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Abstract. Calculating the field pattern arising from an array of ra-
diating sources is a central problem in Computational ElectroMagnet-
ics (CEM) and a critical operation for designing and developing antenna
systems. Yet, it is a computationally expensive operation when using tra-
ditional numerical approaches, including finite-difference in the time and
spectral domains. To address this issue, we develop a new data-driven
surrogate model for fast and accurate calculation of the field radiation
pattern. The method is based on the Fourier Neural Operator (FNO)
technique. We show that we achieve a performance improvement of 31x
when compared to the performance of the Meep CEM solver when run-
ning on a desktop laptop CPU at the cost of a small accuracy loss.
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1 Introduction

Computational ElectroMagnetics (CEM) is a discipline at the intersection of
applied mathematics, scientific computing, and electromagnetics theory [4] with
critical applications to the design and development of electromagnetics sys-
tems [3], such as antenna arrays, waveguides, resonators, radar systems, to men-
tion a few applications. At its heart, CEM comprises several numerical tech-
niques for the solutions of Maxwell’s equations for determining the electric and
magnetic fields in the vacuum or a medium. These numerical approaches range
from simple finite-difference schemes (in the time and frequency domains) to
the Finite Element Method (FEM), Method of Moments (MoM), to Montecarlo
techniques [12].

In this work, we focus on determining the field pattern generated by the
several radiating current sources, a central topic in CEM with applications to
the design of antenna arrays. In particular, we aim to solve the field pattern
problem of finding the fields produced in response to a source at a single fre-
quency ω. This a central problem in CEM and has a wide range of applications.
The solution to this problem can be achieved by several numerical methods [12].
However, these numerical approaches are computationally expensive as either
they require (i) simulating with a constant-frequency source for a long time so
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that all transient effects, from the source turn-on, vanish or (ii) solving a large
linear system with complex-valued terms.

Recently, Machine Learning (ML) data-driven models have been proposed ei-
ther to substitute or to augment existing traditional techniques [8,1]. Examples
of such emerging ML approaches are neural networks. These methods are data-
driven and work in a supervised or semi-supervised fashion – the neural networks
take as input a series of input data (for instance, the pixel values of an image) and
the associated labels, and an optimization process updates the network weights
and biases so that given an unseen input, the neural network produces a result
prediction. Minimizing the loss function, which expresses the error between the
network prediction and the actual label, drives the optimization step. The final
result of the training is a neural network (with its weights and biases) that can
be used as a replacement for the simulation tool, employed for training input-
output pairs. For this reason, these methods are also called surrogate methods.
These methods are considerably faster than traditional approaches when consid-
ering only the prediction step (as the computationally expensive neural network
training is performed offline) at the cost of lower accuracy.

One of the most recent and powerful neural network approaches is the Fourier
Neural Operator (FNO) [6]. An FNO is a neural network architecture, combining
Deep Learning with Fourier analysis. FNOs are designed to efficiently solve Par-
tial Differential Equations (PDE) using a spectral method based on the Fourier
transform. The key idea behind FNOs is to represent the solution to a PDE as a
superposition of sinusoidal functions of different frequencies, which can be effi-
ciently computed using the Fast Fourier Transform (FFT). The neural network
is then trained to learn the mapping between the input data and the correspond-
ing Fourier coefficients of the solution. The key difference between traditional
neural networks and neural operators, like FNO, is that the latter are designed
to operate on functions directly [5], rather than on discrete data points. This
makes them particularly well-suited for problems that involve continuous func-
tions or signals, such as electromagnetic waves, where the inputs and outputs
are functions rather than discrete vectors.

In this work, we design and implement FNOs to calculate the electromag-
netic radiation pattern in two-dimensional geometry. In particular, we create
the dataset and compare the performance of our surrogate model to the Meep

frequency-domain solver [10]. With the use of the FNO, we can able to predict
in a fast way the field pattern at a fraction of the cost of the state-of-the-art
Meep CEM solver with reasonable accuracy.

2 Methodology

We divide our work into three phases consisting of (i) generating the training
of the datasets with state-of-the-art Meep CEM solver (ii) designing the FNO
architecture, and (iii) training a neural network. That said, we will present both
the technical details and simplifying constraints at each stage in the subsections
below.
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2.1 Simulation Setup and Dataset Generation with Meep

Our simulation setup and methodology is inspired by Ref. [2]. First, we gener-
ate an initial dataset using the state-of-the-art Finite-Difference Time-Domain
(FDTD) Meep CEM solver developed at MIT. More specifically, we obtain the
field pattern by running the Meep frequency-domain solver that combines an
FDTD time step with an iterative solver for complex-value linear system. The
specific simulation workflow and setup is shown in Fig. 1 and as follows.

Fig. 1. Setup of Meep simulation for preparing the input data set to train and test the
network. The generation process is shown as a stochastic process described in the two
blue boxes, while an example of simulation result is shown in the lower-right corner.

The simulation region is two-dimensional on the x-y plane. The simulation
domain is a 10 mm × 10mm vacuum area centered at the origin, which will be
surrounded by a Perfectly Match Layer (PML) of 1mm thick to enable open
boundary conditions. The resolution of the simulation is set at 10 pixels per mil-
limeter, totaling a grid size of 140× 140 grid points. The Meep time step is cal-
culated automatically to satisfy the Courant–Friedrichs–Lewy (CFL) condition.
In this work, the simulation result is the field pattern which is the magnitude of
the out-of-plane electric field component, Ez in units of V/m.

