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Abstract. The amount of data generated daily grows tremendously in
virtually all domains of science and industry, and its efficient storage,
processing and analysis pose significant practical challenges nowadays.
To automate the process of extracting useful insights from raw data,
numerous supervised machine learning algorithms have been researched
so far. They benefit from annotated training sets which are fed to the
training routine which elaborates a model that is further deployed for a
specific task. The process of capturing real-world data may lead to acqur-
ing noisy observations, ultimately affecting the models trained from such
data. The impact of the label noise is, however, under-researched, and
the robustness of classic learners against such noise remains unclear. We
tackle this research gap and not only thoroughly investigate the classifi-
cation capabilities of an array of widely-adopted machine learning models
over a variety of contamination scenarios, but also suggest new metrics
that could be utilized to quantify such models’ robustness. Our extensive
computational experiments shed more light on the impact of training set
contamination on the operational behavior of supervised learners.

Keywords: Supervised machine learning · binary classification · label
noise · robustness

1 Introduction

The amount of acquired data grows tremendously in virtually all domains, span-
ning across medical imaging [22, 15], text analysis and categorization [7], speech
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recognition [20], predictive maintenance [8], and many others. Gathering such
enormous amounts of data of different modalities, however, poses new practical
challenges concerned with its automated analysis and exploitation using data-
driven techniques. In supervised machine learning (ML), we benefit from the
acquired training data coupled with ground-truth labels to build models that
are deployed to process incoming observations in a plethora of classification
and regression tasks. Although deep learning—which benefits from the auto-
mated representation learning paradigm—established the state of the art in a
multitude of fields, classic ML techniques are still widely used and researched
due to their simplicity, resource frugality (which is especially important while
deploying them on e.g., edge devices [6]), enhanced interpretability [13], and
reduced requirements on the amount of training data necessary to elaborate
well-generalizing models, effectively dealing with the unseen data.

Independently of the type of an ML model, we need to face the problem
of noise which may easily affect the training data (also, training sets may be
weakly-labeled [12]). Such noise may have different sources—it can be a result of
a human or a sensor error, incorrectly designed data acquisition process, wrongly
interpreted data or even hostile actions [10]. In general, we distinguish two types
of the data noise, being random or systematic, and influencing supervised learn-
ers: the (i) attribute (feature) noise, and (ii) the label noise [2]. In the former
case, the features, corresponding to the observed objects in the training set are
contaminated, whereas in the latter scenario, the class labels are mistakenly as-
signed to training examples, due to e.g., an incorrect data annotation process or
human errors/bias. Here, the label noise commonly leads to more severe conse-
quences, as it can directly mislead the learning process [21] resulting in random
predictions [9], and it cannot be compensated by other (not noisy) features if
others are contaminated with noise. Also, noisy training data commonly leads
to overly complex models.

Understanding its impact on the capabilities of ML techniques, thus robusti-
fying them against such unexpected data-level contaminations is of paramount
practical importance. The vast majority of works concerning this issue focus
on developing more comprehensive and computationally-intensive processing
pipelines [14], coping with noisy ML datasets, through the identification or reduc-
tion of noise, and pruning such contaminated training samples [1, 2]. On the other
hand, there are significantly less studies investigating the influence of noise on
the “vanilla” versions of ML algorithms. Capturing the empirical behavior of su-
pervised learners and understanding their intrinsic robustness against data-level
noise can, however, influence the selection of an ML model for implementation,
given the characteristics of the data acquisition and operation environment [17].

In this work, we address the above-discussed research gap, and thoroughly
investigate an array of widely-adopted supervised ML classifiers trained from
the datasets contaminated with different levels of label noise, in a variety of
contamination scenarios (Section 2). Our extensive computational experiments
(Section 3), performed over artificially-generated and benchmark datasets shed
more light on the impact of the training set imbalance, cardinality and char-
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acteristics on the overall performance of ML models trained from noisy labels.
We belive that the results reported in our study can constitute an interesting
point of departure for further research on robustifying classic ML learning mod-
els elaborated from large, imbalanced and (potentially) noisy training sets, hence
on enhancing their practical utility in real-life data acquisition environments.

