
Fine-Tuning Large Language Models for
Answering Programming Questions with Code

Snippets

Vadim Lomshakov1[0000−0001−8991−9264], Sergey
Kovalchuk1[0000−0001−8828−4615], Maxim Omelchenko1,

Sergey Nikolenko2,3[0000−0001−7787−2251], and Artem Aliev1

1 Huawei, St. Petersburg, Russia
2 AI Center, National University of Science and Technology MISIS, Moscow, Russia
3 St. Petersburg Department of the Steklov Institute of Mathematics, St. Petersburg,

Russia {vadim.lomshakov,sergey.kovalchuk}@huawei.com,
maxim.omelchenko@huawei-partners.com,sergey@logic.pdmi.ras.ru,

artem.aliev@huawei.com

Abstract. We study the ability of pretrained large language models
(LLM) to answer questions from online question answering fora such as
Stack Overflow. We consider question-answer pairs where the main part
of the answer consists of source code. On two benchmark datasets—
CoNaLa and a newly collected dataset based on Stack Overflow—we in-
vestigate how a closed-book question answering system can be improved
by fine-tuning the LLM for the downstream task, prompt engineering,
and data preprocessing. We use publicly available autoregressive lan-
guage models such as GPT-Neo, CodeGen, and PanGu-Coder, and after
the proposed fine-tuning achieve a BLEU score of 0.4432 on the CoNaLa
test set, significantly exceeding previous state of the art for this task.

Keywords: Program synthesis · Question answering · Large language
models.

1 Introduction

Modern natural language processing (NLP) widely employs large language mod-
els (LLMs) that extract knowledge from text implicitly, via pretraining, and
then can perform, e.g., open domain question answering (QA) without access
to any external context or knowledge [13, 18, 20]. These LLMs provide an alter-
native way to the design of QA systems, without an external knowledge base
and explicit retrieval components; fine-tuning a pretrained LLM with (question,
answer) pairs is usually sufficient to train it for a given domain. For very large
models such as GPT-3 [4], this approach may even lead to results competitive
with retrieval-based methods on open domain QA without any fine-tuning. The
pretraining procedure is always the most important part, and the data and pro-
cess of pretraining directly affects the quality shown on downstream tasks [25].

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

2 V. Lomshakov et al.

Recent success of Codex [5] in program synthesis has demonstrated that pre-
trained LLMs can be successfully adapted from NLP to the domain of source
code. Codex is a GPT language model fine-tuned on a large corpus of publicly
available code from GitHub; it powers GitHub CoPilot [5] that allows program-
mers to generate code in an IDE from a natural language query. Previously, the
TranX model attempted to learn a neural semantic parser from scratch [27],
but latest works have shown that using pretrained large language models (LLM)
as part of the architecture works better. This includes the recently developed
BERT+TAE [17], TranX+BERT [1], and MarianCG [21] models, the latter is a
pretrained neural machine translation model (MarianMT) fine-tuned on code.

Program synthesis focuses on correctly implementing some functionality de-
fined with a natural language query; researchers often use competitive program-
ming problems to evaluate program synthesis models [5,11,14]. However, empir-
ical studies of programming-related QA websites such as Stack Overflow4 have
shown that real life questions of programmers are not limited to defining a func-
tionality. For instance, the work [2] classifies all posts into different categories
such as “Conceptual” (Why...? Is it possible...? Why something works? ”), “API
usage” (How to implement something? Way of using something? ”), “Discrep-
ancy” (Does not work, What is the problem...?), and others, proposing regular
expressions to define these categories. This gap leads to our research question:
how effective are pretrained LLMs in answering the questions of real life pro-
grammers, even if we focus on questions answered with code snippets?

In this work, we use several publicly available GPT-based LLMs pretrained
on code as backbones for solving closed-book QA in the Stack Overflow do-
main, evaluating on the CoNaLa dataset [26] and our own QA dataset collected
from Stack Overflow. We introduce several approaches for fine-tuning, prompt
engineering, and data preprocessing, achieving new state of the art results on
CoNaLa. Below, Section 2 introduces the data, Section 3 outlines our approach,
Section 4 discusses the evaluation study, and Section 5 concludes the paper.

