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Abstract. To improve system resource utilization, multiple operators
are co-located in the distributed stream processing systems. In the colo-
cation scenarios, the node runtime environment and co-located operators
affect each other. The existing methods mainly study the impact of the
runtime environment on operator performance. However, there is still
a lack of in-depth research on the interference of operator colocation
to the runtime environment. It will lead to inaccurate prediction of the
performance of the co-located operators, and further affect the effect
of operator placement. To solve these problems, we propose an online
runtime environment prediction method based on the operator portraits
for complex colocation interference. The experimental results show that
compared with the existing works, our method can not only accurately
predict the runtime environment online, but also has strong scalability
and continuous learning ability. It is worth noting that our method ex-
hibits excellent online prediction performance for runtime environments
in large-scale colocation scenarios.

Keywords: Complex Colocation · Interference · Runtime Environment
Prediction · Fused Deep Convolutional Neural Networks · Distributed
Stream Processing.

1 Introduction

The distributed stream processing systems (DSPSs) offer an effective means to
analyze and mine the real-time value of data. They support many data stream
processing applications (DSPAs), which are composed of various operators that
implement specific computing logic. To improve system resource utilization, mul-
tiple operators are deployed and run in colocation. In the colocation scenario,
the runtime environment and co-located operators affect each other [1–4]. Specif-
ically, the competition for shared resources by co-located operators will interfere
with the runtime environment of nodes. In turn, the runtime environment will
lead to operator performance fluctuations.
? Corresponding author

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_7

https://dx.doi.org/10.1007/978-3-031-36021-3_7
https://dx.doi.org/10.1007/978-3-031-36021-3_7


2 F. Liu et al.

Now many studies focus on the impact of the runtime environment on oper-
ator performance [5, 6]. Zhao et al. [7] proposes an incremental learning method
to predict the performance of serverless functions under a partial interference
environment. Patel et al. [8] studies whether the runtime environment can meet
the performance requirements of multiple jobs when the latency-critical and
background jobs are co-located. Few studies analyze the interference of operator
colocation to the runtime environment [9, 10]. Xu et al. [11] weights each job’s in-
terference to the runtime environment and designs a linear summation model to
predict the runtime environment. Li et al. [12] computes the mean and variance
of the interference of all co-located games to represent the runtime environment.
However, the above methods are too simple and rough, and lack in-depth re-
search on the interference of operator colocation to the runtime environment. It
will lead to inaccurate prediction of the performance of the co-located operators,
and further affect the effect of operator placement. The overall interference of co-
located operators is complex and time-varying. So it is impossible to accurately
predict the runtime environment with simple statistical methods. Besides, these
methods are offline methods based on various benchmarks, and cannot continu-
ously learn online.

In this paper, we propose an online runtime environment prediction method
based on the operator portraits for complex colocation interference. Our method
can accurately quantify and predict the key runtime environment metrics. The
contributions of our work are as follows:

– To the best of our knowledge, our work is the first to deeply study the
interference of operator colocation to the runtime environment. We use the
operator portraits and fused deep convolution neural networks to model the
colocation interference. On this basis, we predict the runtime environment
in complex colocation scenario online.

– We design a runtime environment prediction model that fuses the deep con-
volutional neural networks and spatial pyramid pooling strategy [13]. Com-
pared with the traditional padding models, our model can theoretically adapt
to the learning of any scale colocation. Therefore, our model has strong scal-
ability in the context of the rapid development of hardware technology.

– The experimental results show that our method can accurately predict the
runtime environment in complex colocation scenarios online. In addition,
our method has strong scalability and online learning ability to continuously
improve prediction performance.

We organize the rest of this paper as follows. Section 2 elaborates the mo-
tivation of our work. Section 3 presents the design and implementation of our
method. Section 4 describes the experimental results. Section 5 concludes our
work.
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2 Motivation

2.1 Interference Characteristics of Operator Colocation to Runtime
Environment

Non-additivity of Colocation Interference. In the DSPSs, due to different
resource contention of operators, multiple operator instances, and time-varying
input load, the interference of co-located operators to the runtime environment
is more complicated. The overall interference of co-located operators is not the
sum of each operator’s interference. We illustrate with the numerical calculation
operator calculator and the sorting operator sorter as an example to illustrate.
As shown in Fig. 1, the average CPU utilization of operator calculator is 15.19%,
and that of operator sorter is 17.57% from Epoch t to t+850. The actual mea-
sured average CPU utilization is 35.63% when they are co-located. It is greater
than the sum of each CPU utilization (i.e. 32.76%). This is because when two
operators are co-located, the CPU resources are time-division multiplexed. In
addition to the overhead of operator solo-run, the overhead of CPU resource
contention, inter-process switching, and site reservation is also increased. More-
over, for runtime environment metrics such as the cache hit rate, CPU interrupt
times, and context switch times, the colocation interference cannot be superim-
posed.