2 Materials and Methods

In this study, we aim at quantifying the impact of the class-label noise which
contaminates the training set T (the contaminated training set is denoted as
T ′) on the generalization capabilities of supervised learners, calculated over the
unseen test set Ψ that is not affected by the label noise (Fig. 1). As we target
the binary classification problems, we flip the class labels of randomly selected
training examples to the opposite one (i.e., the positive-class label is swapped
to the negative-class label, or vice versa) in our simulation process. To capture
various real-world scenarios, we investigate the following simulations:

– Uniform label noise, in which the same percentage η of class labels are
flipped in both classes (positive and negative).

– Positive-class label noise, in which a given percentage η of training vec-
tors originally belonging to the positive class are swapped and become the
negative-class examples. For simplicity, we assume that the positive class
corresponds to the majority class.

– Negative-class label noise, in which a given percentage η of training
vectors originally belonging to the negative class are swapped and become
the positive-class examples. For simplicity, we assume that the negative class
corresponds to the minority class.

– Random label noise, in which the class labels of a given percentage η of all
training vectors are swapped. Here, the contaminated vectors are randomly
drawn, without considering their original class labels.

The following levels of the label noise contamination are considered in this study:
η ∈ {0%, 5%, 10%, 20%, 30%, 40%, 50%, 70%, 90%} (note that we target uncon-
taminated T ’s, as well as extremely noisy training sets). To understand the
robustness of the most popular learners, we deploy the following models in our
pipeline (which is independent of the ML model): k-Nearest Neighbors (k = 5),
linear support vector machines (C = 0.025), Gaussian Process classifiers with the
radial basis function kernel, Decision Trees (with the Gini impurity measuring
the quality of the split, max. depth of the tree: 7), Random Forests (max. depth
of the tree: 7, max. number of trees: 50), Multi-Layer Perceptron (MLP) classi-
fier (with rectified linear unit activations), AdaBoost classifier (max. number of
estimators: 100), and the Quadratic Discriminant Analysis-based models [18].

To investigate the classification capabilities of the learners, we quantify their
performance over the unseen (uncontaminated) Ψ ’s using classic metrics such
as accuracy (Acc), sensitivity (Sen), specificity (Spe), F1-score [19] and the
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Fig. 1. A high-level flowchart of our computational experiments, in which a dataset is
split into training and test subsets (T and Ψ , respectively, containing e.g., 80% and 20%
of all training examples). The ML models are trained using a contaminated training
set (T ′), and their performance is quantified over the uncontaminated Ψ .

Matthews correlation coefficient (MCC), with MCC commonly used for im-
balanced classification, as the most robust quality metric [5]. The MCC values
range from −1 (very strong negative relationship between ground-truth labels
and prediction) to 1 (very strong positive relationship between them), whereas
all other metrics range from zero to one, with one corresponding to the perfect
classification performance. Additionally, we propose two auxiliary metrics:

– D1—it quantifies the stability of the ML model trained from contaminated
T ’s (η = 0%− 40%). Here, the “robustness” is calculated as the mean stan-
dard deviation of the obtained MCC scores (the smaller, the better).

– D2—it is calculated as the mean MCC score obtained by the ML model
trained from contaminated T ’s with η = 0%− 40% (the larger, the better).

The models were trained and validated on (i) synthesized and (ii) almost 40
benchmark datasets, the latter acquired from the KEEL and sklearn repositories,
and manifesting different imbalance ratio across positive- and negative-class ex-
amples (Table 1). The synthetic datasets were generated using the make_moons,
make_circles, make_blobs and make_classification sklearn functions with
various parameterizations, concerning the number of training examples (rang-
ing from 100 up to 5000), and the number of features (up to 60 features, with
and without redundant ones). The majority of the KEEL/sklearn benchmark
datasets include below 1000 training examples (with a few having above 5000
of them), with the mean and median of 1976 and 611 training vectors, re-
spectively. The majority of benchmarks have up to 50 features (attributes).
For full details of the investigated datasets, see the supplement available at
https://gitlab.com/agatawijata/impact-of-noisy-labels.

Table 1. The aggregated imbalance ratio of all benchmarks (KEEL and sklearn).

