range (1, v). The size
of the population is selected experimentally, and is denoted as n.

3. The fitness function (FF) is calculated using formula (3). The FF algorithm
is presented, in the form of a pseudocode in Figure 1.

4. Individuals are ranked on the basis of the values of their fitness function.
5. Pairs of individuals, arranged according to the quality of adaptation, are

crossed with each other using the standard one-point method – with the
crossing point selected randomly.

6. Mutation occurs with the probability determined by the parameter mp, and
consists of drawing a new value (from a specified range) of any gene in the
chromosome.
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7. Optimization is performed until one of the following stop condition occurs:
(a) Stagnation parameter (sz) is reached, i.e. number of solutions, during
which the obtained results do not improve; (b) The maximum number of
generations (gs) is reached.

Fig. 1. Block diagram of the o SDNGALB algorithm and Fit Function (FF)

The Fitness Function (FF) algorithm requires a more detailed explanation. For
each flow Fsd, the shortest path between the source node and the destination
node is calculated (using the Dijkstra algorithm, and taking into account matri-
ces M,W,MW ). Optimization of load distribution is achieved by manipulating
the link weights in the matrix W (on the basis of which the matrix MW is built)
to eliminate network bottlenecks, by reducing the load on the most frequented
edge in the network. For weights W , of chromosome VW , and flows Fsd, using
the Dijkstra algorithm, the routing table RT is determined. It contains a num-
ber of rows equal to the number of non-zero matrix elements Fsd and each row
contains a list of vertices to be traversed for a given flow psd, marked as P (psd).
For example, a single row in the RT routing table, for a flow between 6 and 0
vertices F6,0, might look like P (F6,0) → e6,5, e5,3, e3,1, e1,0, where eu,d denotes
the edge connecting vertices u and d. Then, on the basis of RT , FF algorithm
determines the maximum link load in the network max (lij).

The results of operation of SDNGALB is the set of optimal link weights W ,
in the given network, that allows building a balanced routing table RT , which
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minimizes the maximum link load in the network. Note that this algorithm
can be triggered periodically or when network flow related threshold values are
exceeded. The source code of the algorithm is available at the website [3].

3 Experimental setup and results

The algorithm was implemented in Python and deployed in the environment
consisting of, enterprise class, network devices. During experiments, a dedicated
laboratory, configured for Internet of Things related research, was used [2].

The first set of tests was focused on the effectiveness of optimization. For
flows in the network represented by graph G (N,E), where |N | = 10 and |E| =
39, the values of the function (3) were compared before and after using the
SDNGALB algorithm. Table 1 shows the mean value of max (lij), before and
after optimization, calculated as the average of 10 executions of the SDNGALB
algorithm, for the defined network, for |Fsd| = 20; 30; 40; 50; 100; 200.

Table 1. Average effectiveness of optimization for different number of network flows.

Arithmetic mean |Fsd|
of 10 executions 20 30 40 50 100 200

max (lij) before optimisation 5,6 8,6 8.8 11,6 21,8 41,6
max (lij) after optimisation 2,8 4 4,8 5,8 11,6 22,4

Effectiveness of optimisation 50% 53% 45% 50% 47% 56%

As can be seen, application of SDNGALB resulted in a noticeable (about
50%) reduction of flows in the most heavily loaded links in the tested network.

The next set of experiments was performed to compare the time of reach-
ing the solution using SDNGALB with the exact algorithm (BF), searching the
entire solution space. Here, 100 simulations were performed for both algorithms
for a network with 4 nodes and 5 edges, and 5 defined flows. The same optimiza-
tion result, expressed by the value of the function (3), was obtained by both
algorithms. For the genetic algorithm the mean the time was 0.0118065 seconds,
while for the BF algorithm the time was 4448.077889 seconds.

Next, the effectiveness of the proposed solution on networks with different
topologies was explored. The speed of obtaining the solution (denoted as Ts,
measured in seconds), for min (max (lij)) is reported. In the first phase, 1000
simulations were performed, for six different network topologies, in which the
initial flows were randomly generated. The characteristics of the networks Net,
used in the study, is presented in Table 2, where the connectivity parameter Cn
should be understood as the percentage ratio of the number of edges in the tested
network to the number of edges in the network with all possible connections.

For experiments reported in Table 2, flows were randomly generated for each
individual simulation. The SDNGALB parameters were: mutation probability:
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Table 2. Parameters of networks used in the research and average time of reaching
the solution by SDNGALB algorithm in seconds

Net n4e5 n5e11 n6e15 n10e39 n25e219 n50e872

|N | 4 5 6 10 25 50
|E| 5 11 15 39 219 872
Cn 31% 44% 42% 39% 35% 35%
v 1-5 1-5 1-5 1-9 1-9 1-9

|Fsd| 5 10 15 20 45 100
Ts 0.012 0.021 0.034 0.093 1.091 10.264

mp = 10%; population size: n = 50; generation size: gs = 500; stagnation:
sz = 100. Here, as the network size increases, i.e. from 4 nodes and 5 connections
to 50 nodes and 872 connections, the solution time remains within an acceptable
range (10s max). Therefore, it can be stipulated that network optimization, based
on the SDNGALB algorithm, can be deployed in production network systems.

The final set of experiments compared the performance of the SDNGALB al-
gorithm with two alternative optimizers. The first one – Ant Colony Optimiza-
tion Load Balancer (ACOLB [11]) uses ant colony optimization to determine
optimal routes between nodes. The second one – Dijkstra’s Shortest Path Algo-
rithm (DSPA, [4]) is based on the identification of the shortest paths between
given nodes, using Djkstra’s algorithm, under the assumption that link weights
are randomized (using values from a given range) and are not modified later.
Here, DSPA did not optimize link weights and served only as a baseline for the
the execution time length. Experiments were performed on the n10e39 network
(with 10 nodes, 39 edges) with the assumption that |Fsd| = 20. The performance
of the ACOLB algorithm was tested with different parameter values (number of
ants: 1, 5, 10, 25, 50, 100, 500). For each combination of values for ACOLB, 100
simulations have been run, and the average results of execution time in second
(Ex) and max (lij) are reported. The tested algorithms obtained the following re-
sults: SDNGLAB: Ex=0,09263 and max (lij)=2,792; ACOLB: Ex=0,02229 and
max (lij)= 31,392, DSPA: Ex=0,00546 and max (lij)=5,110. Therefore, it can
be concluded that the proposed solution to optimization of link weights, in the
network during routing, makes it possible to achieve nearly twice the lower max-
imum link load in the network, as compared to the performance of the DSPA
algorithm. In contrast, the ACOLB does not deliver satisfactory optimization
vis-a-vis the proposed solution.

4 Concluding remarks

In this work the need for efficient SDN network flow optimization has been ad-
dressed by means of the dedicated genetic algorithm. The overarching goal was
to deliver efficient infrastructure for extended cloud infrastructures, where re-
sources, typically realized as services and microservices, can be highly dispersed.
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The discussed approach is fast, which should allow to quickly modify the routing
table, in response to changing traffic patterns. Results obtained during tests are
very encouraging, concerning both the speed and the quality of optimization.
Additional details about the approach, including extensive literature review can
be found in [1]. As part of further work, (1) scalability of the proposed algo-
rithm will be tested for large, highly distributed, networks; (2) algorithm will be
adapted to modify the physical topology of MESH networks; and, (3) possibility
of automatic, adaptive tuning of optimizer parameters, using machine learning
techniques will be explored.
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