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Abstract. Retrofitting damaged buildings is a challenge for engineers, since 
commercial software does not have the ability to consider the local damages 
and deformed shape of a building resulting from the mainshock record of an 
earthquake before applying the aftershock record. In this research, a computa-
tional method for retrofitting of damaged buildings under seismic mainshock-
aftershock sequences is proposed, and proposed computational strategy is de-
veloped using Tcl programming code in OpenSees and MATLAB. Since the 
developed programming code has the ability of conducting nonlinear dynamic 
analysis (e.g. Incremental Dynamic Analysis (IDA)), different types of steel and 
reinforced concrete structures, assuming different intensity measures and engi-
neering demands, can be on the benefit of this study. To present the ability of 
method, the 4-Story and 6-Story damaged steel structures were selected. Then, 
the linear Viscous Dampers (VDs) are used for retrofitting of the damaged 
structures, and IDAs were performed under aftershock records. The results 
showed that the proposed method and computational program could improve 
the seismic performance level of damaged structures subjected to the 
mainshock-aftershock sequences. In addition, the damaged floor level of the 
building is recognized by programming code and can be effectively considered 
for local retrofit schemes. 

Keywords: Computational Method, Damaged-Building, Retrofitting of Build-
ings, Mainshock-Aftershock Sequence. 

1 Introduction 

Nowadays, seismic activity is known as an external threat to buildings due to its un-
predictable external loads that may impose sudden force on the story levels where the 
weight of the building is concentrated. Investigations have been carried out to propose 
procedures for assuming the effects of external loads such as pounding phenomenon 
[1] and impact force [2], which can cause local damages of structures [3, 4]. Then, 
retrofitting strategies for controlling the lateral loads effects [5], controlling the 
pounding force [6], and improving the seismic performance level of structures using 
buckling-restrained brace [7], knee brace [8, 9] and semi-rigid connections having 
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shape memory alloys [10, 11] were proposed. Although it is possible to use dissipa-
tive devices such as linear Viscous Dampers (VDs), it is not beneficial to construct 
buildings with these expensive devices. Therefore, most of buildings have not been 
equipped with VDs and may be exposed to damages of mainshock or seismic se-
quences [12].  
Studies have been conducted to provide the information of using linear and nonlinear 
VDs having different types of floor level distribution, and their influences on the Re-
sidual Drift (RD) and Interstory Drift (ID) of the steel structures [13]. Deringöl and 
Güneyisi [14] investigated the effectiveness of the using VDs in the seismically iso-
lated steel buildings. Hareen and Mohan [15] introduced an energy-based method for 
retrofitting of reinforced concrete buildings using VDs, which improved the seismic 
performance. Pouya et al. [16] investigated the failure mechanism of conventional 
bracing system under mainshock-aftershock sequences. To overcome economic issues 
of using VDs, Asgarkhani et al. [17] and Kazemi et al. [18] introduced an optimal 
VDs placement process to reduce the cost of implementing VDs, while this procedure 
can be applied to those buildings under seismic mainshock effects. 
It should be noted that the VDs may be used as retrofitting strategy for damaged 
buildings, while the modeling of damaged building and implementing the VDs after 
observing the local damages in the structures are the case of the present study. This 
research aims to propose a modeling process to implement VDs after damage of 
buildings under seismic mainshock, and improve their performances for aftershock 
earthquakes. This procedure considers the effects of pre-damaging in the building, 
which may increase the failure probability of the building and impose additional fi-
nancial loss. The following sections try to present an example of using this procedure. 

2 Modeling of structures 

The 4-Story and 6-Story frames were designed in accordance with ASCE 7-16 [19] 
(see also [5, 10, 12] for details of designing process). Fig. 1 illustrates the structural 
details of the 4-, and 6-Story frames. 
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Fig. 1. Structural details of the 4-, and 6-Story frames. 
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The structures were modeled in OpenSees [20] software using the procedures that 
have been employed by Kazemi et al. [21-24]. According to their procedure, to model 
3D buildings, due to the symmetric plan of structures, it is possible to use 2D models 
with the same fundamental period and modal information. They have verified this 
procedure and used 2D models to facilitate the computational analysis. In addition, 
the leaning column was employed to represent the gravity columns of building for 
modeling of the P-delta effects, which plays a crucial role in the lateral behavior of 
buildings [2-4]. Moreover, the beams of structures were modeled with IMK hinges 
[10-12] and the columns were assumed to have fiber sections [4, 5]. 

3 Computational method 

Literature review confirmed that VDs can be used to control the RD and ID of the 
steel structures, in which, this reduction can maintain structure within allowable limi-
tations prescribed by seismic codes. Although implementing VDs for the purpose of 
retrofitting strategy is a common idea, the correct assessment of ID and RD is a chal-
lenging duty in front of structural engineers. Since a pre-damaged building has an 
initial stage of RD, it should be considered in modeling procedure. It is not easy to 
model local damages in structural elements, while in each member of building differ-
ent damage states can be observed due to the strength of elements. Therefore, in this 
research, a modeling process is proposed to include all damage states of structural 
members and initial RD due to mainshock earthquake. Fig. 2 illustrates the proposed 
computational method for retrofitting damaged buildings.  
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Fig. 2. Proposed computational method for retrofitting damaged buildings. 

