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Abstract. Deep reinforcement learning (RL) has demonstrated great
capabilities in dealing with sequential decision-making problems, but its
performance is often bounded by suboptimal solutions in many complex
applications. This paper proposes the use of human expertise to increase
the performance of deep RL methods. Human domain knowledge is char-
acterized by heuristic rules and they are utilized adaptively to alter either
the reward signals or environment states during the learning process of
deep RL. This prevents deep RL methods from being trapped in local
optimal solutions and computationally expensive training process and
thus allowing them to maximize their performance when carrying out
designated tasks. The proposed approach is experimented with a video
game developed using the Arcade Learning Environment. With the extra
information provided at the right time by human experts via heuristic
rules, deep RL methods show greater performance compared with cir-
cumstances where human knowledge is not used. This implies that our
approach of utilizing human expertise for deep RL has helped to increase
the performance of deep RL and it has a great potential to be general-
ized and applied to solve complex real-world decision-making problems
efficiently.

Keywords: Complex problems · Reinforcement learning · Sequential
decision making · Human expertise · Heuristic rules.

1 Introduction

Reinforcement learning (RL) has been applied to solve various real-world sequen-
tial decision-making problems such as in robotics, self-driving cars, trading and
finance, machine translation, healthcare, video games and so on [6]. Prominent
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challenges for RL methods include long training time and dealing with large
state and action spaces. Deep learning has emerged to be a great compliment to
RL methods and has enabled them to efficiently handle high-dimensional state
and action spaces [3]. The combination of deep learning and RL methods has
been termed as deep RL. Deep learning is able to represent high-dimensional
data by compact feature sets to facilitate the training process of RL methods
when dealing with complex environments. While deep RL methods are able to
cope with large-scale problems, their learning process is even more computation-
ally expensive and requires a large number of samples compared with traditional
RL approaches. This directly affects the performance of deep RL methods, espe-
cially when applied to problems with complex goals or objectives. One approach
to mitigating this issue is incorporating human knowledge into the training pro-
cess of deep RL methods [10].

On the one hand, humans can communicate a policy to the agent by demon-
strating the correct actions in person to complete the tasks. Approaches such as
learning from demonstrations or imitation learning can then be employed to learn
the policy from the demonstration data [7]. However, the tasks sometimes are
too challenging that humans cannot perform properly. Collecting behavioural
data from humans is often expensive and erroneous, especially when a large
amount of high-quality demonstration data are required. Another approach that
is less expensive is for humans to provide feedback to the agent regarding its
performance. This kind of guidance may be in the form of evaluative feedback
(e.g., policy shaping, reward shaping, intervention) or human preferences [11].

An example of the evaluative feedback approach is presented in [8] where
domain knowledge is represented as decision trees to imbue human expertise
into a deep RL agent. Humans just need to specify behaviours of agents as high-
level instructions via propositional rules without the need for demonstrating the
tasks in all states or providing feedback to all actions. That approach helps to
improve warm starts in terms of network weights and architecture of deep neural
networks. Deep RL agents can start the learning process in a more knowledgeable
manner and therefore their learning time is shortened, and their performance is
superior to random initialization approaches. Likewise, Dong et al. [1] suggested
an approach using a Lyapunov function to shape the reward signal in RL. The
agent is instigated to reach the region of maximal reward based on the Lyapunov
stability analysis. That approach is theoretically proved to have a convergence
guarantee without making variance in optimality or biased greedy policy.

