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Abstract. The purpose of the article is to develop a new metric learning
algorithm for combination of continuous and nominal data. We start with
Euclidean metric for continuous and Hamming metric for nominal part
of data. The impact of specific feature is modeled with corresponding
weight in the metric definition. A new algorithm for automatic weights
detection is proposed. The weighted metric is then used in the standard
knn classification algorithm. Series of numerical experiments show that
the algorithm can successfully classify raw, non-normalized data.

Keywords: KNN classification · weighted Hamming metric · nominal-
continuous data · metric learning.

1 Introduction

Similarity is important concept of data science. Most algorithms operate on
groups of similar data, and their results strongly depend on how we define sim-
ilarity. Mathematical concept that can be used to model similarity is metric.
Assuming that the similarity (metric) is hidden in the data, we get the problem
of determining the metric, i.e. metric learning.

The purpose of this article is further development of the metric learning
technics suggested in [4] for combinations of nominal-continuous data. Namely,
instead of unsupervised learning and clustering investigated in [4], here we con-
sider supervised learning and the classification problem.

We do not assume that any additional structure on a dataset is a-priory
known, so we use the Euclidean metric on continuous and the Hamming dis-
tance on nominal part of data. These metrices provide the most common and
straightforward way for measuring distances [8].

The main assumption is that each feature has different impact to the struc-
ture of classes. We model it with appropriate multipliers in metric (1). So, the
problem is to define these unknown multipliers. We do it by minimizing the total
intra-class squared distance.

As a possible application of our technics we show that the standard knn-
classification algorithm can be improved by using the weighted metric. Let us,
however, note that the proposed approach can be used in any algorithm for
analysis of nominal-continuous data that is based on metric.
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The paper is organized as follows. In the section 2 we give a brief survey of
related works. The algorithm of weights detection is the content of the section 3.
The results of numerical experiments are presented in the section 4. Some final
conclusions and possible directions for the future work are given in the section 5.

2 Related Works

The metric learning is actively studied in recent years. However, most papers
consider either continuous or nominal data. Sometimes nominal data are em-
bedded into continuous space, but this embedding as a rule is arbitrary. In this
article we consider nominal and continuous data together in a natural way: the
Euclidean metric on continuous part and the Hamming metric on nominal one.
Data from each part affects the weights on the other part as well.

One of the first papers in metric learning of continuous data is [17], where a
projected gradient descent algorithm for Mahalanobis distance learning is sug-
gested. Two stochastic methods, the neighborhood component analysis and the
large margin nearest neighbors were introduced in [6] and [16] respectively. The
above methods got further development in later years, see for instance [15].

The authors of [14] used the support vector machine approach to develop an
algorithm for the Mahalanobis distance learning. Other approach, the information-
theoretic metric learning was introduced in [3].

Let us also mention [7], where the weighted Euclidean distance was con-
sidered. In our paper we extend this model to combinations of nominal and
continuous data. We refer to works [9] and [2] for more details and references.

The bibliography of metric learning for nominal data is not so extensive.
Most of papers assume some additional structure given on nominal data and
develop an algorithm for learning of appropriate metric, e.g. tree-editing metric
or string-editing metric, see the survey [2].

The Hamming distance itself was considered in [12, 18]. The authors defined
and optimized projections from continuous features into product of binary sets
with the standard Hamming distance. This differs from our context: we assume
that the data already have nominal (not only binary) features.

The general space of nominal-continuous data was considered in [4] in context
of non-supervised learning. This article is the direct predecessor of our work.

3 Determining the Weights

We consider the data X = {X1, . . . ,XM } of M records. Each record consists of
two parts Xi = (Xi, Yi), where Xi = (x1

i , . . . , x
n
i ) ∈ Rn are the continuous data,

and Yi = (y1i , . . . , y
m
i ) are the nominal data, i = 1, . . . ,M . We assume that X is

divided into c classes, X = C1∪· · ·∪Cc, where c < M . These classes will be used
for learning. The determined weights are used for classification of new records.

The Hamming metric on the set of nominal data is defined as follows:

disth(Y1, Y2) =
1

m

∣∣∣{β = 1, . . . ,m | yβ1 ̸= yβ2 }
∣∣∣ = 1

m

m∑
β=1

diff(yβ1 , y
β
2 ),
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where diff(t1, t2) =

{
1 if t1 ̸= t2,

0 if t1 = t2.

Introduce the weights vector: W = (W,U) = (w1, . . . , wn, u1, . . . um), where
wα > 0, uβ > 0 for α = 1, . . . , n, β = 1, . . . ,m, and assume that classes are
formed with respect to the weighted distance:

dist2W(X1,X2) =dist2W,e(X1, X2) + dist2U,h(Y1, Y2)

=

n∑
α=1

w2
α(x

α
1 − xα

2 )
2 +

 m∑
β=1

uβ diff(y
β
1 , y

β
2 )

2

.
(1)

To determine the weights vector W we minimize the total intra-class squared
distance:

H(W) =
1

M2

c∑
k=1

 ∑
Xi,Xj∈Ck

dist2W(Xi,Xj)

 .