2 Dataset

We consider programming-related QA with short code snippets generated as
answers to real world problems. Thus, we focus on data with the following
properties: (i) “API usage” questions according to the taxonomy shown in [2];
(ii) questions that consist of a short textual description (≤ 200 characters) with-
out explicit source code in them; (iii) answers with explicit code snippets giving
a solution to the proposed problem; (iv) to be more focused, we have limited our
study to Python as one of the most popular programming languages.

First, we use the existing publicly available dataset CoNaLa5 that satis-
fies our requirements [26]. The dataset consists of 2 879 examples, 2 379 in the
training set and 500 in the test set, crawled from Stack Overflow and then man-
ually curated by human annotators. Second, we have prepared our own dataset
4 https://stackoverflow.com/
5 https://conala-corpus.github.io/

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

Fine-Tuning LLMs for Answering Programming Questions 3

based on original publicly available Stack Overflow data6. We have selected
questions with the tag “Python” and used only the title text as the question. As
ground truth, we have selected answers that earned maximum scores according
to Stack Overflow data. To filter code-containing questions we search the text
for <pre><code> in HTML and select questions with no explicit code paired
with answers with a single code snippet. Finally, we have used the regular ex-
pressions proposed in [2] to select the “API usage” category of questions. We
have cleaned the code by removing comments and selecting only snippets with
correct syntax (no parsing errors). After these steps, we obtained a dataset with
10 522 question-answer pairs. We set aside 1 000 entries for the test set, using
only questions from 2021 and later to avoid possible data leaks since we use
LLMs trained on publicly available data. Since we use only the titles of Stack
Overflow posts, the questions are short: 90% of the questions in the final dataset
have between 5 and 17 words.

3 Methods

3.1 Large language models

As backbones, we have selected several LLMs for our study that are (i) pub-
licly available, (ii) computationally inexpensive, and (iii) pretrained on code.
Specifically, we have used: (i) CoPilot [5], an industrial solution based on Codex ;
(ii) GPT-Neo-2.7B (GPT-Neo below) [3] that shows high performance compared
to Codex [24]; (iii) CodeGen-mono-2B (CodeGen) [16] that was trained on the
Pile dataset [9] and separately on the code from BigQuery and BigPython;
(iv) PanGu-Coder-2.6B (PanGu-Coder) [6] that was pretrained on GitHub code
with a combination of autoregressive (causal) and masked language modeling
losses in two stages, with the second stage using paired natural language and
source code data. Both PanGu-Coder and CodeGen have equivalent or better
performance on the HumanEval dataset than similarly sized Codex models [5].

3.2 Fine-tuning, prompt engineering, and data preprocessing

We propose several techniques for solving our particular QA problem for short
text questions answered by code snippets. First, we fine-tune the selected pre-
trained models on training sets from both CoNaLa (denoted as FT:C in Table 1)
and StackOverflow (FT:SO in Table 1). For fine-tuning, we used the AdamW
optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8, with no weight decay, learning
rate 5e-06 with linear decay, batch size 40, and half-precision (fp16).

Second, we experimented with various prompt engineering techniques to wrap
the question into a context better suited for a specific LLM. For CodeGen and
GPT-Neo models, the best prompt has turned out to be simply wrapping the
question into a multiline comment: """question""" answer during training and

6 https://data.stackexchange.com/

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

4 V. Lomshakov et al.

"""question""" on inference. For PanGu-Coder, we have used the prompt for-
mat used in its pretraining: <comments> question <python> answer <eoc>.
We have also experimented with prefix tuning from the OpenPrompt library [7]
but it has not led to improvements on our datasets.