Instability of Interference. The interference of operators to the runtime envi-
ronment is time-varying and unstable. We analyze the interference when eleven
different types of operators solo or co-located run. Specifically, we describe the
runtime environment characteristics with nine key metrics, including the load,
CPU utilization, cache hit rate, and context switching times, etc. We collect
the runtime environment metrics at regular intervals to form multivariate time
series. Then, we use the Unit Root Test method [14] to test the stationarity of
the time series. We find that for some combinations of co-located operators and
some runtime environment metrics, the ADF test statistic value is greater than
the Test critical value under 10% level, and the P -value is also large, as shown
in Fig. 2. Experimental results show that the interference of operators to the
runtime environment is time-varying and unstable. Therefore, it is unreasonable
and inaccurate to describe the runtime environment with a fixed value or mean
and variance.

2.2 Importance of Interference of Operator Colocation to Runtime
Environment.

SLA Guarantee. In the DSPSs, the runtime environment analysis is the
premise of operator performance prediction and operator placement. Besides,
to process the input load in real time, it is necessary to predict the runtime
environment before the operators are actually co-located. In addition, when the
colocation changes, it is necessary to predict the runtime environment instan-
taneously. Therefore, if we can predict the runtime environment online, we can
better meet the end-to-end latency requirements.
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System Stability. If we can accurately predict the runtime environment online,
we can effectively support operator placement decisions, avoid or reduce operator
migration and adjust jitter, and thus improve system stability.

3 Design and Implementation

3.1 Overview

Fig. 3 describes the design architecture of our method, which contains three core
modules: the operator interference profiler(OIProfiler), the colocation interfer-
ence learner(CILearner), and the runtime environment predictor(REPredictor).
We adopt the OIProfiler to build the portraits of single operators offline, and
the CILearner to continuously learn the portraits of co-located operators online.
Based on the portraits of single and co-located operators, we use the REPredictor
to predict the runtime environment.

The work process consists of two main stages: the offline solo-run and the
online colocation-run. In the offline solo-run stage, a single operator runs on
an empty node, and the Metric Collector collects the key runtime environment
metrics over some time at regular intervals. Then the OIProfiler analyzes the
metrics and builds the portrait of the operator.

In the online colocation-run stage, multiple operators run on an empty node
simultaneously, and the Metric Collector collects the key runtime environment
metrics at regular intervals continuously. Then the CILearner builds or updates
the portraits of the co-located operators. At last, the REPredictor refers to the
portraits of single operators and co-located operators to predict the runtime en-
vironment interfered by arbitrary co-located operators. Besides, as the collected
samples increase, our CILearner dynamically updates the built portraits and
creates the portraits of new co-located operators. Our REPredictor also updates
adaptively to realize online prediction.
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3.2 OIProfiler: Operator Interference Profiler

Key Runtime Environment Metrics. By summarizing previous work [7, 15,
16], we can collect the runtime environment metrics through the system perfor-
mance analysis tools and benchmarks. The system performance analysis tools
directly monitor the various runtime environment metrics of nodes. The bench-
mark method customizes benchmarks sensitive to different resources and in-
directly quantifies the runtime environment by the performance degradation of
benchmarks. The benchmarks occupy more node resources by comparison, which
themselves affect the runtime environment. And the benchmark method cannot
collect the runtime environment metrics online. Therefore, we adopt the system
performance analysis tools to collect the runtime environment metrics.

In this paper, we use the top, perf [17], and vmstat tools to monitor 42 run-
time environment metrics, including CPU, memory, bandwidth, L1 instruction
and data cache, LLC cache, context switch, and branch prediction, etc. How-
ever, some metrics have no or low correlation with the operator performance.
To avoid overfitting and improve prediction efficiency, we use the Pearson
Correlation Coefficient [18] to measure the correlations between the runtime
environment metrics and the performance of eleven operators with different re-
source contention characteristics. Finally, we select nine key metrics, including
load_average_1min, cpu_system, cpu_user, l1_dcache_load_misses_rate,
llc_load_misses_rate, llc_store_misses_rate, branch_misses_rate, ipc, a-
nd system_cs. The correlation between the key runtime environment metrics
and the performance of eleven operators is shown in Fig. 4.
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Fig. 4. The correlation between the Key Runtime Environment Metrics and the Per-
formance of Eleven Operators.

