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Abstract. Nowadays artificial neural network models achieve remarkable
results in many disciplines. Functions mapping the representation provided
by the model to the probability distribution are the inseparable aspect
of deep learning solutions. Although softmax is a commonly accepted
probability mapping function in the machine learning community, it
cannot return sparse outputs and always spreads the positive probability
to all positions. In this paper, we propose r-softmax, a modification of
the softmax, outputting sparse probability distribution with controllable
sparsity rate. In contrast to the existing sparse probability mapping
functions, we provide an intuitive mechanism for controlling the output
sparsity level. We show on several multi-label datasets that r-softmax
outperforms other sparse alternatives to softmax and is highly competitive
with the original softmax. We also apply r-softmax to the self-attention
module of a pre-trained transformer language model and demonstrate
that it leads to improved performance when fine-tuning the model on
different natural language processing tasks.

Keywords: Sparse probability function · Controlling sparsity level ·
Softmax alternative.

1 Introduction

Deep learning models excel in various domains, including computer vision, natural
language processing (NLP), among others. Mapping the numerical output of
a neural network into a probability distribution on a discrete set is crucial for
many machine learning models. In classification, it describes the probability over
classes, while in the attention mechanism for NLP, it indicates which words in a
text are contextually relevant to other words. Softmax [4,11] is the well accepted
standard for probability mapping, as it is easily evaluated and differentiated.

Although softmax [4,11] is the most widely applied probability mapping
function in machine learning it cannot return sparse outputs. This means it
assigns a non-zero probability to every component, making it difficult to identify
insignificant elements. As a result, it does not return the number of relevant labels,
making it necessary to define a threshold below which the label is considered
negative. This threshold often necessitates a hyperparameter selection process,
which adds computational overhead, especially in multi-label classification.
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Fig. 1: Comparison of softmax and r-softmax for multi-label classification. Our
r-softmax can produce zero probabilities indicating negative classes, making it
more intuitive and interpretable than softmax.

Some of the noteworthy alternatives to softmax include the spherical soft-
max [3], the multinomial probit [1], softmax approximations [2] and Gumbel-
Softmax [8]. As this paper introduces a novel sparse alternative to softmax, we
focus on existing sparse probability mapping functions. Sparsemax [12] projects
an input vector onto the probability simplex, producing sparse outputs. Unfor-
tunately, it generally performs worse than softmax. In [9], a general family of
probability mapping functions, including softmax and sparsemax, was defined,
and a strategy for designing convex loss functions was proposed, including an
alternative loss for sparsemax that improved its experimental performance.

We introduce r-softmax, a sparse alternative to the softmax function, that
solves the issue of non-zero probabilities and provides intuitive control of the
sparsity rate. Users can specify the sparsity rate r, representing the desired
fraction of zero values, or train the model to determine its value using gradient
descent. This eliminates the need for an additional mechanism like a threshold
to identify positive labels in multi-label classification, as shown in Figure 1.

We evaluate r-softmax as a function determining probabilities of classes in a
multi-label classification problem and as a function determining the significance
probability of elements in the attention mechanism. In multi-label classification,
we benchmark r-softmax on real and synthetic datasets and find it outperforms
other sparse alternatives to softmax, like sparsemax [12] and sparsehourglass [9],
and competes with the original softmax using an optimal threshold for positive
labels. For the attention mechanism, we replace the pre-trained transformer
language model’s softmax with r-softmax and show that our modification improves
the fine-tuned model’s performance on various NLP tasks.

2 Sparse version of softmax

We introduce r-softmax, a sparse probability mapping with controllable sparsity.

Problem motivation Probability mapping functions transform a real-valued
response x = (x1, . . . , xn) ∈ Rn of the neural network into a probability vector
p = (p1, . . . , pn), where pi ≥ 0 and

∑n
i=1 pi = 1. The most commonly used
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function to parameterize this probability is softmax:

softmax(x) =
(

exp(x1)
n∑

i=1
exp(xi)

, . . . , exp(xn)
n∑

i=1
exp(xi)

)
.

The limitation of softmax is its inability to return sparse outputs with
zero probabilities. Sparse outputs are very useful for example in (i) multi-label
classification, where zero-probabilities indicate absence of labels, or (ii) self-
attention layers, where they allow to ignore irrelevant keys.

The weighted softmax With the motivation of constructing a probability
mapping function capable of producing sparse output vectors, we introduce the
weighted softmax as a generalization of the traditional softmax. By appropriately
parameterizing its weights, the weighted softmax can reduce to a typical softmax
or binary one-hot vector form where one coordinate contains a value of 1 and the
rest are set to 0. It can also enable sparse probability mapping functions that
fall between the two extremes.

Let x = (x1, . . . , xn) ∈ Rn be a point, associated with vector of weights
w = (w1, . . . , wn) ∈ Rn

+, where
∑n

i=1 wi > 0. We define a weighted softmax by
the following formula:

softmax(x,w) =
(

w1 exp(x1)
n∑

i=1
wi exp(xi)

, . . . , wn exp(xn)
n∑

i=1
wi exp(xi)

)
.

