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Adam Krzyżak1[0000−0003−0766−2659] Wojciech Rafaj lowicz2[0000−0003−4347−1358]

Ewaryst Rafaj lowicz3[0000−0003−4347−1358]

1 krzyzak@cs.concordia.ca Department of Computer Science and Software
Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal,

Quebec, Canada H3G 1M8 and Department of Electrical Engineering,
Westpomeranian University of Technology (WUT), Szczecin, Poland ??

2 wojciech.rafajlowicz@pwr.edu.pl Faculty of Information and Communication
Technology, Wroclaw University of Science and Technology, Wroc law, Poland

3 ewaryst.rafajlowicz@pwr.edu.pl as above

Abstract. We propose a new autoencoder preserving input functions’
general shape (monotonicity, convexity) after their reconstruction with-
out imposing a priori constraints. These properties are inherent to the
coefficients of the Bernstein-Durrmeyer polynomials that serve here as
theoretical descriptors. Their estimates, computed from noisy observa-
tions by the coder, play the role of latent variables. The approach is
purely nonparametric, i.e., no prior finite-dimensional model is assumed.
The answer to the question of how many latent variables should be used
for an acceptable reconstruction accuracy of a family of functional data
is inferred from learning based on the proposed approximation of the
Akaike Information Criterion. A distinguishing feature of this autoen-
coder is that the coder and encoder are designed as precomputed and
stored matrices with the Bernstein polynomial entries. Thus, after se-
lecting the number of latent variables, the autoencoder usage has a low
computational complexity since it is linear with respect to observations.
The proposed computational algorithms are tested on real data arising in
mechanical engineering when control of damping vibrations is necessary.

Keywords: Functional data · Shape-preservation · Autoencoder design
· Bernstein-Durrmeyer polynomials · Nonparametric estimation

1 Introduction

An autoencoder (AE) is a neural network that tries to replicate its input to an
output. It consists of a coding algorithm that transforms input vectors into a
latent vector of a smaller dimension, which is supposed to compress the input
information into meaningful form. The latter can be stored and/or transmitted

?? Part of this research was carried out by the first author during his visit of WUT
while on sabbatical leave from Concordia University.
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to an encoder that tries to restore the input vector. The idea of reconstructing
functions from a smaller number of descriptors that play role of the latent vari-
ables arose very early [12], even if the term ”autoencoder” was not in common
usage at a time.

Autoencoders have been first introduced by Rumelhart, Hinton and Williams
in [20]. Their goal was to learn internal informative representation of the data
useful in various applications such as clustering and principal component anal-
ysis. If encoder and decoder are linear, then latent representation of the re-
sulting linear autoencoder [1] performs Principal Component Analysis (PCA)
[16]. This demonstrates that autoencoder is generalization of PCA, which yields
latent space in a form of low-dimensional non-linear manifold rather than low-
dimensional hyperplane.

Simple autoencoders have a tendency to reconstruct inputs accurately rather
than to build latent informative representation. To prevent this undesirable effect
additional regularization has been introduced in autoencoders. Sparse autoen-
coders [14] use L1 regularization, which induces sparsity of latent representation.
Another approach is based on Kullback-Leibler divergence, which is a distance
measure between probability distributions. Denoising Autoencoders [23] carry
out regularization by removing additive Gaussian noise added to the input. In
Denoising Autoencoders the emphasis is on making them resistant to pertur-
bation of the input, while Contractive Autoencoders [19] put less emphasis on
features, which do not play crucial role in decoder reconstruction activity. A real
breakthrough in recent years came with the introduction of Variational Autoen-
coders (VAE) [8], [2], [11].

Recently, the shape-sensitivity approaches were intensely investigated. Their
focus is on estimating descriptors from a signal derivative. An sample of papers
representing this direction of research includes [9], [15], [10], among others,

The properties of the Bernstein polynomials are well known [13]. Their ver-
sion exploited here is known as the Bernstein-Durrmeyer polynomials [4], [7]. In
[17] BDP proved their usefulness for nonparametric regression estimation.

Advantages of the proposed autoencoder The aim of the proposed au-
toencoder is to reconstruct functions (signals) from observations corrupted by
random errors. The empirical version of the Bernstein-Durrmeyer polynomials
(BDP) coefficients are used as the latent variables (empirical descriptors) of
the autoencoder. Such empirical descriptors proved their usefulness in pattern
recognition problems as features of classifiers [18]. Here, we use them for recon-
structing noisy signals.

The advantages of the proposed autoencoder can be summarized as follows.

1. Descriptors preserve the monotonicity and convexity of a function to be
reconstructed. These properties manifest themselves automatically, i.e., only
when they are present in the input function.