According to Fig. 2, in first stage, the model of the structure is ready, and in second 
stage, the first earthquake known as seismic mainshock is applied and first RD is 
calculated. In second stage, the computational method is applied to the model to im-
plement the VDs as selected retrofitting strategy. In second stage, a Tcl programming 
code is developed in OpenSees [20] and MATLAB [25] software simultaneously to 
control the deformed shape model and implement the VDs. It should be noted that the 
VDs are implemented to a deformed shape model as it looks in Fig. 2. Then, the sec-
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ond earthquake known as aftershock is applied to the structure. To achieve the seis-
mic performance of damaged structure under aftershock records, the Tcl program-
ming code improved with the ability of performing IDAs, in which, three steps of 
analysis are defined based on the spectral spectrum remarked as Sa(T1) [26-28]. All of 
the procedure is automated to reduce the analysis time. The results of the analysis are 
plotted by MATLAB [25] to have an operator that controls the whole analysis proce-
dure. This software can help the computational method to be repeated for the number 
of seismic records, and finally, the results of IDA curves are plotted. It is noteworthy 
that this computational method can be applied to any other methods of retrofitting 
using dissipative devices, since it is a general method with ability of changing the 
dissipative device during analysis. The proposed method has the ability of defining 
different intensity measures (i.e. Sa(T1)) and a wide range of demands (i.e. RD and 
ID) for any type of structures (i.e. steel and reinforced concrete structures), while 
increasing the accuracy of the results and reducing computational time. 

4 Retrofitting damaged building 

To present the capability of proposed method, two selected structures were retrofit-
ted with implementing VDs at all floor levels after mainshock earthquake. Figs. 3 and 
4 compare the results of the deformation of the 4-Story and 6-Story frames in the 
mainshock-aftershock analysis with and without considering VDs, respectively.  
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Fig. 3. Comparing the deformation results of the 4-Story frame in the seismic mainshock-
aftershock analysis with and without VDs. 
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Fig. 4. Comparing the deformation results of the 6-Story frame in the seismic mainshock-
aftershock analysis with and without VDs. 
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The nonlinear dynamic analysis was conducted based on the Northridge record 
with RSN 949. In the seismic mainshock, there is a permanent deformation known as 
the first RD that illustrates the remained deformation in the structural elements and 
floor levels. In the constant part of the performing analysis (i.e. between 60 s to 80 s), 
the retrofitting procedure was done without stopping the analysis, while taking the 
first RD into account (i.e. 0.903 cm and 0.221 cm for the 4-Story and 6-Story frames, 
respectively). It can be observed that after implementing VDs, there is a significant 
influence on the values of the second RD. For the 4-Story frame, the second RD sig-
nificantly decreased by 5.18 times from 0.808 cm to 0.156 cm by implementing VDs. 
In addition, for the 6-Story frame, the second RD considerably decreased by 2.27 
times from 1.347 cm to 0.593 cm by implementing VDs. Therefore, the proposed 
computational procedure can effectively model the retrofitted structure by taking into 
account the remained deformation (i.e. RD) as well as the local damages of structure 
due to mainshock record. 

To show the capability of the proposed method, the Tcl programming code was 
developed to perform Incremental Dynamic Analysis (IDA) that is a well-known 
method for seismic performance assessment. To perform IDAs, the seismic 
mainshock is applied to remain at a certain level of RD (i.e. first RD), and then, the 
aftershock is applied by increasing amplitude of ground motions until the total col-
lapse of structures. All procedure were controlled by MATLAB [25] and results were 
plotted after analysis. It is noteworthy that the certain level of RD should be defined 
in order to assess the performance level of aftershock based on the RD of seismic 
mainshock. For this purpose, the aforementioned structures were selected to perform 
IDAs based on the first RD equal to 0.005 [5, 8]. To perform IDAs, the as-recorded 
mainshock-aftershock ground motion considered Ruiz-García and Negrete-Manriquez 
[29] were used. Fig. 5 presents the IDA curves of the 4-Story and the 6-Story frames 
under mainshock records. Fig. 6 compares the median of IDA curves (M-IDAs) of the 
4-Story and 6-Story frames under mainshock-aftershock records. 
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Fig. 5. IDA curves of, a) the 4-Story and, b) the 6-Story frames under mainshock records. 
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Fig. 6. M-IDAs of, a) the 4-Story and, b) the 6-Story frames under mainshock-aftershock rec-
ords. 

It can be observed that the proposed method can consider the RD of seismic 
mainshock (i.e. 0.005) for assessing the M-IDAs of structures. Moreover, by imple-
menting VDs after mainshock record, it is possible to consider the RD of mainshock 
in the result of performance assessment of structures. For instance, in ID of 10%, the 
aftershock effects reduced the Sa(T1) values of the 4-Story and 6-Story frames by 
5.07% (from 1.468 to 1.398) and 17.24% (from 0.782 to 0.667), respectively. Moreo-
ver, implementing VDs improved the seismic performance of the 4-Story and 6-Story 
damaged frames by 23.965 and 39.13%, respectively. 

5 Conclusion  

This research proposes an effective computational method for retrofitting damaged 
buildings under seismic mainshock-aftershock sequences. The proposed method can 
be applied to retrofit steel and reinforced concrete structures assuming different inten-
sity measures and engineering demands. Moreover, a wide range of retrofitting devic-
es can be applied such as VDs and buckling-restrained braces. To show the capability 
of the developed Tcl code, two structures having four and six-story levels were se-
lected and the numerical nonlinear dynamic analysis and IDAs were conducted. The 
results of analysis show that the proposed method can provide the seismic perfor-
mance level of damaged frames based on the seismic mainshock-aftershock sequenc-
es. The developed program increases the ability of performing analysis of damaged 
buildings assuming lateral deformations and local damages of buildings as a result of 
mainshock record. In addition, the damaged floor level of building is recognized by 
programming code and can be used for local retrofit instead of retrofitting of the 
whole structure.  
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