Making a full use of a shaped reward function, which is constructed using
domain knowledge, may not improve the performance of RL methods because
transforming human knowledge into numerical reward values is often subject to
human cognitive bias. Hu et al. [2] proposed a method to adaptively utilize a
given shaping reward function by formulating and solving a bi-level optimization
problem. That approach attempts to maximize the use of the beneficial part
of the given shaping reward function while ignoring the unbeneficial shaping
rewards. This helps to avoid the time-consuming reward tuning process in deep
RL applications.
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In this study, we focus on complex problems where the objective of the agent
must be changed adaptively depending on the status of the agent and the en-
vironment. For example, a surveillance unmanned aerial vehicle (UAV), when
not under attack, can fly slowly and capture high-quality images of objects in
the monitored area. When the UAV senses or recognizes an attack, it needs to
automatically fly fast and escape the area quickly. Likewise, if a self-driving car
suddenly collides into a crowd of people, it should be able to quickly adapt by
changing to a stopping policy (e.g., turning off the engine) rather than contin-
uing to run into the crowd and collide with more people. This paper aims to
solve these problems using deep RL methods with heuristic rules. The rules are
constructed using human domain knowledge that leads to a change of reward
signal or state information adaptively. These changes happening at the right
time during the training and execution of the deep RL agent will help it to crack
the trap of suboptimal solutions.

2 Modifying A3C to Incorporate Heuristic Rules

We choose the asynchronous advantage actor-critic (A3C) deep RL method [4]
to demonstrate the idea of incorporating human expertise. The asynchronous
learning architecture of A3C with multiple workers enables it to learn quickly
and efficiently by utilizing data from multiple environments. In A3C, multiple
workers learn and update global network’s parameters asynchronously. Based on
the asynchronous updates, the learning process can be parallelized using differ-
ent threads, which collect experiences independently. Many decorrelated training
examples can thus be collected at a time, leading to a reduction of the variance
of the learning estimators. Each A3C worker thread interacts with its own en-
vironment and updates the global network with its computed gradient. Starting
conditions and exploration rates can be chosen differently for the threads to
ensure examples collected at a time are adequately varied. A3C has a great
advantage compared to the notable deep Q-network (DQN) algorithm [5].

The A3C method has become a benchmark deep RL algorithm due to its
efficiency in training and its ability to deal with both discrete and continuous
action spaces. The actor produces policies using the feedback from the critic.
Both networks improve over time based on their loss function. The value loss
function of the critic is:

L1 =
∑

(R− V (s))2 (1)

where R is the discounted future reward: R = r + γV (s′), with r being an
immediate reward of an action a. On the other hand, the policy loss function of
the actor is:

L2 = − log(π(a|s)) ∗A(s)− β ∗H(π(s)) (2)

where A(s) is the estimated advantage function A(s) = R − V (s) and H is the
entropy of the policy π, which is added to improve exploration. The impact of
this entropy regularization term is controlled by the hyperparameter β.
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Algorithm 1: Modified A3C (Using Heuristic Rules)
Define global shared parameters as θ and θv while thread-specific parameters
as θ′ and θ′v

Set global shared counter T = 0 and thread step counter t = 1
repeat

Reset gradients: dθ = 0 and dθv = 0
Update thread-specific parameters θ′ = θ and θ′v = θv
Set tstart = t
Get state st
repeat

Execute action at based on policy π(at|st; θ′)
Receive reward rt and new state s(t+1)

if state st satisfies predetermined conditions
Change reward rt = r∗t or new state s(t+1) = s∗(t+1)

end if
t = t+ 1; T = T + 1

until terminal st or t− tstart == tmax

Set R = 0 for terminal st or R = V (st, θ
′
v) for non-terminal st

for i ∈ {t− 1, ..., tstart} do
R = ri + γR
Aggregate gradients wrt θ′:
dθ = dθ +∇θ′ log π(ai|si; θ′)(R− V (si; θ

′
v)) + β∇θ′H(π(si; θ

′))
Aggregate gradients wrt θ′v: dθv = dθv + ∂(R− V (si; θ

′
v))

2/∂θ′v
end for
Asynchronously update θ using dθ and θv using dθv

until T > Tmax

The modified A3C is presented in Algorithm 1 where heuristic rules are in-
jected into the A3C. These rules are constructed based on conditions of the
states received by the agent. We perform the experiments to modify the states
if some predetermined conditions of the states are met. Specifically, changing
the next state s(t+1) = s∗(t+1) (where s∗(t+1) is the modified state) is to recom-
mend areas of the state that the agent needs to focus on in order to complete
the designated tasks efficiently. The heuristic rules are devised based on expert
knowledge, which is specific for each particular problem. We demonstrate our
proposed approach by using the video River Raid game. Details on how human
expertise is encoded via heuristic rules are presented in the next section.

