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Abstract. The paper presents the interval fast parametric integral equa-
tions system (IFPIES) applied to model and solve uncertainly defined
curvilinear potential 2D boundary value problems with complex shapes.
Contrary to previous research, the IFPIES is used to model the uncer-
tainty of both boundary shape and boundary conditions. The IFPIES
uses interval numbers and directed interval arithmetic with some modifi-
cations previously developed by the authors. Curvilinear segments in the
form of Bézier curves of the third degree are used to model the boundary
shape. However, the curves also required some modifications connected
with applied directed interval arithmetic. It should be noted that simul-
taneous modelling of boundary shape and boundary conditions allows
for a comprehensive approach to considered problems. The reliability
and efficiency of the IFPIES solutions are verified on 2D complex po-
tential problems with curvilinear domains. The solutions were compared
with the interval solutions obtained by the interval PIES. All performed
tests indicated the high efficiency of the IFPIES method.

Keywords: Interval fast parametric integral equations system · Interval
numbers · Directed interval arithmetic · Uncertainty.

1 Introduction

The interval fast parametric integral equations system (IFPIES) [1] is a robust
numerical tool for solving uncertainly defined boundary value problems (BVPs).
It is based on successors of the original parametric integral equations system
(PIES) such as the interval parametric integral equations system (IPIES) [2]
and the fast parametric integral equations system (FPIES) [3].

The IPIES was developed to solve uncertainly defined problems. In tradi-
tional modelling and solving BVPs, the shape of the boundary, boundary con-
ditions and some other parameters of the considered domain (i.e. material prop-
erties) are defined precisely using real numbers. In practice, we should measure
some physical quantities to obtain these data. However, the accuracy of deter-
mining the physical quantity is affected by, e.g. gauge reading error, inaccuracy of
measurement instruments or approximations of the models used in the analysis
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of measurements. Therefore, we should consider the uncertainty of the domain
description in modelling and solving BVPs.

Classical mathematical models require exact values of the data. Therefore,
the direct consideration of uncertainty is not possible. However, many known
methods were modified to consider uncertainty (e.g. [4–6]). Some of them ap-
plied interval numbers and interval arithmetic to the methods of modelling and
solving BVPs. Therefore, the interval finite element method (IFEM) [7], the
interval boundary element method (IBEM) [8], and the IPIES were obtained.
However, either the IFEM or the IBEM considered only the uncertainty of mate-
rial parameters or boundary conditions. Only in a few papers some parameters
of the boundary shape (e.g. radius or beam length) were uncertainly defined.
Therefore, the possibility of simultaneous consideration of all uncertainties men-
tioned above in the IPIES [2] becomes a significant advantage.

Although the IPIES has other advantages (e.g., defining the boundary by
curves widely used in computer graphics that uses a small number of interval
control points) inherited from the PIES, there are also some disadvantages. The
main is connected with dense non-symmetric coefficient matrices and Gaussian
elimination applied to solve the final system of algebraic equations. Unfortu-
nately, the application of interval arithmetic and interval numbers also signif-
icantly slows the computational speed and utilizes more memory (RAM) than
in the PIES. Usually, to accelerate computations, parallel computing methods
(e.g. MPI or OpenMP) and graphics processing unit (GPU) for numerical calcu-
lations (such as CUDA or OpenCL) are commonly used. In our previous papers,
we also proposed parallelization of the PIES by OpenMP [9] and CUDA [10]
to reduce the time of computations. However, the use of these methods did not
affect reducing RAM consumption. Therefore, to solve complex (large-scale) un-
certainly defined problems using a standard personal computer (PC), we had to
apply the fast multipole method (FMM) [11] to the IPIES in a similar way as in
the FPIES. The FMM allows to significant reduction the RAM utilization [12].
It also reduces computation time.

The main goal of this paper is to present the IFPIES applied for numerical
solving of 2D potential complex BVPs with uncertainly defined boundary shapes
and boundary conditions. Simultaneous consideration of both uncertainties in
describing the domain becomes a comprehensive approach to solving practical
BVPs. The efficiency and accuracy of the IFPIES are tested on the potential
problems with curvilinear domains.

