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Abstract. We investigate how the quality and computational complexity of the
golden standards of high-dimensional data (HDD) visualisation - the t-SNE and
UMAP algorithms - change with their successive simplifications. We show that
by radically reducing the number of the utilised nearest neighbours, introduc-
ing binary distances between the samples, and simplifying the loss function, the
resulting IVHD algorithm still reconstructs with sufficient precision both local
and, particularly, global properties of HDD topology. Although inferior to its
competitors for the most moderate data sizes (M<10’ samples), IVHD appears
many times faster than state-of-the-art algorithms and reveals its power for multi-
million-element datasets for which baseline methods fail in a reasonable compu-
tational time.
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1 Introduction

In recent years, the explosion of digital datasets resulted in new opportunities and chal-
lenges for various fields, such as machine learning, computer vision, bioinformatics,
and social network analysis. One of the significant problems related to this data deluge
is the high-dimensionality (HD) of the underlying objects, often represented by HD fea-
ture vectors with tens, hundreds, or even thousands of dimensions [6]. Their size can be
especially burdensome for data analysis, causing increased computational and memory
requirements, overfitting, and difficulties in visualisation or interpretation.

To address those issues, researchers developed dimensionality reduction (DR) meth-
ods that reduce the number of dimensions in the data while preserving the essential
local and global topological properties. DR involves transforming the N-dimensional
(N-D) dataset X = {x;}i=1,.m € RY into its n-dimensional (n-D) representation ¥ =
{yitiz1..m € R", where N >> n, and M represents the number of N-D feature vectors
x; (or their corresponding n-D embeddings y;). This transformation can be perceived as
a lossy data compression, achieved by minimizing a loss function E(|X — Y|), where |.|
measures the topological dissimilarity between X and Y.
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In the world of unsupervised HDD embedding, t-SNE [12] and UMAP [7] are
among the most widely adopted techniques. The former algorithm resembles the clas-
sical Multidimensional Scaling (MDS) [5], but instead of a simple loss function based
on the cumulative L2 (or L1) discrepancies between distances in the source and target
spaces, t-SNE compares the probability distributions of being a neighbour of each data
vector using the Kullback-Leibler (K-L) divergence and summarizes them to calculate
the actual embedding error. Those probability distributions reflect the neighbourhood of
each data vector in the source and target spaces, with the highest probability assigned to
the nearest neighbours (and its value decreasing rapidly in the case of the more distant
elements).

On the other hand, UMAP corresponds to the Isomap [5] method, although it has a
different conceptual basis than t-SNE and a distinct loss function for error minimization.
Instead of calculating the full distance matrix or its Barnes-Hut approximation (as t-
SNE does), UMAP focuses on the weights of the nearest neighbours of each data vector
and a set of more distant samples. Nevertheless, there is a hidden relationship between t-
SNE and UMAP. As demonstrated in [2], a generalisation of negative sampling allows
the user to interpolate between embeddings produced by the two methods. Here we
show that, additionally, t-SNE and UMAP can be further simplified to a frugal but still
efficient approximation.

We have called this approximation the Interactive Visualization of High-dimensional
Data — IVHD. It enables visualization of HDD structures in 2D or 3D Euclidean spaces
by utilising their k-NN graph representations and the classical MDS loss functions.
Moreover, it is assumed that the distances between nodes of the said graph follow the
negative sampling principle, i.e. they are set to O for each node within the k-NN set —
and 1 for m other randomly selected disconnected nodes. In practice, we observed [4, 3]
that both k and m can be small, usually equal to 1 and 2, respectively. As demonstrated
in [4], this concept allows visualising both complex networks (e.g., structured, random,
scale-free, etc.) and high-dimensional data without changes in the base algorithm. In
this paper, we highlight the following contributions:

— The IVHD method can be regarded as a unifying simplification of the t-SNE and
UMAP algorithms, achieved through three approximation steps: (1) employing a
simpler loss function, (2) utilizing binary distances, and (3) reducing the number of
nearest neighbours used in embedding.

