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Abstract. Today, android dominates the smartphone operating systems
market. As per Google, there are over 3 billion active android users. With
such a large population depending on the platform for their daily activi-
ties, a strong need exists to protect android from adversaries. Historically,
techniques like signature and behavior were used in malware detectors.
However, machine learning and deep learning models have now started
becoming a core part of next-generation android malware detectors. In
this paper, we step into malware developers/adversary shoes and ask:
Are machine learning based android detectors resilient to reinforcement
learning based adversarial attacks? Therefore, we propose the RL-MAGE
framework to investigate the adversarial robustness of android malware
detectors. The RL-MAGE framework assumes the grey-box scenario and
aims to improve the adversarial robustness of malware detectors. We
designed three reinforcement learning based evasion attacks A2C-MFEA,
TRPO-MFEA, and PPO-MEA, against malware detectors. We investi-
gated the robustness of 30 malware detection models based on 2 features
(android permission and intent) and 15 distinct classifiers from 4 differ-
ent families (machine learning classifiers, bagging based classifiers, boost-
ing based classifiers, and deep learning classifiers). The designed evasion
attacks generate adversarial applications by adding perturbations into
the malware so that they force misclassifications and can evade mal-
ware detectors. The attack agent ensures that the adversarial applica-
tions’ structural, syntactical, and behavioral integrity is preserved, and
the attack’s cost is minimized by adding minimum perturbations. The
proposed TRPO-MEA evasion attack achieved a mean evasion rate of
93.27% while reducing the mean accuracy of 30 malware detectors from
85.81% to 50.29%. We also propose the ARShield defense strategy to
improve the malware detectors’ classification performance and robust-
ness. The TRPO-MEA ARShield models achieved 4.10% higher mean
accuracy and reduced the mean evasion rate of re-attack from 93.27% to
1.05%. Finally, we conclude that the RL-MAGE framework improved the
detection performance and adversarial robustness of malware detectors.

Keywords: Android Malware - Deep Learning - Evasion Attack - Ma-
chine Learning - Greybox Environment - Reinforcement Learning.
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1 Introduction

Since the launch of the android operating system in 2008, it has rapidly gained
popularity. During Google I/O 2021, Google announced that the number of
active android users had surpassed 3 billion [4]. However, due to newer versions
of android releasing frequently, OEMs have a hard time catching up, resulting
in version fragmentation. They usually stop updating older smartphones due to
the high cost of maintenance. According to a study, over 40% of android users
no longer receive security updates, making them vulnerable to malware attacks
[1]. This leads users to lean towards anti-malware software/malware detectors
to detect malware or prevent malware attacks.

Android occupies over 70% market share of smartphone operating systems
[2]. Due to this over-dependence on one platform, its security is critical. In the
past, signature, heuristic, specification, sandbox, etc. techniques have been used
to detect malware [20, 13]. With the rapid developments in machine learning, it
has also found its use in malware detection and has shown a good success rate
in detecting old and new malware. However, researchers have demonstrated that
machine learning and deep learning classification models are susceptible to adver-
sarial attacks [9,21]. This generated doubts about the reliability of the machine
learning based malware detectors against adversarial attacks and if they are safe
for real-world deployment. It is essential to be aware of the weaknesses of the
malware detectors before it gets exploited by malware developers/adversaries.

The adversarial attack scenarios can be grouped into three broad categories
based on the attacker’s knowledge of the target system. First, is white-box sce-
nario, where the attacker has full knowledge, like, the dataset used to train/test
classifiers, features used, classifiers used, and other parameters, etc. It is far from
reality, where the attacker generally has partial information about the malware
detection ecosystem called the grey-box scenario. Finally, the third category is
black-box scenario, where the attacker has no information about the malware
detector. In recent years, many researchers have proposed adversarial attacks on
malware detectors in a white-box scenario with good evasion rates [23, 14, 10].
However, still limited work has been done in the grey-box scenario. Therefore,
in this work, we focus on the grey-box scenario where the attacker knows about
the dataset and features used but has zero information about the classifiers and
other parameters used in the malware detector.