2 Modelling uncertainties in the IFPIES

In previous papers (e.g. [2]), we described some problems during the application
of either classical [13] or directed [14] interval arithmetic for modelling boundary
problems with uncertainties. Hence, we also proposed some modifications during
the application of the directed interval arithmetic, such as mapping arithmetic
operators to the positive semi-axis into the IPIES (clearly described in [2]). The
same strategy was applied in the IFPIES.
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The general form of the IFPIES formula was presented in [1], has the following
form:
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l = 1, 2, ..., n, sl−1 ≤ ŝ ≤ sl, sj−1 ≤ s ≤ sj ,

(1)

where: ŝ and s are defined in the parametric coordinate system (as real values),
sj−1 (sl−1) correspond to the beginning while sj (sl) to the end of interval seg-
ment Sj (Sl), n is the number of parametric segments that creates a boundary
of the domain in 2D, Û∗(c)lj (ŝ, s) and P̂ ∗(c)lj (ŝ, s) are modified interval kernels

(complex function), J (c)
j (s) is the interval Jacobian, uj(s) and pj(s) are inter-

val parametric boundary functions on individual segments Sj of the interval
boundary, R is the real part of complex function.

In this paper, for modelling uncertainly defined boundary shapes, curvilinear
segments in the form of interval Bézier curves of the third degree are used:

Sj(s) = ajs
3 + bjs

2 + cjs+ dj , 0 ≤ s ≤ 1, (2)

where vector Sj(s) = [S
(1)
j (s),S

(2)
j (s)]T is composed of two interval components

connected with the direction of coordinates in 2D Cartesian reference system:
S

(1)
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j ],S
(2)
j = [S

(2)
j , S

(2)

j ]. The j = {1, 2, ..., n} is the number of seg-
ment created boundary, and s is a variable in the parametric reference system.
Coefficients aj , bj , cj ,dj have also form of vectors composed of two intervals
(similarly to Sj(s)). They are computed using interval points describing partic-
ular segments of the boundary as presented in Fig. 1:

aj = Pe(j) − 3Pi2(j) + 3Pi1(j) − Pb(j), bj = 3(Pi2(j) − 2Pi1(j) + Pb(j)),

cj = 3(Pi1(j) − Pb(j)), dj = Pb(j),

where coordinates of all points P , regardless of their subscript, have the form of
a vector of intervals:

P = [P (1),P (2)]T =
[
[P (1), P

(1)
], [P (2), P

(2)
]
]T
.

Boundary conditions are uncertainly defined using interval boundary func-
tions uj(s) and pj(s) which are approximated by the following series:

uj(s) =

N∑
k=0

u
(k)
j L

(k)
j (s), pj(s) =

N∑
k=0

p
(k)
j L

(k)
j (s), (3)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_12

https://dx.doi.org/10.1007/978-3-031-36021-3_12
https://dx.doi.org/10.1007/978-3-031-36021-3_12


4 A. Kużelewski et al.

Interval control points:

- interpolated

- approximated
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Fig. 1. The interval Bézier curve of the third degree used to define a segment of the
boundary

where u(k)
j = [u

(k)
j , u

(k)
j ] and p(k)j = [p(k)

j
, p

(k)
j ] are unknown or given interval

values of boundary functions in defined points of the segment j,N - is the number
of terms in approximating series (4), which approximated boundary functions
on the segment j and L

(k)
j (s) – the base functions (Lagrange polynomials) on

segment j.

3 Solving the IFPIES

The process of solving the IFPIES is connected with the application of the FMM
into the PIES. The FMM uses the tree structure to transform interactions be-
tween segments describing boundary into interactions between the cells (groups
of segments). Also, the Taylor expansion is used to approximate the PIES’s mod-
ified kernels. The process of applying the FMM into the PIES is clearly described
in [3].