— We show that IVHD effectively preserves local and global properties of HDD in 2D
embeddings, not only for large datasets but also for small ones, despite its simplic-
ity. Furthermore, IVHD proves to be highly time-efficient when compared to the
original methods.

— Additionally, we propose several novel improvements to IVHD (see Section 3).

2 Simplifying t-SNE and UMAP

Despite extensive research conducted in the field of HDD visualisation over the past
years, new methods continue to emerge regularly [2]. In our research, we specifically
investigate publicly available algorithms that have demonstrated superior performance
in generating embeddings for datasets of varying sizes, including UMAP [7], IVHD [3],
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t-SNE, TriMAP, and PaCMAP [12]. Apart from t-SNE, these algorithms involve two
key stages: (1) constructing a weighted k nearest neighbour graph and (2) performing
an embedding procedure that involves defining a loss function and minimizing it [7]. In
this study, we focus primarily on t-SNE and UMAP, which have been the foundation
of recent research in this area, and aim to demonstrate that IVHD serves as a more
parsimonious approximation for both methods.

2.1 Evaluation criteria

To verify the properties of the obtained simplifications, we use state-of-the-art quality
assessment criteria [9] for unsupervised DR methods, measuring the preservation of
the high-dimensional (HD) neighbourhood in the low-dimensional (LD) space. The
general consensus is to use the average agreement rate between k-ary neighbourhoods
in high and low dimensions. The rank of x; with respect to x; in a high-dimensional
space is defined as p;; = |{k (0 <0 V O =06;; N1<k<j< N)}|, where 6;; is the
distance between the i-th and j-th data point in HD (d;; denotes an analogous distance
in LD, respectively). Similarly, the rank of y; relative to y; in the low-dimensional space
isequal to r;; = '{k tdg <diy vV dg=dij N 1<k<j< N)}i. Let Vf.‘ and nf.‘ represent
the sets of nearest neighbours of x; and y; in the high-dimensional and low-dimensional
space, with k denoting the number of those neighbours. Now, we define:

H-lievil

(N = D(& X, v nnl]) -k leen

Ryx(k) = N1k ,

ey

Ryx (k) quantifies the quality improvement over a random embedding, while Gyy(k),
measures the average gain (or loss, if negative) considering neighbours of the same
class, with a positive value indicating potentially better k-NN classification perfor-
mance.

2.2 t-SNE with Euclidean and binary distances

We investigated whether t-SNE can be viewed as an embedding of an undirected graph,
thereby enabling simplification to the IVHD framework. To explore this, we proposed
a modified version of t-SNE that uses neighbourhood-limited Euclidean and binary
distances instead of the standard probability matrix. This modification allowed us to
parametrise t-SNE by the number of nearest neighbours (k) instead of the default per-
plexity (a critical parameter of t-SNE used to balance the local and global aspects). In
this case, k determines the number of nearest data points considered when computing
the probability distribution over the pairwise similarities in high-dimensional space. For
the binary matrix variant, 1’s were inserted to denote neighbours, and 0’s otherwise. A
similar approach was used for Euclidean distances (refer to [11]), but instead of 1’s, the
actual Euclidean distance was inserted.

As illustrated in Fig. 1 (and Fig. 5 in the supplementary materials [11]), for k €
{10, 20}, our variant of t-SNE achieves a DR quality comparable to the unmodified t-
SNE when visualising a small subset (10%) of the MNIST dataset (M = 7 - 10%), as
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(a) Original t-SNE. (b) k=10. (c) k=20. (d) k=50.
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Fig. 1. The visualizations and metrics were obtained using a simplified t-SNE method on a 10%
subset of the MNIST dataset, with binary distances instead of probabilities. The method was
parametrised by the number of nearest neighbours k.

testified by the overlapping metrics curves. Furthermore, the more neighbours were
used, the more the quality of visualization improved, as reflected by the higher reaching
curves in both discussed graphs, resulting in better AUC values.