Input and Output. We collect the time series of key runtime environment
metrics as input when a single operator runs on an empty node. In detail, we
use t to denote the start time and seio(t) to denote the environment metric i
when the operator o is running at time t. The SEo(t) = {se1o(t), se2o(t), ..., seno (t)}
represents the key runtime environment metrics at time t. So we use the dataset
So = {SEo(t), SEo(t+ 1), SEo(t+ 2), ..., SEo(t+ w)} as the input, in which w
represents the collection duration.

We build the operator portrait as output, denoted as SPo = {sp1o, sp2o, ..., spno}.
The spio represents the interference of the operator o to the runtime environment
metric i, in which i ∈ {1, 2, ..n}.

Profiling Module. As explained in Section 2, the interference of a single op-
erator to the runtime environment is time-varying and unstable. We utilize the
first-order difference method [19] to process the time series of key runtime
environment metrics. We find that the time series of all metrics after the differ-
ence are stable. As shown in Fig. 5, we take the metrics of load_average_1min
and cpu_user as an example to illustrate. The ADF test statistic value of each
operator is less than the Test critical value under 1% level. The P -value is
much less than the significance level of 0.01 and very close to zero. These show
that the original hypothesis that the time series after differencing is not station-
ary can be strictly rejected. Therefore, we use the mean values of the time series
after differencing to image the single operators.

3.3 CILearner: Colocation Interference Learner

Input and Output. We collect the time series of key runtime environment met-
rics as input when multiple operators co-located run on an empty node. In detail,
we use O to denote the co-located operator set and ceiO(t) to denote the envi-
ronment metric i when the co-located operator set O is running at time t. The
CEO(t) = {ce1O(t), ce2O(t), ..., cenO(t)} represents the key runtime environment
metrics at time t. So we use the dataset CO = {CEO(t), CEO(t+ 1), CEO(t+ 2),
..., CEO(t+ w)} as the input, in which w represents the collection duration.
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Fig. 5. The Stationarity Analysis of Time Series of load_average_1min and cpu_user
Metrics after Difference.

We build the protrait of the co-located operators as output, denoted as
CPO = {cp1O, cp2O, ..., cpnO}. The cpiO represents the interference of the co-located
operator set O to the runtime environment metric i, in which i ∈ {1, 2, ..n}.

Learning Module.

Observation. Co-located operators started in different orders interfere equally
with the runtime environment.

We start 2, 4, 8, 16, 24 and 32 operators in different orders respectively. The
startup interval between adjacent operators is randomly between one second and
ten minutes. As the co-located operators run, we get the time series of key run-
time environment metrics. We adopt the Pearson Correlation Coefficient [18]
to measure the shape similarity between pairwise time series, and the Dynamic
T ime Warping (DTW ) [20] to measure the distance similarity.

We take the colocation of four and twenty-four operators as an example
to illustrate. We compare the correlation and distance between pairwise time
series. As shown in Fig. 6, the minimum correlation of any metrics are is greater
than 0.9 and the distances are less than 0.1. Therefore, we get that the runtime
environment is independent of the operator startup order. Furthermore, we find
that although the time series of key runtime environment metrics are unstable,
those after the difference are stable. Therefore, we use the mean values of the
time series after the difference to image the co-located operators. Moreover, after
collecting new existing co-located samples, we update the mean value to realize
continuous learning.

3.4 REPredictor: Runtime Environment Predictor

Input Processing. Our REPredictor predicts the runtime environment based
on the portraits of each co-located operator. The colocation scale is variable.
But the existing prediction models require the input size to be fixed. Therefore,
the traditional method is to unify the input based on the maximum colocation
capacity of nodes. If the colocation scale is less than the maximum colocation
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(c) Shape Similarity of 24 Operators
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Fig. 6. The Shape Similarity and Distance Similarity Analysis of Pairwise Time Series
at Different Colocation Scales.

capacity, the method completes the input with zero padding. Our method orga-
nizes the input into scalable images, which can scale vertically with the change
of colocation scale.

