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Abstract. The paper presents the formulation of a parametric integral
equation system (PIES) for boundary problems with piecewise homo-
geneous media and body forces. The multi-region approach is used, in
which each region is treated separately and modeled globally by a Bezier
surface. Each subarea can have di�erent material properties, and di�er-
ent body loads can act on it. Finally, they are connected by dedicated
conditions. Two examples are solved to con�rm the e�ectiveness of the
proposed approach. The results are compared with analytical solutions
and those received from other numerical methods (FEM, BEM).
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1 Introduction

In many elasticity problems, the considered body is made up of di�erent mate-
rials or mechanical material properties (e.g. Young's modulus, Poisson's ratio)
vary in some piecewise fashion. The approach to this type of problem di�ers
signi�cantly in the best-known numerical methods for solving them. The oldest
and most popular �nite element method (FEM) [1, 2] is characterized by the
general strategy regardless of the problem. Therefore, the whole body is always
divided into �nite elements, for which the same or various material properties
can be posed. It can be said that di�erent materials are taken into account au-
tomatically. On the other hand, the number of required elements and nodes is
the largest here. The boundary element method (BEM) [3, 4] reduces the prob-
lem size, because modeling is limited to the boundary only. Bodies in which
material properties vary piecewise are approximated here by a system of homo-
geneous bodies. Such an approach is called multi-region formulation. However,
the methods based on the boundary integral generate the dense resulting ma-
trix, while in FEM, it is sparse. The method developed by the authors, called
the parametric integral equation system (PIES), also applies to bodies made up
of subdomains with di�erent material properties [5]. PIES signi�cantly reduces
the number of input data necessary for modeling the shape, because only the
boundary is created using parametric curves. Thus, discretization into elements
is eliminated.
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But what about problems with piecewise constant material properties in
which body forces also appear? The approach in FEM does not change, because
various forces can be posed on di�erent �nite elements. In BEM, the domain
should be created. This process is technically very similar to discretization in
FEM, but the used elements are called cells. There are some body forces for which
only the boundary can be de�ned, because the domain integral is transformed
into the boundary. However, the general approach requires the application of
cells for each region separately. PIES has been used to solve problems with body
forces, but only in homogeneous domains [6, 7]. It signi�cantly simpli�es the way
of modeling, because the whole area on which the body forces act is created using
a single Bezier surface of any degree. This, in turn, is reduced to just setting
control points.

This paper presents PIES for multi-region elastic problems, but also includ-
ing body forces. Each considered region with di�erent material properties and
various body forces is modeled globally using the Bezier surface and its control
points. Then they are connected by the compatibility and equilibrium condi-
tions at the common interface. PIES formula for such problems is developed
together with a numerical solution scheme. Two examples are solved, con�rming
the approach's e�ectiveness and accuracy.

2 PIES for elasticity with body forces

The isotropic linear elastic solids with body forces are considered. The governing
equations, known as Navier's equations, are expressed by

µui,jj +
µ

1− 2ν
uj,ji + bi = 0, (1)

where µ is the shear modulus, ν is the Poisson's ratio, ui is the displacement,bi
is the body force and commas represent di�erentiation with respect to spatial
coordinates (i, j = 1, 2 for 2D).

The equation (1) can be transformed into the corresponding integral equation
using the strategy described in [8]

0.5ul(s̄) =

n∑
j=1

∫ sj

sj−1

{
U∗

lj(s̄, s)pj(s)−P∗
lj(s̄, s)uj(s)

}
Jj(s)ds

+

m∑
k=1

∫
Ωk

Ū
∗
l (s̄,y)bk(y)dΩ(y),

(2)

where Jj(s) is the Jacobian of transformation to the parametric reference system,
l, j = 1..n, sl−1 ≤ s̄ ≤ sl, sj−1 ≤ s ≤ sj and n, m are the number of segments
and subregions.

Functions uj(s), pj(s) describe the distribution of displacements and trac-
tions on the boundary, respectively. On each segment, one is prescribed, and the
other is to be solved. The function b(y) represents the vector of body forces.
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The fundamental solutions for displacement U∗
lj(s̄, s) and traction P∗

lj(s̄, s) are

presented explicitly in [8]. The solution Ū
∗
l (s̄,y) can be found in [6].

PIES' boundary and domain are de�ned in a parametric reference system
using well-known computer graphics tools like curves and surfaces [9]. They are
analytically incorporated into the formalism of PIES by functions η [8], which
represent the distance between two boundary/domain points.

The collocation method [10] is used for the PIES solution. Unknown bound-
ary functions are approximated by series with arbitrary basis functions, e.g.,
Legendre or Chebyshev polynomials [6�8]. The number of expressions in the se-
ries a�ects the accuracy of the solutions. Only this parameter should be increased
to reduce the error, without interfering with the shape and re-discretization. Af-
ter substituting approximation series to (2) and writing the resulting equation
for all collocation points, the PIES matrix form is obtained

Hu = Gp+ b, (3)

where H, G are square matrices of boundary integrals from (2), while b is the
vector of integrals over the domain.