Minimum Mean Median Maximum
1.00 1.37 1.22 1.88
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3 Experimental Results

The experiments were split into those focused on investigating all models over
the (i) synthetic and (ii) benchmark (KEEL/sklearn) datasets (all experiments,
for all ML models and datasets were executed in 10 independent runs, and
the results were aggregated). The results obtained over the simulated datasets
were consisted across all ML models, and showed that their robustness increases
with the larger number of training vectors, as the uncontaminated examples
were able to effectively compensate those affected by the label noise (see Fig. 2;
for brevity, we present the MCC scores—all other metrics are available in the
supplementary material). Similar, albeit not as obvious observations may be
drawn for the models trained over T ′’s with varying numbers of features. Here,
the robustness of the models tends to increase for larger dimensionalities of the
dataset, but—especially for smaller T ′’s, the generalization capabilities can drop,
due to the inherent curse of dimensionality issues (as the effective number of
“correct” training examples is further decreased once they are contaminated with
the class-label noise). We can hypothesize, however, that increasing the number
of training examples could make the models more robust against feature-level
noise here—this requires further investigation. Overall, the experiments over
the synthetic data showed that Gaussian Process, AdaBoost, MLP and SVM
classifiers offer the best generalization while trained over contaminated T ′’s.

The results obtained over all benchmark datasets are rendered in Fig. 3, pre-
senting the D1 and D2 metrics quantifying the “robustness” of the models against
different noise contamination scenarios (D1 should be minimized, whereas D2—
maximized; note the reversed D1 axis). We can observe that the MLP classifier
elaborates the best aggregated prediction quality for the uniformly and randomly
(across classes) applied class-label noise (the largest D2), with the linear support
vector machines offering the best stability of predictions (reflected in the lowest
D1 values). It is of note that the label noise applied to separate classes (either
the positive or negative, corresponding to the majority and minority ones) led
to consistent behavior of the investigated machine learning models. However, for
the datasets with a larger imbalance ratio (commonly larger than 1.8), contam-
inating the minority classes triggered a visible drop in the MCC scores. This
can be attributed to the fact that contaminating the minority class with noise
makes the learning process much more challenging, as the intrinsic properties of
the minority-class examples may be lost or severly modified through the noise
injection. On the other hand, contaminating the majority class with noise may
indeed act as an additional regularizer—there are techniques which exploit the
noise injection to synthetically generate training examples, e.g., in the context
of augmenting training sets for deep learning models targeting the hyperspectral
image classification and segmentation [16]. In their recent work, Beinecke and
Heider showed that deploying Gaussian Noise Up-Sampling, which effectively
selects the minority-class examples and adds noise to the data points in order
to smooth the class boundary can indeed reduce overfitting in some clinical de-
cision making tasks as well [3]. Also, it worked on par with well-established the
Synthetic Minority Over-sampling [4] and Adaptive Synthetic Sampling [11] ap-
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(a) Number of features (|T ′|)

(b) Training set size

Fig. 2. The MCC scores obtained by the Gaussian Process classifier once the training
set was contaminated by (a) the uniform label noise (for different numbers of features
simulated using the make_classification dataset, and by (b) the positive-class label
noise for different numbers of training set examples generated using the make_circles
function. The number of features and training set examples is given in the legend.

proaches, and even outperformed those algorithms on selected datasets, showing
the potential of utilizing noise simulations in training set augmentation routines.

4 Conclusions

Training supervised learners from noisy data has become an important practical
issue, given the amount of data acquired on a daily basis. Such data may be con-
taminated with feature and class label noise due to various reasons, ranging from
the operator bias, incorrect acquisition process or malfunctioning of the sensory
system. Such noisy data, however, directly affects supervised learners trained
from such data. Understanding the robustness of ML models against class label
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(a) Uniform label noise (b) Positive-class label noise

(c) Negative-class label noise (d) Random label noise

Fig. 3. The scatter plots of our D1 and D2 metrics quantifying the robustness of all
investigated models over all benchmark datasets and noise contamination scenarios
(D1 should be minimized, whereas D2—maximized).

noise remains under-researched—we tackled this research gap, and thoroughly
investigated an array of established models, following a variety of noise contam-
ination scenarios. On top of that, we proposed new metrics that can be utilized
to quantify the robustness of ML models against various levels of noise. Our ex-
tensive experiments, performed over synthetic and benchmark datasets revealed
that there are indeed ML models which are more robust against label noise (the
robustness directly depends on the size of the training set). We believe that the
results reported in this work can constitute an exciting departure point for fur-
ther research focused on developing the noise-robust models, and on objectively
quantifying their robustness against real-life data acquisition conditions.
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