Additionally, it should be mentioned that simplifying the t-SNE method into an
IVHD-based implementation also consisted of replacing the part of the algorithm that
optimizes K-L divergence (a key aspect of DR methods that rely on neighbour embed-
ding) with an optimisation of the MDS-like cost function. As a side effect, it led to
obtaining a more streamlined and simplified IVHD method [3, 4, 10].

2.3 UMAP with a low negative sample rate and a small number of nearest
neighbours

As mentioned in [2], there is a significant connection between negative sampling (NEG)
and noise-contrastive estimation (NCE). UMAP, which uses NEG, can be seen as Neg-
t-SNE [2], differing only in the implicit use of a less numerically stable similarity
function. A key factor contributing to UMAP’s success is its utilization of NEG to re-
fine the Cauchy kernel and its cross-entropy loss function, which distinguishes it from
how t-SNE assesses high-dimensional similarities. This refinement allows UMAP to
generate more compact clusters and continuous connections between them, as demon-
strated in [1]. Another perspective to consider is the similarity between UMAP and
IVHD, which, similarly to MDS, aims to preserve pairwise distances or dissimilarities
between high and low dimensional data points. To achieve this, UMAP constructs a
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distance matrix from the original HD data and then finds an LD embedding that min-
imises the difference between pairwise distances, while also preserving both local and
global structures through the construction of a weighted nearest-neighbour graph. Sub-
sequently, it optimizes that LD embedding to retain the aforementioned graph structure.
By decreasing the rate of negative sampling and the number of nearest neighbours, we
moved UMAP towards an IVHD-like simplification. In contrast to IVHD, UMAP is
based on the idea of preserving the local structure of the data in an LD space, rather
than just pairwise distances. This means that UMAP is still better adjusted to capture
the non-linear relationships between data points.

(a) NSR=4, k=12 (b) NSR=2, k=3.
(default).

10! 107
Neighborhood size K

(e) DR quality. (f) k-NN gain.

10! 107
Neighborhood size K

Fig.2. UMAP visualizations and metrics were generated using different negative sampling rates
and the lowest possible value of k (i.e. k = 3) that resulted in meaningful visualizations.

3 Improvements in the IVHD algorithm

IVHD, as described in [3, 10, 9], exceeds state-of-the-art DR algorithms in computa-
tional time by over tenfold in standard DR benchmark datasets [10]. The visualizations
obtained are also proficient in reconstructing data separation in large, high-dimensional
datasets [11]. Nevertheless, there is potential for improvement in terms of reducing the
amount of noise generated between classes. To address this concern, we have developed
the following improvements.

Reverse nearest neighbour (RNN) procedure. The query retrieves all points in a
HD space that have a given point g as their nearest neighbour. The set of these points
is called the influence set of g. It is important to note that a point p being one of the
nearest neighbours & to ¢ does not necessarily imply that p is also in g’s REKNN set.
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Manhattan norm employed in the final stages of the embedding procedure, pro-
viding a smoothing effect. Using this instead of the conventional Euclidean distance,
outliers are drawn closer to the cluster centres. However, it is important to be cautious
with the number of steps performed using the L1 metric, as excessive steps may cause
the embedding to collapse towards the cluster centres, resulting in distortion of the
global structure.

(a) The baseline IVHD. (b) With RNN and L.1.

Fig. 3. A comparison of IVHD on the EMNIST dataset was conducted, employing the L1 norm
and RNN mechanisms in the final steps of the embedding procedure.

Fig. 3 illustrates the effect of incorporating both mechanisms to provide a generic
approach for handling the noise remaining in the visualisation. Quality measurements
demonstrate that the discussed upgrades to IVHD enhance the DR quality and the k-NN
gain of the obtained embedding. In particular, a clear suction effect is observed, where
most of the noise is moved from the interstitial space to the clusters. Importantly, the
global structure of the visualization is preserved without distortion, as evidenced by the
relative positioning of classes remaining unchanged.