In Fig. 7, we vividly describe the input of traditional and our methods. We
assume that the operator portrait contains three metrics, which are denoted by
the gold, blue and green squares in the figure. The maximum colocation capacity
is assumed to be ten. Therefore, the traditional method unifies the input to 30
dimensions, which is obtained by multiplying the operator protrait dimension
by the maximum colocation capacity. The part less than the maximum capacity
is padded zeros, as shown in the purple dotted box in the figure. Our method
flexibly scales the input image vertically according to the colocation scale.

Input and Output. As mentioned above, we organize the portraits of each
co-located operator into image format as input. We use oi to denote the ith co-
located operator,m to denote the colocation scale, andO(oi ∈ O, i = {1, 2, ...,m})
to denote the co-located operator set. The input of our REPredictor is expressed
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Our REPredictor predicts the final runtime environment as output. The output
is expressed as: CPO = {cp1O, cp2O, ..., cpnO}.

Predicting Module. As mentioned above, our REPredictor organizes the input
into a scalable image. Because the colocation scale is variable, the image size is
also not fixed. In this paper, we introduce the spatial pyramid pooling (SPP)
Strategy [13] to remove the fixed-size constraint. Specifically, we design fused
deep convolutional neural networks by adding an SPP layer between the last
convolutional layer and the fully connected layer, as shown in Fig. 8. Firstly,
the convolutional part runs in a sliding-window manner to learn features for co-
located operator images of arbitrary size. The convolutional part consists of two
convolutional layers, a pooling layer, and two convolutional layers. Their outputs
are feature maps. After the last convolutional layer, the SPP layer pools the
features and generates fixed-length outputs. We use the blocks of three different
sizes to extract features, and put these three grids on the feature maps to get
different spatial bins. Then we extract a feature from each Spatial bin to obtain
fixed-dimensional feature vectors. At last, we feed the feature vectors to the fully
connected layer to predict the final runtime environment.
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Our predicting networks can generate a fixed-length runtime environment
output regardless of the colocation scale. The networks use multi-level spatial
bins and pool features extracted at variable scales to improve prediction accu-
racy, scalability, and robustness.
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Fig. 8. The Structure Diagram of Our Fused Deep Convolution Neural Networks.

4 Experiments

4.1 Settings and Datasets

Settings. We experiment on a cluster of twelve servers. There are two kinds of
servers in the cluster: two GPU servers and ten CPU servers. Each GPU server
contains 36 cores Intel Xeon CPU E5-2697 v4 2.30 GHz, 256GB memory, two
NVIDIA GeForce GTX 1060ti cards, and 500GB disks. We use one GPU server
to run Job Manager, Scheduler, and MetricDatabase, and another GPU server
to train and evaluate our proposed model. Each CPU server contains 10 cores
Intel Xeon CPU Gold 5115 2.4GHz, 256GB memory, 480G SSD, and 2.4T SAS.
We use the CPU servers to run Task Manager to execute operators. Besides, we
train and evaluate our REPredictor with python 3.7 and tensorflow 1.15.0.

Datasets. We experiment on DataDock [21], our distributed stream processing
system. We collect the key runtime environment metrics when the operators solo
or co-located run, and build four databases, as shown in Table 1. The samples
in the SRE database are collected at every second interval for 20 minutes offline.
The SIP database is built by our OIProfiler with samples from the SRE database.
The samples in the CRE database are continuously collected online at every
second interval. The CIP database is built by our CILearner with samples from
the CRE database.

We design eleven operators with different resource contention characteristics.
These operators are implemented in C language to eliminate the impact of factors
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such as garbage collection on the runtime environment. In the experiment, the
operators run at full load, that is, the input rate of the operators is greater than
their processing capacity. Besides, each operator can be copied into multiple
instances, so that we can simulate the complex colocation scenarios.

Table 1. The Datasets of Our Experiments.

ID Name Description

1 SRE The key runtime environment metrics collected when the oper-
ators run offline and solo.

2 SIP The portraits of interference of single operators to the runtime
environment.

3 CRE The key runtime environment metrics when the operators run
online and co-located.

4 CIP The portraits of interference of co-located operators to the run-
time environment.

4.2 Evaluation

We evaluate the performance of runtime environment prediction from three as-
pects: accuracy, scalability, and continuous learning ability. We use the Root
Mean Square Errors(RMSE) and Mean Absolute Errors(MAE) as the eval-

uation metric. RMSE =
√

1
n

∑n
i=1(y − ŷ)2, MAE = 1

n

∑n
i=1|y − ŷ|, where y is

the actual runtime environment, and ŷ is the predicted value. Besides, we repeat
the experiments 100 times and compute the average results to eliminate outliers
and reduce random errors.