3 Heuristic Rules to Encode Human Expertise

3.1 Heuristic rules for the River Raid game

The agent is trained to fly a fighter jet over a river and to shoot as many
enemies as possible. A screen of the River Raid game is depicted in Fig. 1. This
is a vertically scrolling shooter game where the agent scores a point of 30, 60,
80, 100 and 500 when shooting an enemy tanker, a helicopter, a fuel depot, a jet
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Fig. 1. An illustration of the River Raid game where the fighter jet in yellow colour
needs to fly over the river in blue colour. Enemy crafts including helicopters, fuel depots,
tankers, jets and bridges are to be shot by the fighter jet to obtain points. The fighter
jet (agent) needs to learn to avoid crashing with the riverbank and enemy crafts and
also refuel by flying over fuel depots when its fuel level is low.

and a bridge, respectively. The agent can refuel to full if it decides to fly over
instead of shooting a fuel depot. The agent can move left and right, accelerate
and decelerate, but cannot manoeuvre up and down the screen. The game is
over if the agent (fighter jet) collides with the riverbank or an enemy craft, or if
it runs out of fuel.

Because the game objective is to maximise the points, the agent is not insti-
gated to fly over the fuel depots to refuel. It instead attempts to shoot the fuel
depots to obtain 80 points. The agent therefore runs out of fuel and the game
is over rather quickly. Our observations suggest that when the agent obtains a
total score of around 6,000 points, it runs out of fuel and thus the maximum
point it can obtain cannot exceed 6,000. Based on this observation, we create a
heuristic rule to penalize the agent if it shoots the fuel depots when its fuel level
is less than 60% of the full capacity. In that case, the agent will be deducted
80 points instead of getting 80 points if it shoots a fuel depot. Alternatively, if
flying over a fuel depot, the agent will be awarded 80 points. It is important to
note that this heuristic rule is only applied when the fuel level is less than 60%.
This threshold is selected because the fighter jet intuitively does not need to
refuel when its fuel level is high and it also does not risk to leave the fuel level
too low. In spite of that, other values, e.g., 70%, 50%, 30%, and so on, can be
experimented for this fuel level threshold.

3.2 Generalizing to other problems

While incorporating heuristic rules into existing deep RL algorithms can be
implemented like what we presented in Algorithm 1 (where A3C is chosen as an
example), the more challenging part of the overall proposed approach is how to
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design a heuristic rule for a specific problem. The rule is in the if-then format
such as if a predetermined condition is met then some changes have to be made,
i.e., change reward signal or next state.

It is important to note that the changes need to be made at the right time
to help the agent crack the suboptimal trap. The change is applied to either
reward or next state whenever the predetermined condition is met. In general,
the expert needs to provide two types of information: what needs to be changed
and at what time.

Humans generally do not need to have great expertise in order to realize what
causes the suboptimal trap for a specific problem and suggest a heuristic rule for
that problem. The rules are normally intuitive to humans. Therefore, in terms
of generalization of the proposed approach to other problems, on the one hand,
a heuristic rule can not fit all problems, i.e., it is not a one-size-fits-all approach.
On the other hand, it is however rather straightforward for a human to create a
heuristic rule for a specific problem after observing how that problem plays out.

4 Experimental Results

In this section, we compare our approach that uses human expertise (via the
heuristic rule) with two baseline methods: the A3C approach without human
expertise (not using the heuristic rule) and the Multi Objective Deep Q-Networks
with Decision Values (MODQN-DV) method proposed in [9].