Using an adversarial evasion attack, the attacker can bypass the malware
detector and install malware on the target system, putting the user’s data at
risk. Research on adversarial attacks and adversarial defenses complement each
other, both aiming to improve the adversarial robustness of machine learning
based malware detectors. In this work, we propose a framework called the Rein-
forcement Learning based Malware Attack in Greybox Environment (RL-MAGE)
to investigate and improve the adversarial robustness of the machine learning
based malware detectors. Reinforcement learning has recently become more pop-
ular because of rapid advancements in computational and storage capabilities.
In this work, we conduct an in-depth comparative study on the performance
of three different on-policy reinforcement learning algorithms in malware eva-
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sion and adversarial defense tasks. We designed three Malware Evasion Attacks
(MEA) namely A2C-MEA, TRPO-MEA, and PPO-MFEA, in the RL-MAGE
framework and compared their performance. The MEA perform untargeted eva-
sion attacks on malware detectors that aim to introduce type-II false-negative
errors. The attacks are designed to achieve high evasion rates while minimizing
the execution cost by limiting the perturbations allowed by the agent. The at-
tack agent also ensures the adversarial applications’ structural, syntactical, and
behavioral integrity. We tested the performance of 30 distinct malware detectors
based on 4 families of classifiers against the MEA attacks. Later, we propose
an adversarial retraining based defense strategy called the A RShield to improve
the adversarial robustness of malware detectors and defend against adversarial
attacks. With this work, we make the following contributions:

1. We proposed Reinforcement Learning based Malware Attack in Greyboxr En-
vironment (RL-MAGE) to investigate the detection performance and robust-
ness of malware detectors.

2. We developed 30 malware detectors based on 2 features (android permissions
and android intents) and 15 distinct classifiers from 4 families, namely: ma-
chine learning classifiers, bagging based classifiers, boosting based classifiers,
and deep learning classifiers. The 30 malware detector models achieved a
mean accuracy and AUC of 85.81% and 0.86, respectively.

3. We designed 3 Malware Evasion Attacks (MEA) to expose vulnerabilities in
the above 30 malware detectors models. The A2C-MEA achieved a mean
evasion rate of 91.40% with just 1.74 mean perturbations that reduced the
mean accuracy from 85.81% to 51.22% in 30 malware detectors. The TRPO-
MEA achieved a mean evasion rate of 93.27% with just 1.95 mean perturba-
tions and reduced the mean accuracy from 85.81% to 50.29% in the same 30
malware detectors. Finally, PPO-MEA accomplished a 92.17% mean evasion
rate with 2.05 mean perturbations, reducing the mean accuracy from 85.81%
to 50.79% in 30 malware detectors. We also list the most pertubated android
permissions and android intents during the above attacks.

4. We developed ARShield defense to improve the robustness and detection
performance of malware detectors. The mean evasion rate of A2C-MFEA,
TRPO-MEA, and PPO-MEA reattacks against A RShield models was drasti-
cally dropped from 91.40% to 1.32%, 93.27% to 1.05% and 92.17% to 1.40%,
respectively. The mean accuracy of A2C-ARShield, TRPO-ARShield, and
PPO-ARShield models also improved from 85.81% to 89.89%, 89.91%, and
89.83%, respectively.

The rest of the paper is organized as follows. The proposed RL-MAGE frame-
work, Malware Evasion Attack (A2C-MEA, TPRO-MEA, and PPO-MEA), and
ARShield defense are explained in Section-2. Experimental setup is described in
Section-3. Experimental results of baseline malware detectors, MEA attack on
baseline detectors, ARShield detectors, and MEA reattack on ARShield detec-
tors are discussed in Section-4. Related work is explained in Section-5, and the
conclusion is presented in Section-6.
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Fig. 1: Proposed RL-MAGE framework to improve detection performance and
robustness of malware detectors.

2 Adversarial Attack and Defense

2.1 Proposed RL-MAGE Framework

Figure 1 summarises the Reinforcement Learning based Malware Evasion Grey
box Environment (RL-MAGE) framework visually. The RL-MAGE framework
aims to improve the malware detectors to defend against Malware Evasion At-
tacks (MEA). The framework consists of 3 steps. The Step-1 is dataset gath-
ering, followed by constructing baseline malware detection models. The Step-2
aims to develop malware evasion attacks using reinforcement learning against
baseline malware detection models. These attacks generate adversarial applica-
tions to evade the malware detectors. The Step-3 is to develop an adversarial
defense (ARShield) to counter the evasion attacks and to improve the robustness
of the malware detectors.

2.2 Malware Evasion Attack (MEA)

A reinforcement learning setup consists of an environment and an agent. The
environment defines the observation space, action-space and returns a reward for
an action performed by the agent. The agent interacts with the environment and
adjusts its internal weight based on the reward received for the action performed.
In our case, the state of the environment is a multi-binary representation of the
android application in terms of its features (android permission/android intent).
The environment calculates the reward by taking the difference between the
probability of the state being malware for the current state and the following
state (after taking action) as given by the underlying malware detector.
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Steps involved in the MEA attack on malware detectors are described in
figure 2. The attack process can be divided into 2 phases: training phase and
attack phase.

