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Abstract. Tensors are a widely used representations of multidimen-
sional data in scientific and engineering applications. However, efficiently
evaluating tensor expressions is still a challenging problem, as it requires
a deep understanding of the underlying mathematical operations. While
many linear algebra libraries provide an Einsum function for tensor com-
putations, it is rarely used, because Einsum is not yet common knowl-
edge. Furthermore, tensor expressions in textbooks and scientific articles
are often given in a form that can be implemented directly by using
nested for-loops. As a result, many tensor expressions are evaluated us-
ing inefficient implementations. For making the direct evaluation of ten-
sor expressions multiple orders of magnitude faster, we present a tool
that automatically maps tensor expressions to highly tuned linear alge-
bra libraries by leveraging the power of Einsum. Our tool is designed
to simplify the process of implementing efficient tensor expressions, and
thus making it easier to work with complex multidimensional data.

Keywords: tensor expressions · einsum · domain specific languages ·
mathematics of computing.

1 Introduction

Tensors are higher-dimensional generalizations of vectors and matrices. We can
think of tensors as multidimensional arrays. Tensors are used in various ap-
plications. For example, an RGB-image can be represented by a tensor Aijk

with three dimensions, where the RGB-values of the first pixel can be accessed
through A00k. In general, computations over such tensors are mostly written
in a form that uses summation symbols and access the tensors by indices. Such
computations are typically implemented by nesting for-loops. This, however, can
be quite inefficient, when compared to highly-tuned libraries for working on ten-
sors, like NumPy [8], PyTorch [13] and TensorFlow [1]. These libraries use a
function called Einsum. Although Einsum is quite powerful, it requires some
knowledge to use it efficiently and correctly. Therefore, we present a transforma-
tion of tensor expressions into Einsum expressions, that can be mapped directly
to multiple Einsum libraries or backends. For the transformation, tensor expres-
sions are specified in a simple formal language that is close to the language used
in textbooks and scientific articles.

In this article, all steps are described on the example of the Tucker decom-
position [17]. This decomposition is used to decompose a high-dimensional ten-
sor into a tensor with fewer entries than the original tensor, and a set of ma-
trices. Although this decomposition works with tensors of arbitrary order, we
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will focus, for simplicity, on tensors of order three, that is decomposing a ten-
sor A ∈ RI×J×K into a tensor Z ∈ RL×M×N and matrices B ∈ RL×I , C ∈
RM×J , D ∈ RN×K , where L ≪ I,M ≪ J , and N ≪ L. To obtain such a
decomposition, we have to solve the following optimization problem:

min
Z,B,C,D

√√√√√ I∑
i=1

J∑
j=1

K∑
k=1

(
Aijk −

L∑
l=1

M∑
m=1

N∑
n=1

ZlmnBliCmjDnk

)2

.

Evaluating the objective function of this problem entails six nested loops. By
using highly-tuned backends, the objective function can be computed orders of
magnitude more efficiently than the naive implementation.

Related Work. There are already approaches that map tensor expressions into
various backends [7,14,15]. But most of them are either only usable for linear
algebra expressions [2,11], need additional information about the expressions’
variables and parameters [2,16], do not map into backends, but optimize the
loops directly [3,4,12], or do not allow unary operations [9,18]. We present a
solution that can handle tensors of arbitrary orders, support unary and binary
operations, and does not need any additional information about variables and
parameters, like symmetries.

2 Understanding Einsum Notation

Einsum notation is a generalization of the Einstein summation convention, in-
troduced by Einstein in 1916 [6]. The Einstein summation convention sim-
ply means summing over shared indices. For example, a matrix-vector product
Ab =

∑
j Aijbj is written as Aijbj , when using the Einstein summation conven-

tion. Implicitly, the summation is performed over the shared index, in this case
j. In contrast to the Einstein summation convention, which sums over shared
indices, the output of the operation is explicitly defined in Einsum notation.
Since the tensor names are not relevant for the description of the operation,
only the indices of the expression are retained. Therefore, in Einsum notation
our matrix-vector product can be written simply as ij,j->i. It is important
to note, that this makes Einsum notation more general than the Einstein sum-
mation convention. In Einsum notation we could also write ij,j->ij, which
describes the operation of elementwise multiplying the vector represented by the
second operand with each column of the first operand, resulting in a matrix. As
we can use as many indices as we like, describing tensors of arbitrary dimension is
possible, which makes Einsum notation a powerful tool. A slightly more complex
example, is the partial expression

∑
l ZnmlDlk from the Tucker decomposition.

This expression calculates the tensor E ∈ RN×M×K as

Enmk =

L∑
l=1

ZnmlDlk.
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In Einsum notation, this operation is written as nml,lk->nmk, where nml are
the indices of Z (left operand), lk are the indices of D (right operand), and nmk
are the indices of E (result).

Users are not accustomed to directly write Einsum expressions, but are used
to a language typically used in textbooks. In textbooks, tensor expressions are
almost exclusively written in a form that makes sums and multiplications explicit
by using indices. Some examples of explicit expressions and their translation into
Einsum are shown in Table 1.