The heuristic rule for the River Raid game is applied to encourage the agent
to refuel when its fuel level is low. To implement this heuristic rule, we need to
monitor the fuel level of the agent. When the fuel level is less than 60%, the rule
is executed to alter the reward signal whenever the agent is facing a fuel depot,
i.e., reduce 80 points if shooting it or obtain 80 points if flying over it. When
the fuel level is equal to or above 60%, the reward signal is unchanged. For the
MODQN-DV approach, two objectives are specified, which includes maximizing
the scoring points and maximizing the fuel level. We perform the training process
with 100 epochs and one million steps per epoch, leading to a total of 100 million
training steps. When the rule is not used, the A3C agent’s performance is capped
at around 5,000 points even with 100 million training steps. The MODQN-DV
method also obtains a maximum score at around 6,000 points. In contrast, the
A3C agent obviously achieves higher performance when the rule is applied, i.e.,
obtaining a score of more than 6,000 points with just 60 million learning steps.
The agent can acquire up to 8,000 points if the training process reaches 90 or
100 million steps.

The network parameters are saved at every one million training steps for eval-
uation purpose, making 100 checkpoints in total. The average rewards obtained
using 20,000 evaluation steps at each of 100 checkpoints are presented in Fig. 2
for comparisons. With the human-based heuristic rule, the A3C agent’s per-
formance starts to be superior to the experiment without using the rule when
the training reaches around 50 million training steps. Therefore, the human
domain knowledge has demonstrated its effectiveness in improving the perfor-
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Fig. 2. Evaluation results in terms of average reward of the River Raid game with
20,000 evaluation steps using 100 checkpoints saved during the training process. The
standard deep RL A3C algorithm without using human domain expertise (heuristic
rules) obtains an average score of 5,000 points maximum even though the training
reaches 100 million steps. Likewise, the MODQN-DV method is capped at around 6,000
points. The incorporation of heuristic rules into deep RL has improved its performance
by getting the scores of more than 5,000 points after around 50 million training steps.
Our approach has thus sped up the learning process of the A3C agent.

mance of deep RL algorithms by avoiding suboptimal solutions, which limit the
deep RL score to a maximum of 5,000 points. A video demonstrating the A3C
agent playing the River Raid game without human expertise is available at:
https://youtu.be/fdvTCC8ffoc. Using the heuristic rule characterizing the hu-
man knowledge, the agent is able to learn to pick up fuel depots when its fuel
level is low and thus the game is prolonged. The score obtained is much higher
as demonstrated in this video: https://youtu.be/LQG7C4NJQRE.

5 Conclusions

Methods used to solve complex sequential decision-making tasks such as RL or
imitation learning normally require a large amount of training data and a long
training time. Human knowledge on how to solve these tasks is often utilized
to prevent them from being trapped in suboptimal solutions and speed up the
learning process of these methods. In this paper, we proposed to utilize human
expertise via heuristic rules, which are incorporated adaptively into the train-
ing of deep RL agents depending on the status of the environment to maximize
their performance. The River Raid game has been implemented to demonstrate
performance of the proposed approach. Empirical results of this research have
highlighted the superiority of deep RL agents when human expertise is inte-
grated. For the games implemented herein, heuristic rules have helped to break
the capped performance of the deep RL A3C agents, leading to an increase of
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the obtained rewards. A future work will evaluate the proposed method with
other deep RL algorithms as well as with new games in the Arcade Learning
and Gym environments. The experiments in this study are in the game domain;
however, extensions of this work can be applied in different industry domains
such as controlling self-driving cars, robots, UAVs, and so on. For example, when
a self-driving car is going from a sparse pedestrian street to a crowded pedes-
trian mall, there should be a heuristic rule to trigger the agent to change its
policy, e.g., by driving much slower. Likewise, if a deep RL-based autonomous
system is under attack, a rule should be applied to transition the system into
a safe policy. These real-world examples are far from being solved completely
by standard deep RL algorithms, but the incorporation of human expertise to
increase capabilities of deep RL as exemplified in this study is an important step
towards satisfactory solutions to these problems.
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