Third, we have found that adding domain-specific knowledge such as the
names of code libraries can dramatically improve the quality of generated an-
swers. For that purpose, we have trained a classifier on StackOverflow data to
predict the usage of Python libraries. Specifically, we selected 317 300 posts (this
set does not intersect with either CoNaLa or StackOverflow datasets) with only
one import statement in the best answer, selected top 200 most used libraries
as classifier labels, used a pretrained MPNet-base model [22] to encode the titles
of these posts, and trained a support vector machine (SVM) for classification
with these embeddings as input and the corresponding libraries as output. The
resulting classifier obtains 0.47 Prec@1, 0.76 Prec@5, and 0.48 Recall@1 on a
held-out test set. Then we automatically annotate the prompts by adding top 5
predicted import statements before the question; this is shown as +I in Table 1.

Fourth, we have tried variable name substitution similar to [1], i.e., replacing
variable names and string literals in both question and answer with special tokens
(var_i, lst_i etc.); all new tokens were added to the LLM vocabulary. We used
it only for the CoNaLa dataset since it contains special labeling for variable
names and constants in the question body (+R in Table 1). Finally, for the
StackOverflow dataset we also have post body fields in addition to the title; we
have tried to add the post bodies to the question, concatenating them with the
titles and truncating the result to 270 tokens (+B in Table 1).

3.3 Evaluation procedure

For model evaluation on test sets, we have used both general-purpose NLP
metrics—BLEU, BERTScore [28] and Rouge [15]—and metrics developed for
program synthesis: CodeBLEU [19] and Ruby [23]. Note that while the CoNaLa
leaderboard uses BLEU7, recent studies show that direct application of BLEU
and other automated metrics may lead to issues in code generation evaluation [8].
Unfortunately, there is still no good alternative, although recent studies suggest
that Ruby is better aligned with human evaluation [12]; in our experiments, all
metrics seem to agree on what the best models are. For CoNaLa, we used the test
set provided by the authors; for the StackOverflow dataset, the test dataset is
a random sample of 1 000 questions dated 2021 and later, while questions dated
2020 and earlier were used for training. In both cases, we randomly split the
training set in the 90:10 ratio into train and validation parts.

4 Results

Table 1 shows our evaluation results; for CoNaLa, we show the best BLEU scores
from the leaderboard by recently developed BERT+TAE [17], TranX+BERT [1],
7 https://paperswithcode.com/sota/code-generation-on-conala

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

Fine-Tuning LLMs for Answering Programming Questions 5

Model Options BertScore Rouge CodeBLEU Ruby BLEU

C
oN

aL
a

d
at

as
et

BERT+TAE [17] — — — — — 0.3341
TranX+BERT [1] — 0.8998 0.4616 0.4742 0.5478 0.3420
MarianCG [21] — 0.8982 0.5000 0.5001 0.5121 0.3443

CoPilot [5] — 0.8468 0.3376 0.2602 0.2595 0.1642
CoPilot +I 0.8761 0.4169 0.3531 0.3447 0.2230
GPT-Neo [3] — 0.7345 0.0425 0.0723 0.1524 0.0104
GPT-Neo FT:C 0.8688 0.4304 0.3841 0.4319 0.1633
CodeGen [16] — 0.8064 0.3093 0.2767 0.2749 0.1120
CodeGen FT:C 0.9015 0.5522 0.4850 0.5599 0.3171
CodeGen FT:C+R 0.8685 0.3711 0.4242 0.4712 0.2085
CodeGen FT:C+I 0.9115 0.5998 0.5696 0.6325 0.4319
PanGu-Coder [6] — 0.8825 0.4599 0.4421 0.4774 0.2121
PanGu-Coder FT:C 0.9217 0.5981 0.6032 0.6375 0.4098
PanGu-Coder FT:C+I 0.9235 0.6061 0.6122 0.6511 0.4432