The distance (1) and hence the objective function H(W) are homogeneous
with respect to W. So, to workout an effective minimizing procedure, we assume
that the generalized average of the weights is constant: 1

n+m

 n∑
α=1

wr
α +

m∑
β=1

ur
β

 1
r

= 1, r ∈ (0, 1).

Finally, we get the following constrained minimization problem:
H(W,U) =

1

M2

c∑
k=1

∑
i,j∈Ck

dist2W,U

(
(Xi, Yi), (Xj , Yj)

)
→ min,

n∑
α=1

wr
α +

m∑
β=1

ur
β = n+m.

We will write i, j ∈ Ck instead of Xi,Xj ∈ Ck for the sake of simplicity.
To solve this problem we use the method of Lagrange multipliers. The cor-

respondent Lagrange function is as follows:

L(W, λ)

=
1

M2

c∑
k=1

∑
i,j∈Ck

dist2W,U

(
(Xi, Yi), (Xj , Yj)

)
− λ

 n∑
α=1

wr
α +

m∑
β=1

ur
β − (m+ n)


=

1

M2

n∑
α=1

w2
α

c∑
k=1

∑
i,j∈Ck

(xi
α − xj

α)
2 +

1

M2

c∑
k=1

∑
i,j∈Ck

 m∑
β=1

uβ diff
(
yiβ , y

j
β

)2

− λ

 n∑
α=1

wr
α +

m∑
β=1

ur
β − (m+ n)

 .
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The optimal weight vector is determined from the following conditions:

∂Lp(W, λ)

∂wα
=

∂Lp(W, λ)

∂uβ
=

∂Lp(W, λ)

∂λ
= 0, (2)

where α = 1, . . . , n, β = 1, . . . ,m.
The first equation of (2) yields:

2

M2
wα

c∑
k=1

∑
i,j∈Ck

(xi
α − xj

α)
2 = λrwr−1

α ,

therefore
wα = Λrsα, (3)

where

Λr =

(
λr

2

)− 1
2−r

, (4)

sα =

 1

M2

∑
k=1c

∑
i,j∈Ck

(
xi
α − xj

α

)2− 1
2−r

. (5)

In a similar way, the second equation of (2) implies

uβ = Λrzβ , (6)

where Λr is defined in (4), and zβ satisfies the following equation zr−1
β =∑m

γ=1 Aβγzγ , where

Aβγ =
1

M2

c∑
k=1

∑
i,j∈Ck

diff(yiβ , y
j
β) diff(y

i
γ , y

j
γ). (7)

The third equation of (2) is
∑n

α=1 w
r
α +

∑m
β=1 u

r
β = n+m. Substituting into

it (3) and (6) and eliminating Λr, one obtains

Λr =

(∑n
α=1 s

r
α +

∑m
β=1 z

r
β

n+m

)− 1
r

(8)

Following [4] we propose a relaxation iterative method for zβ :

zβ,next = zβ − τ

(
zr−1
β −

m∑
γ=1

Aβγzγ

)
, (9)

here τ is a relaxation parameter.
The above considerations are summarized in the algorithm 3.1.

Remark 1. One can show that for small r every feature has a similar contribu-
tion to the total intra-class squared distance. For greater r contribution of each
feature is proportional to the value of sα(r) for continuous features and zβ(r)
for nominal ones.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_31

https://dx.doi.org/10.1007/978-3-031-36021-3_31
https://dx.doi.org/10.1007/978-3-031-36021-3_31


Weighted Hamming Metric and KNN Classification 5

Algorithm 3.1 Determining of the metric weights
Require: X = {X1, . . . ,XM } is the set of records, C1, . . . , Cc — the set of classes
Ensure: W = (W,U) is the optimal weights vector

Compute sα, α = 1, . . . , n with (5)
Compute matrix A with (7)
Choose initial z vector as z = (1, . . . , 1)
while ∥znext − z∥ > ε do

Compute znext with (9)
end while
Compute Λr with (8)
Compute wα with (3) for α = 1, . . . , n
Compute uβ with (6) for β = 1, . . . ,m
return (W,U)

4 Numerical Experiments

To illustrate the concept a few utilities in C, R and Perl have been created. The
code is available as a project on Gitlab at https://gitlab.com/adenisiuk/
weightedhamming.

We performed tests for values r = 0.05, 0.15, 0.35, 0.55, 0.75, and 0.95.
We consider 2 datasets from the UCI Machine Learning Repository [1]: The

Australian Credit Approval and The Heart Disease. We tested algorithm on
artificial dataset as well.

All the tested datasets were splitted into train (80%) and test (20%) parts.
The purpose of our test is to show that the algorithm improves the standard

KNN classification with non-weighted metric. However, we performed also com-
parison with two powerful classifiers: random forest and SVM. Implementations
of these algorithms in R were used in experiments: [10, 11].

The continuous data were normalized before testing the KNN algorithm with
non-weighted metric and the SVM classifier.

