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Abstract. Non-invasive estimation of chlorophyll content in plants plays
an important role in precision agriculture. This task may be tackled us-
ing hyperspectral imaging that acquires numerous narrow bands of the
electromagnetic spectrum, which may reflect subtle features of the plant,
and inherently offers spatial scalability. Such imagery is, however, high-
dimensional, therefore it is challenging to transfer from the imaging de-
vice, store and investigate. We propose a machine learning pipeline for
estimating chlorophyll content from hyperspectral data. It benefits from
the Savitzky-Golay filtering to smooth the (potentially noisy) spectral
curves, and from gradient-based features extracted from such a smoothed
signal. The experiments revealed that our approach significantly outper-
forms the state of the art according to the widely-established estimation
quality metrics obtained for four chlorophyll-related parameters.

Keywords: machine learning · chlorophyll content · feature engineering
· hyperspectral image · regression.

1 Introduction

The agricultural sector has evolved over the years, in response to a growing de-
mand for food, fiber and fuel [13]. The limited availability of land requires tar-
geted management of resource production and leads to the increasing adoption
of precision agriculture [17]. In this context, remote sensing can easily become a
tool for identifying soil and crop parameters, due to its intrinsic scalability [17,
⋆ This work was partially supported by The National Centre for Research and

Development of Poland (POIR.04.01.04-00-0009/19). AMW was supported by
the Silesian University of Technology, Faculty of Biomedical Engineering grant
(07/010/BK_23/1023). JN was supported by the Silesian University of Technology
Rector’s grant (02/080/RGJ22/0026).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_18

https://dx.doi.org/10.1007/978-3-031-36021-3_18
https://dx.doi.org/10.1007/978-3-031-36021-3_18


2 B. Ruszczak et al.

9]. In the case of agriculture, methods using multi- and hyperspectral remote
sensing, capturing multispectral and hyperspectral images (MSI and HSI) are
used, and non-invasive extraction of the chlorophyll content plays an increasingly
important role, as it can ultimately lead to improving agricultural practices [7].

The majority of vegetation indices (VIs) were designed for multispectral sen-
sors [14]. However, the wide bands in such imagery result in limited accuracy in
the early detection of negative plant symptoms [1]. The use of HSIs, which are
characterized by high spectral resolution, allows for the extraction of more details
in the spectral response of an object [10]. Here, estimating chlorophyll content
from hyperspectral data is commonly carried out by calculating the value of
narrow-band VIs [19]. They include the Normalized Difference Vegetation Index
(NDVI), Optimal Soil Adjusted Vegetation Index, Ratio Index and Difference
Index [19]. Another parameter is the maximum quantum yield of photochemistry
(Fv/Fm) [15]. Also, the Soil and Plant Analyzer Development (SPAD) tool is
exploited, which measures the relative level of chlorophyll content in a crop tak-
ing into account the level of chlorophyll in the canopy. Finally, the performance
index (PI) makes it possible to estimate the level of chlorophyll too [10].

Some approaches operate directly on the HSI data to estimate the chloro-
phyll content, hence they omit the stage of determining VIs. In such tech-
niques, selected hyperspectral bands are analyzed—the encompass the Red and
Near-Infrared (NIR) combination [6], the Blue, Green, Red, and NIR combined
range [16], the Blue, Green and Red channels [17], or just the NIR band [4].
The bands undergo feature extraction (often followed by feature selection) in
classic machine learning algorithms, whereas deep learning models benefit from
automated representation learning over such data. The former group of tech-
niques span across a variety of feature extractors and regression models, includ-
ing continuous wavelet transforms (CWTs) [17], partial least square regression
(PLSR) [18], kernel ridge regression [12] or regression using random forests. On
the other hand, convolutional neural networks (CNNs) [14] and generative ad-
versarial nets (GAN) [16] have been utilized for chlorophyll estimation as well.

Unfortunately, the data-driven algorithms are commonly validated over the
in-house (private) data, following different validation procedures. This ultimately
leads to the reproducibility crisis, and to inability to confront the existing ap-
proaches in a fair way [8]. In our recent work, we addressed this research gap
and introduced a benchmark dataset, together with the validation procedure and
a set of suggested metrics which should be used to quantify the generalization
capabilities of machine learning models for chlorophyll estimation [11]. Here, we
exploit this dataset and validation procedure to understand the abilities of the
proposed processing chain, and to compare its estimation performance with 15
baseline models (for clarity, we focus on the best algorithms from [11]).