At last, integrals in (1) have the following form [1]:
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where: NT is the number of terms in the Taylor expansion, τ̂ = S
(1)
l (ŝ) +

iS
(2)
l (ŝ), τ = S

(1)
j (s)+ iS

(2)
j (s), complex interval points τc, τel, τ ′c, τ ′el are mid-

points of leaves obtained while tracing the tree structure (see [15]). Expressions
Mk(τc) andNk(τc) are called moments (and they are computed twice only) and
have the form [1]:
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where n(c)
j = n

(1)
j +in

(2)
j the complex interval normal vector to the curve created

segment j.
The IFPIES, similarly to the original PIES, is written at collocation points

whose number corresponds to the number of unknowns. However, in the IFPIES,
the system of algebraic equations A · x = b is produced implicitly, i.e. only the
result of multiplication of the matrix A by the vector of unknowns x is obtained,
contrary to the explicit form in the PIES. Therefore, an iterative GMRES solver
[16] modified by the application of directed interval arithmetic directly integrated
with the FMM was applied in the IFPIES. Also, the GMRES solver was applied
to the IPIES to obtain a more reliable comparison.

4 Numerical results

The example is the gear-shaped plate presented in Fig. 2. The problem is de-
scribed by Laplace’s equation. The boundary contains 2 048 curvilinear interval
segments. Interval boundary conditions are also presented in Fig. 2 (where u -
Dirichlet and p - Neumann boundary conditions). Tests are performed on a PC
based on Intel Core i5-4590S with 16 GB RAM. Application of the IPIES and
the IFPIES are compiled by g++ 7.5.0 (-O2 optimization) on 64-bit Ubuntu
Linux OS (kernel 5.4.0).
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p=[0.95,1.05]

Fig. 2. Considered the gear-shaped modelled by curvilinear segments
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The first research focused on finding the optimal number of tree levels in
the IFPIES from the speed of computations and RAM utilization point of view.
Approximation of the IFPIES kernels uses 25 terms in the Taylor series, and the
GMRES tolerance is equal to 10−8.
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Fig. 3. Comparison of computation time and RAM utilization of the IFPIES for dif-
ferent tree levels

As can be seen from Fig. 3, the shortest time of computations and the smallest
number of utilized memory for all numbers of collocation points is obtained for
8 tree levels. Therefore, that number is used in other research.

The subsequent research focused on the CPU time, RAM utilization and ac-
curacy of the IFPIES compared to the IPIES only due to the lack of methods of
solving problems with uncertainly defined boundary shape and boundary condi-
tions. The same number of terms in the Taylor series and the value of GMRES
tolerance as in the previous example are used. The number of collocation points
is the same in each segment, which is changed from 2 to 8. Therefore, we should
solve the system of 4 096 to 16 384 equations, respectively.

Table 1. Comparison between the IFPIES and the IPIES

Number of CPU time [s] RAM utilization [MB] MSE
col. pts eqs IFPIES IPIES IFPIES IPIES inf sup

2 4 096 70.73 131.24 51.31 390 0.0 0.0
3 6 144 159.22 310.25 97 896 4.41 · 10−15 1.43 · 10−15

4 8 192 284.84 565.46 157 1 578 6.29 · 10−15 5.96 · 10−15

5 10 240 449.05 910.28 236 2 455 6.23 · 10−14 2.55 · 10−14

6 12 288 653.36 1 349.4 327 3 523 1.17 · 10−11 2.39 · 10−13

7 14 336 900.19 1 892.83 437 4 787 3.33 · 10−13 6.74 · 10−11

8 16 384 1 192.09 2 559.22 561 6 243 6.95 · 10−10 6.14 · 10−11
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As can be seen from Tab. 1, the IFPIES is about 2 times faster and uses up
to 10 times less RAM than the IPIES. To prove the accuracy of the proposed
method, the mean square error (MSE) between the lower and upper bound
(infimum and supremum) of the IFPIES and the IPIES solutions are computed.
The IFPIES is as accurate as the IPIES. The mean square error (MSE) between
both methods is very low and does not exceed 10−9. Hence, the IFPIES is as
accurate as the IPIES.

5 Conclusions

The paper presents the IFPIES in solving 2D potential curvilinear uncertainly
defined boundary value problems. The IFPIES was previously applied in mod-
elling and solving 2D polygonal potential problems with the uncertainly de-
fined shape of the boundary. Applied interval modelling of boundary shape and
boundary conditions allows for including the uncertainty of measurement data
(measurement errors) in calculations, which is ignored in classic practical de-
sign. Also, applying the fast multipole technique in the IFPIES allows for the
highly efficient solving of complex engineering problems on a standard PC in a
reasonable time. However, the real power of the IFPIES is connected with low
RAM utilization. The IPIES for solving the problems with a system of 16 384
equations uses over 6 GB RAM, while the IFPIES requires about 0.5 GB of
RAM.