2. At the training phase, the number of latent variables of the autoencoder is
selected by unsupervised learning.

3. This selection is carried out by the nonlinear algorithm but after its comple-
tion the reconstruction process itself has linear computational complexity.
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4. There is no need to apply prefiltering or a regularization since BDP are
sufficiently ”stiff”. This simplicity is obtained at a cost of reduced rate of
restoration accuracy, but this issue is beyond the scope of this paper.

Shape-preserving properties of the descriptors, when applied to contour parts,
can be useful in their understanding [22].

Notice that our autoencoder provides an explicit representation of signals. An
appealing alternative is the approach known under the acronym SIREN (see [21]
and followers). It offers an implicit representation of signals, images, and even
partial differential equations by training a cellular neural network with periodic
activation functions. As one can observe from many examples, such networks
also have good shape-preserving properties but for simpler tasks with explicitly
given noisy observations our approach is sufficiently reliable.

2 Derivation of the proposed autoencoder

This section introduces the proposed autoencoder. The proposed descriptors play
the role of its latent variables.

Autoencoder input vectors Autoencoder inputs consists of vectors y =
[y1, y2, . . . , yn]tr, where tr denotes transposition. They can arise as observations
yi’s of function f at equidistant points ti, i = 1, 2, . . . , n corrupted by random
errors εi i.e.,

yi = f(ti) + εi, or yi = fi + εi, i = 1, 2, . . . , n, (1)

or yi’s can arise as noisy observations of a time-series fi’s.
Let E be the expectation of a random variable, while Var denotes its variance.

Then, the classic assumptions: E(εi) = 0, Var(εi) = σ2 < ∞, i = 1, 2, . . . , n,
E(εi εj) = 0, i 6= j, i, j = 1, 2, . . . , n are imposed, assuming that both σ2 and
the probability distribution of all εi’s are unknown. The only exception from the
latter assumption is made when we derive a likelihood function for training the
encoder.

For simplicity all functions f considered in this paper are assumed to be
defined on T = [0, 1]. This interval is covered by the subintervals Ti = (ti−1, ti],
ti = i/n, i = 1, 2, . . . , n of the lengths ∆n = 1/n, where t0 = 0.

When a time series is discussed, then its unobserved values fi’s and observa-
tions yi’s are also considered to be re-scaled to T interval and associated with
points ti’s.

For learning the autoencoder the following sequence LL of length L > 1 is

given: LL
def
= {y(1), y(2), . . . , y(L)}, as the only available information, where

y(l)’s are n-dimensional column vectors that arise as observations of functions
fl ∈ C0(T ), l = 1, 2, . . . , L, performed according to (1), where C0(T ) denotes
the class of all functions continuous on T .

Autoencoder Let (N +1) be the number of latent variables (descriptors) of
the autoencoder, where N has to be selected from the range 0 ≤ N ≤ Nmax ≤ n
of integers and let BN denote (N + 1) × n matrix with the following rows:
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[B
(N)
k (t1), B

(N)
k (t2), . . . , B

(N)
k (tn)], k = 0, 1, . . . , N , where B

(N)
k (t) k denotes

the Bernstein polynomial of order N ≥ k. which is given by B
(N)
k (t) =

(
N
k

)
tk(1−

t)N−k, t ∈ T , k = 0, 1, . . . , N , where, for simplicity, we assume that B
(N)
k (t) ≡ 0,

if k < 0 or k > N . In computations, it is more convenient to use its well-known
recurrent version.

Then, the general formulation of the autoencoder has the following form:

ŷ = (N + 1)∆n B
tr
Nmax

INmax(N)BNmax y, (2)

where y is its input that is n× 1 vector of observations (1), while ŷ is its n× 1
output. In (2) INmax

(N) denotesNmax×Nmax diagonal matrix where (N+1) first
elements (counting from the upper left corner) are equal to 1, and Nmax−(N+1)
are equal to zero. Its role is just to filter out proper submatrices from BNmax

and
its transposition. In actual computations, only these submatrices are involved.

However, matrix INmax(N) plays an important role in pointing out that the
process of learning N based on LL is, in fact, nonlinear, but after completing it
and substituting the selected Ñ , say, into (2), the computations become linear in
y, which is important for applying the proposed encoder in real-time. Therefore,
we call this autoencoder seemingly linear.

Roughly speaking, Ñ is selected as

Ñ = arg min
N

[− ln(L(LL, N) + penalty(N)] , (3)

where 0 ≤ N ≤ Nmax, LL, N) is the likelihood function, while penalty(N) is
derived from the Akaike’s Information Criterion (AIC) for all LL.

Observe that in (2) matrix BNmax
and its transpositon are defined, instead of

coming from a learning process, as it is typical for most of the encoders discussed
in the literature. Clearly, the number of rows of submatrix BÑ depends on

learning through Ñ but the formulas for computing their elements are precisely
defined.