We tackle the problem of automated analysis of hyperspectral data using
machine learning algorithms in the context of estimating the chlorophyll con-
tent (Sect. 2). We show that appropriately designed feature extractors fed into
well-established supervised regression models can dramatically enhance their
operational capabilities. Our experiments (Sect. 3), performed over the recent
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dataset and following the validation suggested in [11], indicated that smoothing
the spectral curves using the Savitzky–Golay filtering and extracting gradient-
based features lead to significant improvements in the estimation quality when
compared to the current state of the art. Also, we executed extensive computa-
tional experiments to understand the impact of the hyperparameter selection on
the regression engine, and to optimize the hyperparameters of the system.

2 Materials and Methods

In this section, we summarize the dataset and the quantitative metrics used
to assess the investigated algorithms (Section 2.1), together with our machine
learning pipeline for estimating chlorophyll content from HSI (Section 2.2).

2.1 Dataset

We exploit the CHESS (CHlorophyll EStimation DataSet) dataset introduced
in our recent study [11]—it was collected in the Plant Breeding and Acclima-
tization Institute —National Research Institute (IHAR-PIB) facility located in
Central Poland (Jadwisin, Masovian Voivodeship) during the 2020 campaign
(June—July, with three rounds of data acquisition, 4 weeks apart from each
other). There were three flights over two sets of 12 plots resulting in 72 HSIs
(150 bands, 460–902 nm, with the 2.2 cm ground sampling distance). In the plots,
there were two potato varieties planted: Lady Claire (12 plots) and Markies (12
plots). The image data is accompanied with the in-situ measurements for each
plot: (i) the SPAD, (ii) the maximum quantum yield of the PSII photochem-
istry (Fv/Fm), (iii) the performance of the electron flux to the final PSI electron
acceptors, and (iv) relative water content (RWC), reflecting the degree of hy-
dration of the leaf’s tissue. In [11], we introduced the training-test split in which
both subsets are equinumerous, and they are stratified following the distribution
of each ground-truth parameter independently, so that both training and test
subsets (each containing 36 plots) maintain a similar parameter’s distribution.

To quantify the regression performance, we use the metrics, as suggested
in [11]: the coefficient of determination R2 which should be maximized (↑; R2

with one being the perfect score; its negative values indicate a worse fit than the
average), mean absolute percentage error (MAPE), mean squared error (MSE)
and mean absolute error (MAE)—all those measures should be minimized (↓).

2.2 Estimating Chlorophyll Content Using Machine Learning

We exploit a processing chain, in which the input HSI undergoes feature extrac-
tion, and the features are fed to a regression model to predict the value of each
parameter (we train four independent models). The algorithms at each step of
the pipeline can be conveniently replaced by other techniques. We build upon
several insights concerning the shape of the median spectral curves extracted for
the separate fields of interest (the spectral curves for all pixels are aggregated to
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Fig. 1. The flowchart presenting the proposed feature engineering process.

generate a single median curve for the field). It is of note that some of the curves
extracted for CHESS that should represent similar measurements (e.g., similar
ground truth) do not look alike, and there exist noisy curves—this could be
related to the difficulties in capturing enough light for selected spectral bands,
which could easily lead to a narrower tonal range of the photosensitive camera.

To tackle the issue of the noisiness of spectral curves (and to increase its
signal-to-noise ratio through removing high-frequency noise from the signal), the
feature extraction stage is preceded by the filtering of spectral data using the
Savitzky-Golay filter which may be considered as a generalized moving average
filter. We aim at eliminating the influence of random noise and at reducing the
drift phenomenon on the spectral reflection coefficient [5]. The Savitzky-Golay
filter is given as the discrete convolution (h denotes the signal):

y[π] =

λ∑
m=−λ

h[m] ∗ [π −m] =

π+λ∑
m=π−λ

h[π −m] ∗ [m], (1)

where 2λ+1 is the length of the approximation interval, and π is the polynomial
order, both being the tunable hyperparameters. In Fig. 1, we present the example
of the original spectral curves for two fields with similar SPAD values amounting
to 47.66 and 47.42 (first row) which underwent Savitzky-Golay filtering for two
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hyperparameter sets (λ = 26, π = 13 and λ = 26, π = 3), resulting in slightly
different shapes of the smoothed signal (second row). In both cases, the small
“noisy” variations of the original curve were removed across the entire spectrum.

Once the original spectral curve is filtered, we extract the gradients which
constitute the feature vectors for each field. We build upon the observation that
the detection of anomalies in the signal data can be supported by the use of
a gradient elaborated over the spectral curve, which allows us to capture the
subtle characteristics in such data [2]. The feature extraction may be performed
µ times, with µ = 0 denoting the original curve (i.e., the feature vector includes
the original reflectance values). Such feature vectors of size B, where B is the
number of hyperspectral bands (here, B = 150), are fed to the regression model.