S
ta

ck
O

ve
rfl

ow
d
at

as
et

TranX+BERT [1] — 0.8286 0.1001 0.3829 0.2390 0.0515
CoPilot [5] — 0.7939 0.0965 0.0827 0.0864 0.0234
GPT-Neo [3] — 0.7552 0.0472 0.1187 0.1165 0.0107
GPT-Neo FT:SO 0.8052 0.1130 0.1362 0.0956 0.0464
GPT-Neo FT:C 0.7956 0.1237 0.2919 0.1676 0.0477
CodeGen [16] — 0.7438 0.0688 0.1469 0.1131 0.0205
CodeGen FT:SO 0.8021 0.1242 0.1562 0.0994 0.0508
CodeGen FT:C 0.8217 0.1490 0.3310 0.2025 0.0719
PanGu-Coder [6] — 0.8305 0.1497 0.2149 0.1387 0.0717
PanGu-Coder FT:SO 0.8448 0.1825 0.3280 0.2033 0.1087
PanGu-Coder FT:C 0.8386 0.1607 0.4323 0.2467 0.0555
PanGu-Coder FT:SO+I 0.8445 0.1843 0.3325 0.2041 0.1099
PanGu-Coder FT:SO+B 0.8540 0.2452 0.3217 0.2418 0.1519

Table 1. Evaluation study. Best results are shown in bold, results that differ from them
statistically insignificantly are underlined; FT:C – fine-tuned on CoNaLa; FT:SO – on
SO; +I – import classifier; +R – variable replacement; +B – using the question body.

and MarianCG [21] models; we have reproduced the results of TranX+BERT
and used the MarianCG test set results to supplement BLEU with other met-
rics. Here, the best results were obtained by PanGu-Coder FT:C+I, followed by
CodeGen FT:C+I; both set a new state of the art. PanGu-Coder was also best
among the original pretrained models, but our proposed classification-based pro-
cedure (+I) gives significant improvements. GPT-Neo loses significantly, perhaps
because it was originally pretrained only on the Pile dataset, while CodeGen
and PanGu-Coder have comparable results; both were pretrained on code, but
CodeGen also used the Pile, so we see that pretraining on a natural language
corpus does not affect quality as much as suggested in [5]. Note how our pro-
posed pretraining and fine-tuning heuristics make CodeGen results very close to
PanGu-Coder, although pretrained versions show very different performance.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

6 V. Lomshakov et al.

Example 1. Q: download a file ‘url‘ over HTTP and save to "10MB"
A: urllib.request.urlretrieve(url, ’10MB’)

Example 2. Q: delete all specific element from Python list
I have a list like this. a = [’\n’, ’a’, ’b’, ’\n’, ’c’, ’\n’] As far as I know, the
remove, pop, delete method only removes one by one. If I want to remove all ’\n’ from
this list, the only way to do
A: a = [’\n’, ’a’, ’b’, ’\n’, ’c’, ’\n’]

a = [x for x in a if x!= ’\n’]

Example 2.1. Q: delete all specific element from Python list
I: re json itertools sys random
A: a = [1,2,3,4,5,6,7,8,9,10]

a[4:] = a[4:] + a[4:][4:]

Example 3. Q: iterate odd indexes and add them back to original list
I want to add "..." after every odd index in my list (or after every second word), but I
can’t quite figure out how to do it.
A: def add_odds(lst):

return [lst[i] + ’...’ if i\%2 else lst[i] for i in range(len(lst))]

Example 3.1. Q: iterate odd indexes and add them back to original list
I: itertools collections random scipy os
A: a = [1,2,3,4,5,6,7,8,9,10]

for i in range(len(a)-2):
if a[i] % 2 == 0:

a.append(a.pop(i)+a.pop(i+1))
print(a)

Table 2. Sample answers of PanGu-Coder FT:C+I (Ex. 1), FT:SO+B (Ex. 2, 3) and
FT:SO+I (Ex. 2.1, 3.1).