After solving equation (3) only the boundary solutions are obtained. To cal-
culate results within the domain, the integral identities for displacements and
stresses are used. They are presented in [5, 8] (without body forces).

3 Multi-region formulation

As mentioned in previous sections, for bodies with piecewise homogeneous mate-
rials, it is necessary to consider more than one region. Then such a body can be
approximated by a system of homogeneous bodies with di�erent material con-
stants. To illustrate the problem, consider a region Ω consisting of two subregions
Ω1 and Ω2. They are separated by an interface boundary ΓI and surrounded by
respectively Γ1 and Γ2. Each region has di�erent mechanical material properties
and di�erent body forces can act on it (Fig. 1). The analysis of such a problem
consists in considering each region separately [3], which results in the following
matrix equations for Ω1 and Ω2[

H1 HI
1

] [u1

uI
1

]
=

[
G1 GI

1

] [p1

pI
1

]
+ {b1} , (4)

[
H2 HI

2

] [u2

uI
2

]
=

[
G2 GI

2

] [p2

pI
2

]
+ {b2} , (5)

where H1, G1 contains the boundary integrals over Γ1, H2, G2 over Γ2, while
HI

1, G
I
1 over the interface boundary ΓI from Ω1 and HI

2, G
I
2 over ΓI from Ω2.

The equations (4) and (5) are connected by compatibility and equilibrium
conditions at the interface boundary ΓI

uI
1 = uI

2 = uI ,pI
1 = pI

2 = pI . (6)
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Fig. 1. Multiregion body.

The inclusion of (6) in (4) and (5) results in the following matrix equation

[
H1 HI

1 −GI
1 0

0 HI
2 GI

2 H2

]
u1

uI

pI

u2

 =

[
G1 0
0 G2

] [
p1

p2

]
+

{
b1
b2

}
. (7)

Matrices in (7) are block-banded, and each block corresponds to one region.
The matrix on the left contains overlaps between blocks at the common interface.

When calculating solutions in the domain, the separate identity is required
for each region. Which one is used depends on the region of the examined point.

4 Modeling of regions

The way of modeling problems with various material properties strongly depends
on the method used. In FEM [1, 2], the procedure is general and does not di�er
from the case where the material properties are constant over the whole area.
It comes from the fact that the domain is divided into �nite elements on which
various properties can be applied (Fig. 2a). BEM [3, 4] proposes two approaches:
modeling only the boundary of separate regions (if the integral over the domain
is transformed to the boundary) by boundary elements (Fig. 2b) or modeling the
boundary and the domains of the regions using cells (Fig. 2c). Both approaches
could be implemented in PIES, but the way of modeling the shape is entirely
di�erent, because no division into elements or cells is required.

a) b) c) d)

Fig. 2. Modeling in a) FEM, b) BEM (only the boundary), c) BEM (the boundary
and the domain), d) PIES.

As shown in Fig. 2d, in PIES, each region is modeled by a separate Bezier
surface [9]. They can be of various degrees, e.g., the bilinear surface, used for
polygonal shapes, requires only 4 corner points to be given. For curved region
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shapes, surfaces of higher degrees are used. However, the third-degree patch has
su�cient design �exibility, and higher degrees require longer processing time. It
consists of 12 control points for modeling the boundary and 4 responsible for the
shape in 3D (in 2D problems, they are not essential). However, the formalism of
PIES allows the use of surfaces other than Bezier.

Comparing the approaches presented in Fig. 2 on the sample shape and
discretization schemas, it can be seen that PIES signi�cantly reduces the set
of required nodes (from many elements/cells in FEM/BEM to a few corner
points). In PIES, the accuracy depends on the number of expressions in the
approximation series, not the number of data used for modeling. For the same
shape, always minimal data set is required. It comes from the fact that the shape
approximation is separated from the approximation of the solutions.

5 Tested examples

5.1 Example 1

The �rst problem concerns elastic analysis with a centrifugal load. A square plate
(Fig. 3) rotates about the x-axis with angular velocity ω = 100rad/s. There is a
discontinuity in the density distribution and material properties: ρ1 = 1× 10−6,
E = 210GPa, v = 0.2 for 0 ≤ y ≤ 50 and ρ2 = 2× 10−6, E = 160GPa, v = 0.3
for 50 < y ≤ 100.

As seen in Fig. 3, the problem in PIES is modeled using two bilinear Bezier
surfaces, one for each region. They have been de�ned by 6 control (corner)
points. Boundary functions (u and p) are approximated by series with Chebyshev
polynomials of the �rst kind with 7 expressions for each boundary segment.

(100,0)

(100,50)

(0,0)

(0,50)

(0,100) (100,100)

y

x

Ω2

Ω1

Fig. 3. Square plate with two materials rotating about the x-axis.