To compare performance of algorithms we used the area under the ROC
curve (AUC) as a measure. It is known that AUC is a suitable measure of
binary data classification efficiency [5]. To calculate the AUC we used the R
implementation [13].

4.1 Australian Credit Approval

The Australian Credit Approval dataset has 6 continuous, 8 nominal attributes,
690 records, and 2 decision categories. The results of experiments are presented
in the table 1. One can see that our algorithm overperforms the standard KNN
and its performance is comparable to the random forest and SVM.

Two continuous features in this dataset have values that are bigger than
others. The corresponding weights computed by our algorithm are very small
and recompense big variance of these two features.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_31

https://dx.doi.org/10.1007/978-3-031-36021-3_31
https://dx.doi.org/10.1007/978-3-031-36021-3_31


6 Aleksander Denisiuk

Table 1. Numerical experiments for the Australian Credit Approval dataset.

Algorithm AUC H(r)

Weighted KNN, r = 0.05 0.942 166.53
Weighted KNN, r = 0.15 0.942 103.93
Weighted KNN, r = 0.35 0.938 52.12
Weighted KNN, r = 0.55 0.947 31.98
Weighted KNN, r = 0.75 0.947 21.15
Weighted KNN, r = 0.95 0.942 13.66
Unweighted KNN, normalized data 0.925
Random forest 0.949
Support Vector Machine 0.941

Table 2. The results of numerical experiments for the Heart Disease data set.

Algorithm AUC H(r)

Weighted KNN, r = 0.05 0.966 67.56
Weighted KNN, r = 0.15 0.969 54.62
Weighted KNN, r = 0.35 0.966 36.41
Weighted KNN, r = 0.55 0.974 25.68
Weighted KNN, r = 0.75 0.979 19.21
Weighted KNN, r = 0.95 0.946 14.55
Unweighted KNN, normalized data 0.953
Random forest 0.941
Support Vector Machine 0.966

4.2 Heart Disease

The Heart Disease dataset has 6 continuous, 7 nominal attributes, 370 records,
and 2 decision categories. The results are presented in the table 4.2. We can see
that for most values of r our algorithm overperforms the standard KNN. For
r = 0.66, r = 0.55, and r = 0.75 our algorithm overperforms all the tested clas-
sifiers. Contrary to the previous dataset, we see that the maximum performance
corresponds to middle values of r.

4.3 Artificial Dataset

We have tested our algorithm on artificial dataset as well. The artificial dataset
was constructed as follows. Each record has 6 continuous and 6 nominal features.
The cardinalities of nominal domains were arbitrary chosen as 2, 12, 3, 13, 4, 14.
We use the weighted metric (1) with the following weights: 2500, 1010, 1.5, 5.1,
0.001, 0.0001 for the continuous part and the same for the nominal part. Two
classes are two balls with random centers in this metric space. The radius of
each ball is equal to 1/

√
1.75 of distance between the centers. Analyzed data,

1000 for each class were randomly chosen from corresponding balls.
The table 4.2 contains the average rate for 10 generated datasets.
One can see that our algorithm overperforms the standard KNN by 1% and

reaches almost 100% performance.
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Table 3. The results of numerical experiments for the Artificial data set.

Algorithm AUC H(r)

Weighted KNN, r = 0.05 0.997 10213.74
Weighted KNN, r = 0.15 0.997 1043.18
Weighted KNN, r = 0.35 0.997 127.58
Weighted KNN, r = 0.55 0.996 49.96
Weighted KNN, r = 0.75 0.995 26.68
Weighted KNN, r = 0.95 0.995 13.96
Unweighted KNN, normalized data 0.990
Random forest 0.999
Support Vector Machine, normalized data 0.990

Let us however make a remark concerning the weights of the metric (1).
Our algorithm discovers stably the continuous part. That means that discovered
weights are proportional to the initial ones. But the nominal weights do not
reflect initial weights. There can be two reasons of this phenomen. The first one:
our way of modelling impact of nominal weights is not reliable. The second one,
that is seemed to be more credible: the Hamming distance is too weak to reflect
relations between the nominal data.

5 Conclusion and Future Work

In this article we consider modeling of nominal-continuous data. We used the
weighted Euclidean metric on the continuous part and the weighted Hamming
metric on the nominal one. A new method for automatic weights detection based
on minimizing the total inner-class squared distance is proposed. The detected
metric then was used in KNN classification.

Numerical experiments on real and artificial data show that our approach
can improve the standard KNN classification algorithm and achieve the AUC
performance of such sophisticated classification algorithms as random forest or
support vector machine classifier, preserving simplicity of the standard KNN.

Summarizing: the proposed method is an interesting proposition for the clas-
sification problem. Moreover, as it was mentioned at the end of section 4, it
could get further improvement. Specifically, we plan to consider alternatives to
the standard Hamming metric for the nominal part.

Besides, the discovered metric can be used in other algorithms for analysis
of nominal-continuous data that are based on similarity.

These issues will be explored and presented in the future.
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