The weighted softmax is a proper probability distribution (all components
are non-negative and sum to 1) that reduces to classical softmax for a constant
weight vector. Unlike softmax, it can return zero probability at some coordinates
by setting the corresponding weight to zero, and produce one-hot vectors by
setting exactly one non-zero weight.

To achieve a smooth transition between softmax and binary one-hot vectors,
we construct t-softmax, in which all weights depend on a single parameter t > 0:

t-softmax(x, t) = softmax(x,wt), (1)

where wt = (w1
t , . . . , w

n
t ) and wi

t = ReLU(xi + t−max(x)). All weights wi are
nonnegative with at least one positive weight, satisfying the definition of weighted
softmax. We can observe that wi equals zero when the absolute difference between
xi and the maximum value max(x) is greater than or equal to t.

The following examines how t-softmax changes with varying values of t:

Theorem 1. Let x ∈ Rn be a data point and let t ∈ (0,∞). Then

– the limit of t-softmax(x, t) is softmax(x) as t approaches infinity,
– if x reaches unique max at index k, then

t-softmax(x, t) = onehot(argmax
i

(x)), (2)

for t ∈ (0, xk −maxi ̸=k(x)], where onehot(i) ∈ Rn is a vector consisting of
zeros everywhere except k-th position where 1 is located.
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Proof. The first property is a consequence of t-softmax(x, t) = softmax(x, wt

t ),
and if t approaches infinity then wt

t goes to 1, leading to softmax(x, 1) =
softmax(x). The last property follows directly from the definition of t-softmax.

Controlling the number of non-zero values using r-softmax Instead of
learning the optimal value of t as discussed above, there are situations in which we
would like to have the ability to explicitly decide how many components returned
by t-softmax should be zero. For this purpose, we introduce a parameter r ∈ [0, 1]
that we call a sparsity rate. The sparsity rate r represents the fraction of zero
components we would like to obtain in the output probability distribution.

Recall that wt
i = 0 for i = 1, . . . , n if |xi −max(x)| ≥ t, as defined in Equa-

tion (1). To control the number of non-zero weights, we can inspect the range
[min(x),max(x)] and select t such that xi < t < xj , where xi and xj are two
distinct elements in x1, . . . , xn, in increasing order. This will zero out the i-th
component while keeping the j-th component non-zero. We can use the quantile
of the set of x’s coordinates x1, . . . , xn to implement this rule. The q-quantile
quantile(x, q) outputs the value v in [min(x),max(x)] such that the probability
of xi : xi ≤ v equals q. If the quantile lies between xi and xj with indices i
and j in the sorted order, we use linear interpolation to compute the result as
xi + α · (xj − xi), where α is the fractional part of the computed quantile index.
Setting q = 0 or q = 1 in quantile(x, q) will return the lowest or highest value of
x, respectively.

We define r-softmax as a probability mapping function with a fixed sparsity
rate r ∈ [0, 1] as shown in Equation (3), where tr = −quantile(x, r) + max(x).

r-softmax (x, r) = t-softmax(x, tr). (3)

The parameterization of tr ensures that a fraction of r components will be
zero. When r-softmax(x, r) is applied to x = (x1, . . . , xn) ∈ Rn and r = k

n , for
k ≤ n, the output will be a probability distribution with k zero coordinates. The
r-softmax reduces model complexity by eliminating less probable components.
Our experiments demonstrate the benefits of this approach, particularly in the
self-attention mechanism for NLP tasks.

3 Experiments

We benchmarked r-softmax against basic softmax and other sparse probability
mapping functions (such as sparsemax and sparsehouglass) in multi-label clas-
sification and self-attention blocks of pre-trained language models. Our results
demonstrate that r-softmax outperforms the other functions in most cases. 1.

1 Code with r-softmax is available at https://github.com/gmum/rsoftmax
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3.1 Alternative to softmax in multi-label classification

Multi-label classification is a crucial problem in various domains, including image
classification, where a single class description may not suffice due to multiple
object classes in an image. In these models, the final element is a function
that maps network output to a probability vector representing class membership
probabilities. Softmax is often used, but other functions, such as those introducing
sparse probability distributions, have also been investigated [9,12].

R-softmax for multi-label classification To use r-softmax in multi-label
classification, we need a proper loss function. We cannot directly apply cross-
entropy loss as r-softmax can return zeros, which makes the logarithm undefined.
We follow the approach used in [9] to overcome this. Given input x, logits z and
a probability distribution η = y/|y|1 over labels y, we define our loss function:

L(z, y) =∥y · (r-softmax(z, r)− η)∥22 +
∑

yi=1,yj=0

max (0, ηi − (zi − zj)) , (4)

where yi is i-th coordinate of the vector y (similarly for z and η). The first term
approximates the positive label probability given by r-softmax(z, r)i, while the
second term pushes negative label logits away from positive ones by ηi.

Datasets We tested different probability mapping functions on multi-label classi-
fication using synthetic data (similarly to [9]), with various possible output classes,
average number of labels per sample and document length. We also evaluated
considered functions on two real datasets (VOC 2007 [6] and COCO [10]).