3 Experimental Validation

We investigate the linear machine learning models: (i) linear regressors with
L1, and (ii) L2 regularization, (iii) support vector machines with linear kernel,
and (iv) the elastic net with regularization, all implemented in Scikit-learn.
Savitzky-Golay filtering was implemented in SciPy, and feature extraction in
NumPy. We focus on the linear regression models to avoid heavily parameterized
techniques—due to this assumption, we were able to extensively evaluate thou-
sands of models in a reasonable time (27 840 model’s configurations). At the
same time, we maintained the high interpretability of the study.

For each model, we optimized its hyperparameters (this fine-tuning was per-
formed following the 5-fold cross-validation strategy over the training set):

– Linear regression with L1 regularization, for: α ∈ {10−15, 10−14, . . . , 1015 },
– Linear regression with L2 regularization, for: α ∈ {10−15, 10−14, . . . , 1015 },
– Support vector machine with linear kernel, for: C ∈ {2−5, 2−4, . . . , 28}, and

the maximum number of iterations I ∈ {500, 1000, 2500},
– Elastic net with L1 regularization, for α ∈ {10−15, 10−14, . . . , 1015}, and

L1ratio ∈ {0.05, 0.1, . . . , 0.9}.

Similarly, the feature extraction is a parameterized step, as it may be performed
multiple times. We denoted the number of gradient runs as µ, and by µ = 0 we
report the results obtained for the regression models operating over the original
curves. Therefore, the full configuration for the performed experimental search
was as follows: µ ∈ {0, 1, 2, 3}, λ ∈ {1, 2, . . . 30}, π ∈ {1, 2, . . . , 29}.

In Fig. 2, we depict the impact of π, λ, and µ on the R2 coefficient for the
elastic net models predicting the SPAD parameter. Here, we focused on a single
machine learning model (with default parameterization) to verify the impor-
tance of signal filtering and feature extraction on the regression capabilities of
the algorithm. Albeit the insights learned from this experiment may not be gen-
eralizable to other models, we anticipate that a similar trend would be observed,
as feature engineering constitutes one of the most important aspects of building
machine learning pipelines [3]. We can observe that the exhaustive traversal of
the search spaces allows to indicate their most promising regions for the (λ, π)
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Fig. 2. The R2 metric obtained for various filtering and feature extraction settings.
The light blue × marker indicates the best configuration for each gradient level (µ).

configurations, which remain consistent for the gradient-extraction levels (µ).
However, the exact position of the best parameterization differs across µ’s.

The optimized models outperform Baseline (the best-known R2 values from
the literature [11])—in Table 1, we report the optimized hyperparameters for
the models offering the best regression. The R2 measure notably increased for
all parameters, whereas the regression errors, e.g., MAE, decreased by 53.5%,
23.3%, 30.9%, and 25.0% for SPAD, FvFm, PI, and RWC. The experiments
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indicated that appropriate feature engineering, which involves Savitzky-Golay
filtering of the median spectral curves followed by feature extraction, allows the
elaboration of high-quality models for estimating chlorophyll-related parameters.

Table 1. The best results for all quality metrics, elaborated for the best parameteri-
zation (Savitzky-Golay filtering, feature extraction and regression models).

Param. Model configuration µ π λ MAPE ↓ R2 ↑ MAE ↓ MSE ↓

SPAD Elastic net (α = 10−1, L1ratio = 0.5) 2 26 12 0.035 0.943 0.756 3.012
Linear regr. with L2 (α = 2.5× 10−5) — 0.072 0.827 1.625 9.095

FvFm Linear regr. with L2 (α = 10−3) 0 22 17 0.030 0.764 0.016 0.001
Linear regr. with L2 (α = 5× 10−5) — 0.036 0.727 0.021 0.001

PI SVM with linear kernel (C = 2, I = 103) 1 29 20 0.401 0.837 0.194 0.083
Linear regr. with L2 (α = 10−11) — 0.532 0.677 0.280 0.169

RWC Linear regr. with L1 (α = 10−1) 2 22 11 0.010 0.911 0.706 1.089
Linear regr. with L2 (α = 10−3) — 0.013 0.859 0.941 1.731

4 Conclusions

We exploited HSIs for the non-invasive estimation of chlorophyll-related param-
eters in plants and proposed a machine learning technique for this task. To deal
with subtle signal noise, we utilized the Savitzky-Golay smoothing filter that
is followed by the gradient-based feature extractor. The experiments revealed
that our techniques outperform the state of the art, as quantified using four
chlorophyll-related parameters. The coefficient of determination (R2) achieved
by our techniques reached 0.943 (compared to 0.827 reported for the best model
in [11], therefore we obtained the improvement of 14%), 0.764 (0.727, improve-
ment of 5%), 0.837 (0.667, improvement of 25%), 0.911 (0.859, improvement
of 6%) for SPAD, FvFm, PI, and RWC. Also, we showed that employing the
Savitzky-Golay smoothing brings improvements in the generalization of a model
trained over the gradient-based features extracted from such filtered signal.
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