Table 1. Example tensor expressions in their Einsum Notation and our Tensor Ex-
pression language.

Operation Explicit expression Einsum notation

Scalar times vector s*a[j] ,j->j
Vector times vector a[i]*b[i] i,i->i
Vector outer product a[i]*b[j] i,j->ij
Matrix times vector A[i,j]*b[j] ij,j->i
Inner product sum[i](a[i]*b[i]) i,i->
Batch matrix multiplication sum[k](A[b,i,k]*B[b,k,j]) bik,bkj->bij
Marginalization (sum over axes) sum[i,l,n,o](A[i,l,m,n,o]) ilmno->m
Mahalanobis distance sum[i,j](a[i]*A[i,j]*b[j]) i,ij,j->

Although Einsum is quite flexible, it lacks frequently used element-wise func-
tions like exp and log, and binary operations such as +,− between Einsum ex-
pressions. For instance, our example of the Tucker decomposition, also uses the
square-root function and the difference of two terms. To overcome these issues,
we need a language to describe tensor expressions with the additional operations.

3 A Language for Tensor Expressions

In this section, we describe a simple formal language for explicit tensor expres-
sions, which is close to standard textbook form. We extend a language for linear
algebra expressions [11] to tensors, by allowing multiple indices for variables and
sums. Thereby, the language becomes powerful enough to cover arbitrary tensor
expressions and most classical machine learning problems, even problems not
contained in standard libraries like scikit-learn [5]. An EBNF grammar for the
language is shown in Figure 1.

The formal language supports the combination of arbitrary tensors with
unary and binary operators, as well as numbers. A special operation is the
summation operation sum, which includes a list of non-optional indices. The
list of indices describes the dimensions over which of the underlying tensors are
contracted.

In the formal language, the Tucker decomposition reads as

sqrt(sum[i, j, k]((A[i, j, k]− sum[n,m, l](Z[n,m, l] ∗B[n, i] ∗ C[m, j] ∗D[k, l]))ˆ2))

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_10

https://dx.doi.org/10.1007/978-3-031-36021-3_10
https://dx.doi.org/10.1007/978-3-031-36021-3_10


4 Julien Klaus et al.

⟨expr⟩ ::= ⟨term⟩ {(’+’ | ’-’) ⟨term⟩}
⟨term⟩ ::= [’-’] ⟨factor⟩ {(’*’ | ’/’) [’-’] ⟨factor⟩}
⟨factor⟩ ::= ⟨atom⟩ [ ’ˆ’ ⟨factor⟩ ]
⟨atom⟩ ::= number | ⟨function⟩ ’(’ ⟨expr⟩ ’)’ | ⟨variable⟩
⟨function⟩ ::= ’sin’ | ’cos’ | ’exp’ | ’log’ | ’sign’ | ’sqrt’ | ’abs’ | ’sum’ ’[’ ⟨indices⟩ ’]’
⟨variable⟩ ::= alpha+ [ ’[’ ⟨indices⟩ ’]’ ]
⟨indices⟩ ::= ⟨index ⟩ {’,’ ⟨index ⟩}
⟨index ⟩ ::= alpha

Fig. 1. EBNF grammar for tensor expressions. In this grammar, number is a place-
holder for an arbitrary floating point number and alpha for Latin characters.

A point worth emphasizing is that indices always select scalar entries of
tensors, which makes every operation an operation between scalars. Expressions
that conform to the grammar from Figure 1 are parsed into an expression tree.
An expression tree G = (V,E) is a directed tree, where every node v ∈ V has a
specific label, which can be either an operation, a tensor name, a number, or a
list of indices.

Furthermore, we assign to each node its dimension, that is, the order of the
tensor, after evaluating the node, described by its indices. For example, a node of
dimension i, j, k has the order three. The dimension dim is computed recursively
for each node n ∈ V as

dim(n) =


indices of n , if n is a variable
∅ , if n is a number⋃

children of n dim(c) , if n is an operation node⋃
children of n dim(c) \ {indices of the sum} , if n is a sum node

For leaf nodes, the dimension is the index list, for all other nodes, except for the
special sum nodes, the dimension is the union of the dimension of their children.

Since the sum operation removes indices, the dimension of a sum node is the
union of their childrens’ dimension, minus the indices of the sum node. For ex-
ample, the inner summation of the Tucker decomposition sum[n,m,l](Z[n,m,l]
* B[n,i] * C[m,j] * D[k,l]), has the dimension

{i, j, k, l,m, n}︸ ︷︷ ︸
union of its children dimensions

\
summation indices︷ ︸︸ ︷

{l,m, n} = {i, j, k}.

Additionally, for each index, we determine its size (number of entries in this
dimension), through the tensors, that refer to the index. For example, the tensor
Zlmn, has the indices lmn, and so we know that l has the size of Z’s first
dimension, and analogously for m and n.