On the StackOverflow dataset (Table 1), the best results were obtained by
PanGu-Coder FT:SO+B, i.e., fine-tuned on StackOverflow and using concate-
nated question bodies. In general, results for StackOverflow are worse than for
CoNaLa: real questions from Q&A web fora are more challenging for models
than specially rephrased questions. In particular, a question’s title often does
not contain complete information, or the wording of the question is not familiar
to the model (i.e., they do not represent similar doc-strings). On the other hand,
the +I heuristic here helps much less than for CoNaLa, probably because titles
of real questions often already contain library names while the CoNaLa dataset
removes them to achieve “pure” program synthesis. We have run the bootstrap
test for difference between means [10] with 100 000 samples and confidence levels
0.055 (CoNaLa) and 10−4 (StackOverflow). In Table 1, best results are shown
in bold, and results that do not significantly differ from them are underlined.

Table 2 shows sample PanGu-Coder answers that illustrate our techniques.
In Example 1, the classifier has produced urllib as a suggestion, and the model
has used it successfully. In Examples 2 and 3, the titles (italicized first line) are
not informative enough, as shown by the answers of FT:SO+I (Examples 2.1
and 3.1 in Table 2), but adding the question body leads to correct answers.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

Fine-Tuning LLMs for Answering Programming Questions 7

5 Conclusion

In this work, we have demonstrated that simple fine-tuning on downstream tasks
such as closed-book QA dramatically improves the quality of LLMs applied to
code generation. In particular, we have achieved a new state of the art result on
the CoNaLa dataset with BLEU score 0.4432. We have presented several fine-
tuning and prompt engineering techniques that can improve the performance of
a variety of LLMs, and we believe that similar approaches can work in other
scenarios; e.g., fine-tuning also helps significantly on our newly collected Stack-
Overflow dataset (very different from CoNaLa). Understanding real-life noisy
natural language queries remains a challenging task for LLMs, evidenced by
much better performance on CoNaLa where the questions are manually curated,
and relatively low results overall (despite them being state of the art). Another
problem is that common metrics, even code-specific ones [8], often lead to incor-
rect evaluation due to the diversity of correct code. We view these problems as
important directions for further work.

Acknowledgements The work of Sergey Nikolenko was prepared in the frame-
work of the strategic project “Digital Business” within the Strategic Academic
Leadership Program “Priority 2030” at NUST MISiS.

References

1. Beau, N., Crabbé, B.: The impact of lexical and grammatical processing on generat-
ing code from natural language. In: Findings of the Association for Computational
Linguistics: ACL 2022. pp. 2204–2214. Association for Computational Linguistics,
Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.findings-acl.173,

2. Beyer, S., Macho, C., Di Penta, M., Pinzger, M.: What kind of questions do de-
velopers ask on stack overflow? a comparison of automated approaches to clas-
sify posts into question categories. Empirical Software Engineering 25 (05 2020).
https://doi.org/10.1007/s10664-019-09758-x

3. Black, S., Gao, L., Wang, P., Leahy, C., Biderman, S.: GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-Tensorflow (Mar 2021).
https://doi.org/10.5281/zenodo.5297715

4. Brown, T.B. et al.: Language models are few-shot learners (2020).
https://doi.org/10.48550/ARXIV.2005.14165

5. Chen, M. et al.: Evaluating large language models trained on code. CoRR
abs/2107.03374 (2021), https://arxiv.org/abs/2107.03374

6. Christopoulou, F. et al.: Pangu-coder: Program synthesis with function-level lan-
guage modeling (2022). https://doi.org/10.48550/ARXIV.2207.11280

7. Ding, N. et al.: Openprompt: An open-source framework for prompt-learning. arXiv
preprint arXiv:2111.01998 (2021)

8. Evtikhiev, M., Bogomolov, E., Sokolov, Y., Bryksin, T.: Out of the bleu:
how should we assess quality of the code generation models? (2022).
https://doi.org/10.48550/ARXIV.2208.03133

9. Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He,
H., Thite, A., Nabeshima, N., et al.: The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027 (2020)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