The exact solution for the one-dimensional problem is given in [11] by

σy = ρ1ω
2

8

[
2L(L− 2y)− (L− 2y)2

]
+ ρ2ω

2 3L2

8 , 0 ≤ y ≤ 50,

σy = ρ2ω
2
[
L(L− y)− (L−y)2

2

]
, 50 < y ≤ 100.

(8)

The considered geometry in other numerical methods requires posing ele-
ments, e.g., in [11] 80 constant boundary elements. In this paper, the FEM
model is used for comparison purposes. Two meshes are applied, with 400 and
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1600 8-noded quadrilateral �nite elements. Finally, the number of solved equa-
tions is 112 in PIES and 2562/9922 in FEM (depending on the mesh).

Figure 4 shows the comparison of stress distribution at x = 50. Only FEM
results with a �ner mesh are presented, as the average relative error obtained
at the considered cross-section equals 1.54% (for a coarser mesh it is 1.6%). For
the PIES method, the error equals 1.02%. Additionally, the computational times
are compared. PIES solved the problem in 0.772s, while FEM in 2.05s.
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Fig. 4. Stress σy distribution at x = 50.

5.2 Example 2

The second example concerns a footing on a horizontal layer of soil (Fig. 5a)
under a uniform compressive load with a magnitude of 1 ton/m and a self-weight
(of the footing and soil). The considered material properties are: E = 1 × 104

ton/m2, v = 0.4, γ = 2 ton/m3 for the soil, and E = 2 × 106 ton/m2, v = 0.2,
γ = 2.4 ton/m3 for the footing.

As shown in Fig. 5b, modeling both regions in PIES using 2 bilinear Bezier
surfaces requires posing only 8 corner points. Approximation series for u and p
for each boundary segment contains 6 expressions with Chebyshev polynomials
of the �rst kind used as basis functions.

The same problem can be de�ned in other well-known methods like FEM
or BEM. However, the number of elements and nodes is much higher than the
number of corner points applied in PIES. For example, in the model created
in BEM, 75 quadratic boundary elements are used, while FEM requires 243
8-noded �nite elements.

The �rst test concerns the analysis of displacements uy at the top boundary
of the region Ω2. Table 1 presents the results obtained by PIES after solving
the system of 144 equations, by BEM with 362 equations and FEM with 1612
equations. The vertical stress values for both regions at x = 0 are also obtained
and compared with BEM and FEM (Fig. 6).
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surface
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a) b)
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(-0.5,2) (0.5,2)

(0.5,2.25)(-0.5,2.25)

(3,2)
Ω1

Ω2

(3,0)

y

x

Fig. 5. Footing on a horizontal layer: a) de�nition, b) modeling.

Table 1. Vertical displacements along the boundary y = 2.

x FEM BEM PIES

3 -0.003278 -0.003277 -0.003277

2.75 -0.003279 -0.003279 -0.003278

2.5 -0.003283 -0.003281 -0.003283

2.25 -0.003292 -0.003290 -0.003291

2 -0.003305 -0.003306 -0.003305

1.75 -0.003326 -0.003327 -0.003326

1.5 -0.003359 -0.003357 -0.003360

1.25 -0.003409 -0.003402 -0.003411

1 -0.003489 -0.003480 -0.003490

0.75 -0.003623 -0.003622 -0.003621

0.5 -0.003964 -0.003876 -0.003915

The PIES solutions presented in Table 1 and Fig. 6 are very close to FEM
and BEM results. In element methods, however, a much larger number of input
data necessary for modeling and the number of equations in the solved system
are observed. The evaluated computational times are 1.43s for FEM and 0.954s
for PIES. For BEM, it is less than 1s, but accurate reading is impossible.

6 Conclusions

The approach for solving multi-region problems with piecewise constant material
properties and body forces is derived in this paper. PIES equation is created for
each region, and then they are connected using compatibility and equilibrium
conditions at the interface boundaries. Domain modeling is required due to the
presence of body forces, but each region is globally de�ned with a surface patch.
Therefore, dividing them into elements or cells is eliminated.

The proposed formulation is tested on two examples: centrifugal and gravita-
tional loads. The results are compared with exact and numerical solutions (FEM,
BEM). They agree (or even are more accurate) with a signi�cantly smaller num-
ber of data for modeling and solving the problem. Moreover, the computational
time in the examined cases also proves in favor of PIES.

The limitation of the method can be a very complex shape that cannot be
modeled with a single Bezier patch. Then di�erent types of surfaces that are more
�exible and can de�ne domains other than quadrangular should be applied. This
is one of the future research goals. It is also planned to use the method to solve
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Fig. 6. Vertical stresses in the cross-section x = 0.

elastoplastic problems with piecewise constant material properties and then also
with body forces. In addition, in this paper, authors did not analyze singularities
that occur in problems with multiple domains due to, e.g., reentrant corners. This
issue should also be the subject of a detailed examination.
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