An expression tree for the Tucker decomposition is shown in Figure 2. Our
task, and the contribution of this paper, becomes to compile expressions that
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conform to the grammar in Figure 1 into Einsum expressions that can be eval-
uated efficiently.

sqrt

sum

i,j,k ˆ

2 -

A

i,j,k

sum

l,m,n ∗

Z B C D

l,m,n l,i m,j n,k

i,j,k,l,m,n

i,j,k

i,j,k

i,j,k

∅

∅

Fig. 2. Expression tree for the Tucker decomposition problem with different node
types. Bold nodes indicate sum operations, dashed rectangle nodes denote indices, and
all other nodes are either common operations or tensors. For operations and sum nodes,
we show the indices (dimension) after performing the operation in dotted rectangles
on the right side.

4 Transformation and Compilation into Einsum

The information that we need for the compilation is available in the expression
tree. The compilation is performed in a recursive manner, mapping the label
of a node to the corresponding library function and then continuing with the
children of the node. There are, however, two special cases in the compilation
process that cannot be dealt with by simple mappings.

First, at sum nodes, we check if the child node is a multiplication node. If this
is the case, we combine the summation and multiplication in one operation. For
example, during the compilation of our Tucker decomposition when we arrive at
the node sum[l,m,n](Z[l,m,n]*B[l,i]*C[m,j]*D[n,k]), we can combine the
summation and multiplication into

einsum(’lmn ,li ,mj ,nk ->ijk ’, Z, B, C, D),

which is much shorter and easier to read than compiling the sum and multipli-
cation individually
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einsum(’ijklmn ->ijk ’,
einsum(’lmn ,li ,mj ,nk ->ijklmn ’, Z, B, C, D)).

Second, at binary operation nodes, the dimensions of the two operand ten-
sors have to be equal, because as already mentioned, each binary operation is a
pointwise operation, that is only defined on equally shaped tensors. For exam-
ple, Aijk − Eijklmn is not a valid expression, since A is missing the dimensions
lmn. During compilation, we can verify the matching dimensions condition by
checking the dimensions of the child nodes. If the dimensions are different, we
extend the missing dimensions for each child. In our example, we add the dimen-
sions lmn to node A. Fortunately, this is possible in Einsum notation by using
an additional all-ones tensor. The shape of the all-ones tensor is determined,
because each of its indices is associated with the shape of some tensor. Thus, we
can extend the dimensions of A as follows

einsum(’ijk ,lmn ->ijklmn ’, A, ones(L, M, N)),

where ones(L,M,N) is an all-ones tensor. The transformation does not change
the value of the expression [10]. Compiling the expression of our Tucker decom-
position example as shown in Figure 3 gives the following Python code (here
with the NumPy backend):

np.sqrt(np.einsum(’ijk ->’,(A -
np.einsum(’lmn ,li ,mj ,nk->ijk ’, Z, B, C, D))**2)).

We support the compilation into multiple backends, namely, NumPy, Py-
Torch and TensorFlow, but more backends can be easily added. For comparing
the different backends, we have evaluated the objective function of our Tucker de-
composition example on random tensors A ∈ Rs,s,s, Z ∈ R10,10,10, B ∈ R10,s, C ∈
R10,s, D ∈ R10,s, with s ∈ {25, 50, 100, 150, 200}.

Table 2. Relative speed-up of evaluating the objective function of the Tucker decom-
position. The speed-up is computed as Smethod

s = Tbaseline
s /Tmethod

s , where method can
be NumPy, TensorFlow or PyTorch and T is the runtime of the method.

Backend s = 25 s = 50 s = 100 s = 150 s = 200

NumPy 221 248 283 268 278
TensorFlow 31 255 2 083 6 601 16 005
PyTorch 5 777 70 941 191 796 370 973 371 042

For the measurements, we use a machine with an Intel i9-10980XE 18-core
processor (36 hyperthreads) running Ubuntu 20.04.5 LTS with 128 GB of RAM.
Each core has a base frequency of 3.0 GHz and a max turbo frequency of 4.6
GHz, and supports the AVX-512 vector instruction set. Table 2 shows the relative
speed-up of our compiled code using NumPy, TensorFlow and PyTorch, with
respect to a baseline implementation with simple nested for-loops. This shows
that, our approach can speed up the evaluation of tensor expressions up to four
orders of magnitude.
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sqrt

sum

ˆ

-

i,j,k

2

A

i,j,k

sum

l,m,n ∗

Z B C D

l,m,n l,i m,j n,k

i,j,k,l,m,n

i,j,k

i,j,k

i,j,k

∅

∅

np.sqrt(np.einsum(’ijk->’,(A-np.einsum(’lmn,li,mj,nk->ijk’,Z,B,C,D))**2))

Fig. 3. Expression tree with compiled NumPy code for the Tucker decomposition
problem. For each operation node, a dotted gray arrow points to the corresponding
part in the code. Note, that the sum and child multiplication nodes are merged into
one Einsum operation. The Einsum notation for such operations can be read-off from
the tree.

5 Conclusion

We have presented a recursive algorithm for compiling tensor expressions into
multiple Einsum backends. The compiled expressions evaluate orders of magni-
tude faster than their straightforward Python implementations using for-loops.
To make our approach and its implementation easily accessible, the implemen-
tation and the code for the experiments are available at http://github.com/
julien-klaus/tec.
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