Prediction Accuracy. To evaluate the accuracy of runtime environment pre-
diction, we compare with the GAugur [12], PYTHIA [11], and Paragon [22].
For a set of co-located operators, the GAugur method computes the mean and
variance of the portraits of all co-located games to characterize the runtime en-
vironment. The PYTHIA method computes the linear sum of the portraits of all
co-located games to characterize the runtime environment. The Paragon method
calculates the sum of the portraits of all co-located games to characterize the
runtime environment. We compare the accuracy of four methods for runtime
environment prediction when 2, 4, 8, 16, 24, and 32 operators are co-located.

As is shown in Fig. 9, Our method outperforms other methods. Especially
when the colocation scale increases, the advantages of our method are more sig-
nificant. This is because we can learn more complex hidden features of colocation
interference by using the fused deep convolutional neural networks. Besides, with
the development of hardware technology, the colocation scale is increasing. Our
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method shows better prediction performance in large-scale colocation scenar-
ios. In addition, our method can directly predict the runtime environment. It is
particularly suitable for online prediction and solves the cold start problem well.
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Fig. 9. The Prediction Accuracy of Different Methods.

Prediction Scalability. The colocation scale is variable. To evaluate the scala-
bility of runtime environment prediction, we compare our method with the MLP
and CNN models. These models use the traditional padding method to unify the
input.

The main parameters of the models are as follows. For the MLP and CNN
networks, we set the maximum number of co-located operators to 32 and unify
the input to 288 dimensions. In the MLP networks, we use relu as the activation
function, adam as the optimizer, and mse as the loss, and set five hidden layers
with sizes 512, 256, 128, 64, and 32. The CNN networks consist of two convo-
lutional layers, a pooling layer, two convolutional layers, and a fully connected
layer. And we use relu as the activation function, adam as the optimizer, mse
as the loss, and set the six layers with sizes 288, 128, (2, 2), 64, 32, 9. The
composition of our model is the same with the CNN networks, only adding an
SPP layer between the last convolutional layer and the fully connected layer.
And we set the SPP layer with block sizes of (1 ∗ 1, 2 ∗ 2, 4 ∗ 4) and the other
parameters are the same as the CNN networks.

As is shown in Table 2, the prediction performance of MLPmodel is the worst,
and the CNN model is comparable to ours. Our method solves the scalability
problem while ensuring good prediction performance.

Continuous Learning Ability. To verify the continuous learning ability of our
method, we compare the prediction performance at different running times and
sample capacities. As shown in Fig. 10, as the running time or sample capacity
increases, the prediction accuracy of our methods continues to improve. This is
because our method can collect samples online and learn new operator colocation
scenarios.
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5 Conclusion

In this paper, we propose an online runtime environment prediction method for
complex colocation interference. It contains three core modules: the OIProfiler,
the CILearner, and the REPredictor. Firstly, the OIProfiler builds the portraits
of single operators in the form of offline solo-run. Then, the CILearner builds the
portraits of co-located operators in the form of online colocation-run. At last, we
use the REPredictor to model the portraits of single operators and co-located
operators to predict the runtime environment with our fused deep convolutional
neural networks. The experiments on the real-world datasets demonstrate that
our method is better than the state-of-the-art methods. Our method can not
only accurately predict the runtime environment online for complex colocation
interference, but also has strong scalability and continuous learning ability.

Table 2. The Prediction Scalability of Different Methods.

Co-located
Numbers

MLP CNN Ours

RMSE MAE RMSE MAE RMSE MAE

2 0.0793 0.0473 0.0729 0.0437 0.0723 0.0416

4 0.0836 0.0502 0.0748 0.0429 0.0737 0.0431

8 0.0891 0.0543 0.0759 0.0441 0.0742 0.0425

16 0.0928 0.0612 0.0784 0.0473 0.0795 0.0483

24 0.1003 0.0685 0.0847 0.0538 0.0843 0.0501

32 0.1172 0.0783 0.0837 0.0574 0.0825 0.0529
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Fig. 10. The Continuous Learning Ability of Our Method.
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