To create the initial dataset, we run 2,000 Meep simulations with a random
number of radiation sources in random locations with random amplitude and
obtain the final outcome of our work: the field pattern as the Ez magnitude. More
precisely, for each simulation (or item of our dataset), we first select several point
sources between two and ten according to a random uniform distribution. Then,
for each point source, we uniformly sample their positions within the simulation
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region and their amplitude from a normal distribution with mean and standard
deviation equal to 1.0 mA and 0.9 mA, respectively. All the antennas are z-
axis aligned Hertzian dipoles oscillating at the same frequency of 200GHz. A
few examples of field pattern is then obtained by the frequency domain solver
provided by Meep. For visualization, we report a few examples of results from
the generation process in Fig. 2.

Fig. 2. Example of data generation results from Meep. The dots on the images represent
a point source, with the amplitude indicated by the color (in mA units). The Meep-
simulated field pattern for each source distribution is shown in the background (in V/m
units). Note that the domain also includes the PML cells.

2.2 Fourier Neural Operator Architecture

To implement our network, we follow the FNO architecture, presented in the
seminal paper on FNO [7]. A step-by-step visualization of the architecture can
be found in Fig. 3. We implement a neural network consisting of four FNO layers
which (i) apply Fast Fourier Transform (F ) on the up-projected latent space,
(ii) linearly transform the input in the frequency domain (R), and (iii) perform
the inverse Fourier (F−1) transform back to a spatial domain. As in Ref. [7],
we apply a filter to eliminate the high-frequency: only 16 lower Fourier modes
are linearly transformed while the rest are discarded and set to zero. The bias
term (W ) and activation function (σ) are then added and applied respectively
at the end of each Fourier layer.

We split the datasets into training and test sets consisting of 1,760 and 240
pairs, respectively. We then train the FNO for 160 epochs (see Fig. 4) using
the Adam optimizer with an Lp loss function [7]. After a few trials, we select
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Fig. 3. The FNO architecture [7].

a suitable learning rate of 10−3 and a batch size of 128. The best-performing
parameters on the validation set are chosen among all epochs for inference. To
compare the performance with FNO, we also train a U-Net [11], a convolutional
neural network architecture, commonly used for image segmentation tasks. The
Python notebooks for generating the datasets with Meep, and performing the
FNO and U-Net training can be found on the GitHub repository 3.

Fig. 4. The loss of the neural network over 160 epochs of optimization on training
(blue) and testing (orange) datasets.

3 https://github.com/winnaries/fno-fastem
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3 Results

In this section, we evaluate the FNO results against ground-truth simulation
regarding accuracy and performance, and compare with U-Net. In addition, we
also present a generalizability of the model over a range of hand-picked input.

The FNO achieves a mean-square-error of 0.172× 10−10, which is 14% more
accurate than U-Net model whose score is tested to be 0.207 × 10−3. For the
mean-absolute-percentage-error, the FNO achieves a significantly better score
of 0.257, which is 44% more than UNet model’s score of 0.456. Qualitatively,
it is evident that the FNO can accurately learn the relationship among the
sources while also accounting for their amplitudes. The waves’ crests are visually
indistinguishable to the ground truth.

We then measure the execution time of the Meep simulation and neural net-
work over 50 inputs on an Ubuntu machine with an AMD Ryzen 7 5800X CPU,
and a Nvidia RTX A4000 GPU. The computational performance results are sum-
marized in Table 1. Both methods were given the same input size and evaluated
on CPU since Meep does not support acceleration on GPU [9]. The FNO is faster
than Meep by 31 times while maintaining high accuracy. When using the Nvidia
GPU, the surrogate network is 467x faster than Meep running on the CPU.

Table 1. Average execution time (and its standard deviation) over 50 inputs of Meep
field pattern solver on CPU and FNO on CPU and GPU. The speedup ratio is calcu-
lated with respect to Meep on CPU.

Running Time, ms

Method CPU/MEEP CPU/FNO GPU/FNO

Mean 934.67 34.525 2.0063
±Std. 64.671 4.4655 0.22788

Speedup 31x 467x

4 Discussion & Conclusions

In this work, we developed a way to efficiently approximate the field pattern of
a dipole antenna array on a xy-plane. We implemented FNOs and trained it on
datasets generated with the Meep CEM solver. The results show that the FNO
prediction has relatively small mean-square-error magnitude of 10−3. The FNO
is also faster than the Meep CEM solver by 31x on CPU for a target region size
of 140× 140 cells.

By comparing FNO with U-Net results, FNO is far superior to conventional
convolutional networks in terms of learning the physical relationship between
each given source. The datasets we trained on in this project are generated in
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Fig. 5. Example field pattern FNO prediction output (middle) and its corresponding
error with respect to the ground-truth (right) given the initial source distribution input
(left). Note that the domain also includes the PML cells.

the same process. However, we did not augment the data, which is typically
required for training transformation-invariant CNNs.
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Although the FNO mean-square error is considerably small, we cannot deny
that the FNO is still data-driven and partially depends on the quality of training
distribution. That said, it is safer to assume that the results from the neural
network are an approximate solution that would eventually need to be validated
by a conventional solver. However, the speedup that we can achieve with neural
networks is undoubtedly beneficial for some large-scale simulations that might
not require an exact solution.

The work done in this project needs additional efforts before we can apply
it to solve real-world CEM problems, e.g., antenna arrays. As future work, the
FNO architecture can consider the phase difference between each element in an
antenna array, the physical relationship in 3D space, or the properties of the
designated media. Moreover, for an entirely different problem set, it may be
worth investigating how a generative neural network can be used to guide the
design of antenna arrays given a desirable field pattern.
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