8 V. Lomshakov et al.

10. Hall, P., Hart, J.D.: Bootstrap test for difference between means in nonparametric
regression. Journal of the American Statistical Association 85(412), 1039–1049
(1990). https://doi.org/10.1080/01621459.1990.10474974

11. Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., Burns,
C., Puranik, S., He, H., Song, D., Steinhardt, J.: Measuring coding challenge com-
petence with apps (2021). https://doi.org/10.48550/ARXIV.2105.09938

12. Kovalchuk, S.V., Lomshakov, V., Aliev, A.: Human perceiving behavior modeling
in evaluation of code generation models. In: Proceedings of the 2nd Workshop on
Natural Language Generation, Evaluation, and Metrics (GEM). pp. 287–294. ACL,
Abu Dhabi, UAE (Dec 2022), https://aclanthology.org/2022.gem-1.24

13. Lee, N., Li, B.Z., Wang, S., Yih, W.t., Ma, H., Khabsa, M.: Language models as
fact checkers? (2020). https://doi.org/10.48550/ARXIV.2006.04102

14. Li, Y. et al.: Competition-level code generation with alphacode (2022).
https://doi.org/10.48550/ARXIV.2203.07814

15. Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries. In: Text
Summarization Branches Out. pp. 74–81. Association for Computational Linguis-
tics, Barcelona, Spain (Jul 2004), https://aclanthology.org/W04-1013

16. Nijkamp, E. et al.: Codegen: An open large language model for code with multi-
turn program synthesis (2022). https://doi.org/10.48550/ARXIV.2203.13474

17. Norouzi, S., Cao, Y.: Semantic parsing with less prior and more monolingual data.
CoRR abs/2101.00259 (2021), https://arxiv.org/abs/2101.00259

18. Petroni, F. et al.: Language models as knowledge bases? (2019).
https://doi.org/10.48550/ARXIV.1909.01066

19. Ren, S. et al.: Codebleu: a method for automatic evaluation of code synthesis
(2020). https://doi.org/10.48550/ARXIV.2009.10297

20. Roberts, A., Raffel, C., Shazeer, N.: How much knowledge can
you pack into the parameters of a language model? (2020).
https://doi.org/10.48550/ARXIV.2002.08910

21. Soliman, A.S., Hadhoud, M.M., Shaheen, S.I.: Mariancg: a code generation trans-
former model inspired by machine translation. Journal of Engineering and Applied
Science 69(1), 1–23 (2022)

22. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: Mpnet: Masked and permuted pre-
training for language understanding. In: Proceedings of the 34th International Con-
ference on Neural Information Processing Systems. NIPS’20, Curran Associates
Inc., Red Hook, NY, USA (2020)

23. Tran, N., Tran, H., Nguyen, S., Nguyen, H., Nguyen, T.: Does bleu score work for
code migration? In: 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). pp. 165–176 (2019).

24. Xu, F.F., Alon, U., Neubig, G., Hellendoorn, V.J.: A systematic evaluation of large
language models of code (2022). https://doi.org/10.48550/ARXIV.2202.13169

25. Ye, Q. et al.: Studying strategically: Learning to mask for closed-book qa (2020).
https://doi.org/10.48550/ARXIV.2012.15856

26. Yin, P., Deng, B., Chen, E., Vasilescu, B., Neubig, G.: Learning to mine aligned
code and natural language pairs from stack overflow. In: 2018 IEEE/ACM 15th
Intl. Conf. on Mining Software Repositories (MSR). pp. 476–486 (2018)

27. Yin, P., Neubig, G.: TRANX: A transition-based neural abstract syntax parser for
semantic parsing and code generation. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. pp.
7–12. ACL, Brussels, Belgium (Nov 2018). https://doi.org/10.18653/v1/D18-2002

28. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Evaluating
text generation with bert (2019). https://doi.org/10.48550/ARXIV.1904.09675

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_15

https://dx.doi.org/10.1007/978-3-031-36021-3_15
https://dx.doi.org/10.1007/978-3-031-36021-3_15