Properties of the proposed autoencoder To motivate the proposed form
of the encoder, it is convenient to split the autoencoder so as to express its latent
variables explicitly, namely,

d̃(N)(y) = (N + 1)∆n BN y, ŷ = Btr
N d̃(N)(y) l = 1, 2, . . . , L, (4)

where d̃(N)(y) is N × 1 vector of the latent variables (subsequently called the
vector of empirical descriptors). Explicitly, the elements of d̃(N)(y) have the
form:

d̃
(N)
k (y) = (N + 1)∆n

n∑
i=1

yiB
(N)
k (ti), k = 0, 1, . . . , N. (5)

From now to the end of this subsection, our explanations concentrate solely on
the functional data for which the observations have the form (1), left formula.
Taking the expectation of (5) we obtain

E[d̃
(N)
k (y)] = (N + 1)∆n

n∑
i=1

f(ti)B
(N)
k (ti) ≈ (N + 1)

∫
T

f(t)B
(N)
k (t) dt, (6)
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k = 0, 1, . . . , N where ≈ denotes the approximation of the Riemann integral by
its sum, which is sufficiently accurate for smooth f . The following expressions
are further called (theoretical) descriptors of f .

d
(N)
k (f)

def
= (N + 1)

∫
T

f(t)B
(N)
k (t) dt = (N + 1) < f, ,B(N) >, (7)

k=0, 1,. . . , N , where < ., . > denoted the inner product in L2(T ). They serve

as reference points for the assessment of d̃
(N)
k (y). Furthermore, d

(N)
k (f)’s have

appealing shape preserving features. Namely,

recovery of constant: if f = c is constant in T , then dk(f) = c, k = 0, 1, . . . , , N
level preservation: if f(t) ≥ c > 0, t ∈ T , then dk(f) ≥ c, k = 0, 1, . . . , N .
monotonicity preservation: if f has continuous derivative in T and f ′(t) > 0

in T , then also dk(f), k = 0, 1, . . . , N is strictly increasing in T ,
convexity preservation: if f is twice continuously differentiable in T and

f ′′(t) > 0 in T , then sequence dk(f), k = 0, 1, . . . , N is strictly convex,
i.e., its second order differences are positive.

Proofs of the above properties follow from the well-known formulas for the deriva-
tives of the Bernstein polynomials (see [13]), using integration by parts of their
products and the derivatives of f .

It can also be proven that for each 0 ≤ k ≤ N and for every finite and fixed N

we have: Var(d̃(N)
k (y)) ≤ σ2 (N+1)2

n , while for f continuously differentiable the

bias of d̃
(N)
k (y) is of the order O(N/n). Thus, also E[d̃

(N)
k (y)−dk(f)]2 converges

to zero as n→∞.

3 Selecting N using the autoencoder

Our aim in this section is to propose the method of selecting the number of
descriptorsN when n is finite. Contrary to classic problems dedicated to selecting
N for samples of a particular f , in our case, we need to select N that is suitable
for a family of functions f .

Learning N by autoencoder The idea of selecting N is to design an au-
toencoder such that
a) it obtains y(l), l = 1, 2, . . . , L as inputs
b) and subsequently, for each l = 1, 2, . . . , L, converts them into latent variables

d̃
(N)
k (y(l)), k = 0, 1, . . . , N , which are the descriptors estimates, computed ac-

cording to (5),
c) finally, for l = 1, 2, . . . , L the encoder outputs are computed as follows

f̃
(N)
i (y(l)) =

N∑
k=0

d̃
(N)
k (y(l))B

(N)
k (ti) i = 1, 2, . . . , n, (8)

where f̃
(N)
i (y(l))’s are interpreted as estimates of fl(ti)’s.
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Then, for the whole learning sequence we obtain

d̃(N)(y(l)) = (N + 1)∆n BN y(l), f̃ (N)(y(l)) = Btr
N d̃(N)(y(l)), (9)

l = 1, 2, . . . , L,, where, according to (8), n × 1 vector f̃ (N)(y(l)) consists of

f̃
(N)
i (y(l)), i = 1, 2, . . . , n.

We state a version of the well-known (see [3] for review) Akaike’s Information
Criterion (AIC) that is suitable for our purposes. The necessity for the AIC
generalization comes from selecting N , which is suitable for the whole family of
curves.

Assume that the sampling schemes are of the same form as in (1), with i.i.d.
noises having N (0, σ2) distribution. This assumption is made in this section
only, since the obtained formulas are interpretable and useful for a large class of
probability distributions having zero mean and finite variance.

Corollary 1 (Approximate AIC criterion) The approximate AIC (AAIC)
for selecting N has the following form

AAIC(N) = L

[
2 θ N + n ln

(
L∑

l=1

||y(l) −Btr
N d̃(N)(y(l))||2

)]
+C(L, n), (10)

where C(L, n) is a constant that may depend on fixed n and L, but not on
N , while 0 < θ ≤ 1 is a correcting factor. The minimizer Ñ of AAIC(N) is
considered as an approximately optimal number of descriptors for all family fl’s.