The proposed improvements do not introduce significant computational overhead,
as the helper graph for RNN is created concurrently (or retrieved from cache) together
with the main graph, and interactions between a limited subset of nearest neighbours are
calculated. The primary operation that incurs overhead is the search for reverse neigh-
bours based on the two graphs, but the time taken by this procedure is negligible com-
pared to the overall embedding time. It should be noted that all the improvements added
to the IVHD method in this study were designed with the consideration of minimizing
computational load, given the importance of efficient performance in HDD analysis.

4 Large-scale experiments

The primary benefit of IVHD lies in its ability to generate embeddings at a significantly
faster rate than baseline methods, once the k-NN graph is stored in the disc cache and the
computational time required for its generation can be disregarded. Consequently, users
can perform detailed interactive analyses of the multi-scale data structure with a wide
range of parameter values and stress function versions without the need to recalculate
the said graph. In this regard, we present results obtained for the FMNIST (mid-sized)
and the Amazon20M (large-sized) datasets as evidence of the efficiency and effective-
ness of the IVHD (with L1 and RNN) method. Additional results are provided in the
supplementary materials [11].
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(a) DR quality (Ryx(k)). (b) kNN gain (Gyy(k)).

(c) 1M points. (d) 5M points. (e) 20M points.

Fig. 4. Comparison of different DR methods employed on the FMNIST dataset. On the bottom:
IVHD visualizations obtained for Amazon20M datasets.

In Figure 4, we observe that the IVHD applied to Fashion-MNIST forms separate
groups of mostly elongated shapes. On the other hand, the MAP-family methods create
rounded and clearly separated clusters.Additionally, in t-SNE, some classes are mixed
and fragmented. In terms of DR quality, TriMap, UMAP, and PACMAP are achieving
the best results. IVHD surpasses t-SNE only when a large neighborhood is considered
(k > 1000). Furthermore, IVHD-CUDA [10] was the only method capable of generating
visualizations for the Amazon20M dataset in a reasonable time frame of 5 hours and 34
minutes. The generated visualizations clearly depict the separation of the five classes,
which comprises book reviews from the Amazon platform. In contrast, other methods,
including those implemented in both CPU and GPU environments (e.g. t-SNE CUDA,
Anchor-tSNE [9]), encountered errors or did not generate visualizations even after 12
hours of calculations, leading to premature termination. Furthermore, Table 1 corrobo-
rates that IVHD stands out as the fastest method among the compared approaches.

M N t-SNE UMAP TriMAP PaCMAP IVHD
EMNIST 784 103 600 558,67 50,25 123,84 79,21 34,88
REUTERS 30 804 409 7457,15 1226,91 1498,96 851,46 190,47
Table 1. A selection of timings (measured in seconds) acquired from various datasets with M
representing the dataset dimensionality and N representing the number of samples.
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5 Conclusions

We demonstrate that IVHD represents a radical simplification of both t-SNE and UMAP,
offering a highly efficient platform for fast and interactive HDD visualization. Although
it may produce slightly inferior embeddings compared to its competitors for small and
moderate data sizes (M << 10° samples), IVHD remains a remarkably efficient al-
gorithm. It accurately reconstructs both local and global data topology with precision,
and its key advantage lies in its computational efficiency, enabling the visualization of
large multi-million datasets within a reasonable time frame, where other baseline al-
gorithms fail. We successfully verified the applicability of IVHD to the Amazon20M
dataset, highlighting its unique ability to handle such large datasets with minimal re-
source utilization. Future research will be directed towards further improvements in

IVHD, particularly in addressing the challenges of crowding and noise reduction.

Hardware All CPU implementations were executed in two environments, depending on the scale of the dataset processed.
Mid-sized datasets were visualized on Macbook Pro 2.3 GHz 8-Core Intel Core i9, 16 GB 2667 MHz DDRA4. Large-sized
datasets were processed in GPU/CUDA remote server with Intel Xeon E5-2620 v3 CPU, 8GB GDDRS NVidia GeForce

GTX 1070 GPU, and 252 GB RAM. The source code was compiled using GCC-10.4 and CUDA Toolkit 11.2. Experiments
were facilitated by the VisKit C++ library [8] developed by the first author of this work.
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