Experimental setting We compare our method with sparsemax, sparsehour-
glass, and softmax. To handle the issue of obtaining zero values with softmax,
we use various thresholds p0 to consider a class as negative. For softmax we use
cross-entropy loss, for sparsehourglass we use function proposed by [9] and for
sparsemax we test functions: sparsemax+huber [12] and sparsemax+hinge [9].

We use a two-layer neural network for synthetic datasets and pre-trained
ResNet models [7] with an additional linear layer for classification for real
datasets. The models are trained with different learning rates. Our r-softmax is
parameterized by the sparsity rate r that is found using an additional classification
layer. The multi-label classification cost function for r-softmax includes cross-
entropy loss to evaluate the correctness of the number of labels.

We report the best validation score after the models reach stability. The F1
score is used as quality metric for multi-label classification models, as it is based
on the returned classes rather than target scores (e.g., mean average precision).

Results on synthetic datasets Figure 2 compares using r-softmax and other
functions for multi-label classification on the synthetic data validation set. In Fig-
ure 2a, we show that r-softmax consistently outperforms other functions, particu-
larly when the dataset has a large number of possible output classes. In Figure 2b,
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(a) Varying average number of positive labels.

(b) Varying document length.

Fig. 2: Different probability mapping functions for multi-label classification on
synthetic datasets with varying output class numbers. For large output class
numbers, r-softmax seems to be the most beneficial choice.

we demonstrate the impact of the average document length on model performance
and show that r-softmax achieves the best results for most configurations, espe-
cially for a larger number of possible output classes. Our method, r-softmax, is
the preferred choice as it provides the most benefits in the investigated scenarios.

Results on real datasets We also evaluate r-softmax on real multi-label
datasets VOC and COCO, see Table 1. Our r-softmax outperforms other sparse
softmax alternatives and is competitive with the original softmax.

3.2 Alternative to softmax in the self-attention block in
transformer-based model

Transformer-based [13] models are widely used in NLP and rely on attention
mechanisms to identify important information. Self-attention modules in each
layer apply softmax to generate weights for all tokens, but this assigns non-zero
weight to even insignificant tokens. We propose replacing softmax with r-softmax
function to obtain sparse probability distributions that allow the model to ignore
irrelevant tokens, which we show to be beneficial in the following section.
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Table 1: Performance of different probability mappings for multi-label classifi-
cation on VOC and COCO datasets. Our r-softmax outperforms other sparse
mapping functions and is competitive with softmax (with threshold selection).

Experimental setup VOC (F1) COCO (F1)

Softmax (p0=0.05) 75.05 71.38
Softmax (p0=0.10) 78.87 72.29
Softmax (p0=0.15) 79.43 69.22
Softmax (p0=0.20) 79.07 64.88
Softmax (p0=0.30) 75.88 54.76

Sparsemax+huber 66.84 52.30
Sparsemax+hinge 71.91 65.67
Sparsehourglass 71.35 64.85
r-softmax 77.90 72.56

Table 2: Comparing different probability mapping functions in pretrained
BERTBASE self-attention blocks for finetuning on GLUE benchmarks. Our
r-softmax with a specific sparsity level outperforms other approaches.

Experiment setup MRPC
(Acc)

RTE
(Acc)

SST-2
(Acc)

QNLI
(Acc)

QQP
(Acc)

Softmax 84.56 68.95 92.32 91.76 91.12
Sparsemax 68.38 52.71 79.82 55.57 77.18
Sparsehourglass 68.38 52.71 79.24 70.99 76.04
r-softmax 85.54 71.84 92.89 91.73 91.13

Experimental setting We experiment with BERTBASE [5] language model
and focus on probability mapping function in each self-attention block during
fine-tuning. We compare the performance of baseline softmax with sparsemax,
sparsehourglass, and r-softmax replacements on GLUE benchmark classification
tasks [14]. The final best validation score is reported after fine-tuning for 5
epochs for MRPC and 3 epochs for others, with different learning rates. We
linearly increase hyperparameter r for r-softmax from 0 to desired sparsity
r ∈ 0.05, 0.1, 0.15, 0.2, 0.5 during training.

Results The results for GLUE tasks obtained by the best run in the grid
search are summarized in Table 2. Using r-softmax instead of softmax generally
improves the performance of the fine-tuned transformer-based model. Sparsemax
and sparsehourglass do not perform very well in this application. We found that
introducing a small sparsity rate produced the best results for r-softmax. The
optimal sparsity rates for the QQP, MRPC, QNLI, RTE, and SST-2 tasks were
r = 0.1, 0.15, 0.15, 0.2, 0.2 respectively. These results suggest that eliminating
irrelevant elements is beneficial, but excluding too many can cause the model to
lose important context or hinder gradient flow during learning.
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4 Conclusions

We proposed r-softmax, a generalization of softmax that produces sparse prob-
ability distributions with a controllable sparsity rate. We applied r-softmax to
multi-label classification and self-attention tasks and showed that it outperforms
or is highly competitive with baseline models.
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