Obtained results suggest that the direction of research should be continued.
Our further research should cover problems modelled by other than Laplace’s
equations.

References

1. Kużelewski, A., Zieniuk, E., Czupryna, M.: Interval Modifications of the Fast
PIES in Solving 2D Potential BVPs with Uncertainly Defined Polygonal Bound-
ary Shape. In: Groen, D. et al. (eds.) Computational Science - ICCS 2022, LNCS,
vol. 13351, pp. 18–25. Springer, Cham (2022). https://doi.org/10.1007/978-3-319-
93713-7_19

2. Zieniuk, E., Kapturczak, M., Kużelewski, A.: Modification of Interval Arith-
metic for Modelling and Solving Uncertainly Defined Problems by Interval Para-
metric Integral Equations System. In: Shi, Y. et al. (eds.) Computational Sci-
ence - ICCS 2018, LNCS, vol. 10862, pp. 231–240. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93713-7

3. Kużelewski, A., Zieniuk, E.: The fast parametric integral equations system in an
acceleration of solving polygonal potential boundary value problems. Advances in
Engineering Software 141, 102770 (2020).

4. Fu, C., Zhan, Q., Liu, W.: Evidential reasoning based ensemble classifier for un-
certain imbalanced data. Information Sciences 578, 378–400 (2021).

5. Wang, C., Matthies, H.G.: Dual-stage uncertainty modeling and evaluation for
transient temperature effect on structural vibration property. Computational Me-
chanics 63(2), 323–333 (2019).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_12

https://dx.doi.org/10.1007/978-3-031-36021-3_12
https://dx.doi.org/10.1007/978-3-031-36021-3_12


8 A. Kużelewski et al.

6. Gouyandeh, Z., Allahviranloo, T., Abbasbandy, S., Armand, A.: A fuzzy solution
of heat equation under generalized Hukuhara differentiability by fuzzy Fourier
transform. Fuzzy Sets and Systems 309, 81–97 (2017).

7. Ni, B.Y., Jiang, C.: Interval field model and interval finite element analysis. Com-
puter Methods in Applied Mechanics and Engineering 360, 112713 (2020).

8. Zalewski, B., Mullen, R., Muhanna, R.: Interval boundary element method in the
presence of uncertain boundary conditions, integration errors, and truncation er-
rors. Engineering Analysis with Boundary Elements 33(4), 508–513 (2009).

9. Kużelewski, A., Zieniuk, E.: OpenMP for 3D potential boundary value prob-
lems solved by PIES. In: Simos, T.E., et al. (eds.) 13th International Confer-
ence of Numerical Analysis and Applied Mathematics ICNAAM 2015, AIP Con-
ference Proceedings, vol. 1738, 480098. AIP Publishing LLC., Melville (2016).
https://doi.org/10.1063/1.4952334

10. Kużelewski, A., Zieniuk, E., Bołtuć, A.: Application of CUDA for Acceleration of
Calculations in Boundary Value Problems Solving Using PIES. In: Parallel Process-
ing and Applied Mathematics PPAM 2013, LNCS, vol. 8385, pp. 322–331. Springer,
Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55195-6_30

11. Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. Journal of
Computational Physics 73(2) 325–348 (1987).

12. Liu, Y.J., Nishimura, N.: The fast multipole boundary element method for potential
problems: A tutorial. Engineering Analysis with Boundary Elements 30(5), 371–
381 (2006).

13. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, New York (1966).
14. Markov, S.M.: On directed interval arithmetic and its applications. Journal of

Universal Computer Science 1(7), 514–526 (1995).
15. Kużelewski, A., Zieniuk, E.: Solving of multi-connected curvilinear boundary value

problems by the fast PIES. Computer Methods in Applied Mechanics and Engi-
neering 391, 114618 (2022).

16. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for
solving non-symmetric linear systems. SIAM Journal on Scientific and Statistical
Computing 7, 856–869 (1986).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_12

https://dx.doi.org/10.1007/978-3-031-36021-3_12
https://dx.doi.org/10.1007/978-3-031-36021-3_12