We omit a long proof of this result. The AAIC properly generalizes the AIC to
a family of functions in the sense that it is not a simple average of the AIC’s for
each fl’s and the corresponding sub-models.

Algorithm 1 (for learning the number of descriptors by the AAIC)

Input L, n, Nmax < n, Nmin (or set Nmin = 3), y(l), l = 1, 2, . . . , L.

While Nmax ≤ n do
Step 1 Compute Ñ that minimizes the expression in the brackets in (10) over

Nmin ≤ N ≤ Nmax.
Step 2 If Ñ = Nmax, set Nmin = Nmax − 1, enlarge Nmax and go to Step 1,

otherwize, STOP and output Ñ .

A correcting factor θ > 0 in (10) is in most cases set to 1. However, when observa-
tion errors are large, it happens that the minus log-likelihood function decreases
rather slowly with N . In such cases, it is reasonable to apply θ > 0 strictly less
than 1. Algorithm 1 was tested on synthetic data, providing satisfactory results.
We do not display them by the lack of space.

Testing autoenkoder on real data As a benchmark for testing
the proposed descriptors, we selected samples of acceleration signals that are
publicly available [24].
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Such signals arise when acceleration measurements are made in a bucket
wheel excavator operator’s cabin or other large machines. The bucket wheel
excavator works in a quasi-periodic or a repetitive way since the buckets hit
the ground at equidistant time instants. Their positions point out intervals that
are considered here as the common domain T of signals to be classified. In our
example, each signal is sampled at n = 1024 points of T (see Fig. 1) (right
panel), where T has the duration of one second.

These samples form vectors y(l) ’s. We have only 43 of them, but it is sufficient
to run Algorithm 1. The resulting AAIC plot is shown in Fig. 1 (left panel) for
θ = 0.5. The minimum is clearly visible at Ñ = 40 that is further taken as the
number of descriptors used for reconstruction of the acceleration signals. For
illustration purposes only, in Fig. 1 (right panel) the signal reconstructed by the
autoencoder for Ñ = 40 is also shown.

20 40 60 80
N

8760

8762

8764

8766

8768

AAIC

200 400 600 800 1000
nr samp.

9.0

9.2

9.4

9.6

9.8
Accel.

Fig. 1. Left panel – The result of applying Algorithm 1 to the accelerations samples
– the AAIC plot for selecting N . Right panel – The result of applying Algorithm 1 to
the accelerations samples – reconstruction of one sample by the autoencoder

Conclusions The proposed autoencoder is based on the Bernstein-Durrmeyer
polynomials. It was pointed out that the autoencoder descriptors inherit shape-
preserving properties of the Bernstein-Durrmeyer polynomials, such as mono-
tonicity and convexity, provided that no noise is present. These properties can
be observed also when observations are corrupted by intensive noise.
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6. Chen, G., Krzyżak, A., Qian, S. E. A new endmember extraction method based
on least squares. Canadian Journal of Remote Sensing, 48(2), 316-326, (2022).

7. Derrienic, M. M. On multivariate approximation by Bernstein-type polynomials.
Journal of the Approximation Theory., 45, 155 – 166, (1985).

8. Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908.

9. Ga lkowski, T., Krzyżak, A., Filutowicz, Z. A new approach to detection of changes
in multidimensional patterns. Journal of Artificial Intelligence and Soft Computing
Research, 10(2), 125-136, (2020).

10. Harris, T., Tucker, J.D., Li, B., Shand, L.: Elastic depths for detecting shape
anomalies in functional data. Technometrics Elastic depths for detecting shape
anomalies in functional data. 63, 1–11 (2020)

11. Kingma, D. P., Welling, M. An introduction to variational autoencoders. Founda-
tions and Trends R© in Machine Learning, 12(4), 307-392, (2019).
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tors Based on the Bernstein Polynomials – Preliminary Studies, In: Artificial Intel-
ligence and Soft Computing: 21st ICAISC 2022, Proc., Part I pp. 310-321, Springer.
(2023).

19. Rifai, S., Vincent, P., Muller, X., Glorot, X. and Bengio, Y. Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
International Conference on Machine Learning, 833-840, 2011.

20. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Parallel distributed processing:
Explorations in the microstructure of cognition, 1, 26, 1986.

21. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G. Implicit neural
representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 7462-7473, (2020).

22. Tadeusiewicz, R.: Automatic understanding of signals. In: Intelligent Information
Processing and Web Mining. pp. 577–590, Springer (2004).

23. Vincent, P. A connection between score matching and denoising autoencoders.
Neural Computation, 23(7), 1661-1674, (2011).
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