The training phase is performed once for the reinforcement learning agent to
learn the environment and devise a strategy to navigate it. Faploration is done in
a training environment which is constructed using reference malware detectors.
The environment is designed to sequentially go through all the available malware
applications and expose the agent to all types of applications for it to learn. The
agent is restricted by the maximum number of perturbations/alterations that
it is allowed to make. The limit is 5 for android permissions and 4 for android
intents. Once the agent learns from the training environment using the rewards
received for its actions, we move to the next phase.

In the attack phase, we create attack environments for each malware detec-
tion model being attacked and release the agent in them. If the environment’s
state is classified as benign, we reset the environment and move to the next mal-
ware. Whenever the state of the environment is classified as malware, the agent
performs actions from the environment’s action space until we encounter the
stop condition. The stop condition occurs either when the malware application
is misclassified as benign or if the number of permissible actions has crossed the
limit. In case of misclassification, the final state of the environment is used to
rebuild the android application and added to the adversarial dataset.

Reinforcement learning agents may use different algorithms to learn the strat-
egy to navigate the environment. These are used to adjust the internal weights
and parameters using the states, actions, and rewards while interacting with the
training environment. In this work, we explore the on-policy algorithms where
the policy used to take action is the same policy being evaluated and updated.
We train the following Malware Evasion Agents (MEAs) for our attacks:
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1. A2C-MEA: The Advantage Actor Critic (A2C) MEA uses the A2C algo-
rithm [11], which is a synchronous and deterministic variant of Asynchronous
Advantage Actor Critic (A3C). It avoids the use of a replay buffer by using
multiple workers.

2. TRPO-MEA: This MEA uses the Trust Region Policy Optimization (TRPO)
algorithm [17], which introduces a KL-Divergence constraint while taking
steps. This is similar to a distance measure between probability distribu-
tions.

3. PPO-MEA: The Proximal Policy Optimization (PPO) algorithm [18] bor-
rows the multiple worker idea from A2C and the Trust region idea from
TRPO. PPO uses clipping to prevent huge updates to the policy.

2.3 Adversarial Retraining Defense (ARShield)

We designed the ARShield defense to develop ARShield malware detectors that
are more immune to malware evasion attacks. The ARShield is based on ad-
versarial retraining based defense strategy [9,13]. The MEA alters the malware
applications to force the malware detectors to misclassify. When there is a mis-
classification, the final state of the environment is saved after converting it back
into a feature vector, in the same format as the original dataset used to train
the malware classifiers. A new dataset is constructed by including the original
dataset with their original labels used to train baseline models and the new
adversarial samples with their labels set to malware. We then retrain all the
malware detectors using this new adversarial dataset resulting in more robust
ARShield models that are more immune to malware evasion attacks.

3 Experimental Setup

The dataset used for the experiments contains 5721 benign applications down-
loaded from the Google Play Store [5] and screened using VirusTotal [6]. The
dataset also contains 5553 malicious applications from the Drebin dataset [7].
We then use the reverse engineering tool Apktool[3] to develop a parser that
extracts android permission and android intent usage in each android applica-
tion. This parser recorded 195 permissions and 273 intents to create 2 feature
vectors (android permission and android intent). We then train 30 different mal-
ware detection models using 15 distinct classification algorithms belonging to
4 families (basic machine learning classifiers, bagging based classifiers, boosting
based classifiers, and deep learning classifiers). Table 1 shows classifies and their
corresponding categories. The detailed discussion on the design and parameters
of these malware detection models is explained in other papers [15, 19]. We used
a train test split of 70:30. All the experiments were conducted on the Google
Colab Pro platform using the Python programming language using scikit-learn,
TensorFlow, and OpenAl Gym.
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Table 1: Classifiers and their families used in RL-MAGE framework.
Logistic Regression (LR)
Machine Learning (ML) |Support Vector Machine (SVM)
Classifier(s) Kernel Support Vector Machine (KSVM)
Decision Tree (DT)
Random Forest (RF)
Bootstrap Aggregation Logistic Regression (BALR)

Bagging based

Classifier(s) Bootstrap Aggregation Kernel Support Vector Machine (BAKSVM)
Adaptive Boosting (AB)
Boosting based Gradient Boosting (GB)
Classifier(s) eXtreme Gradient Boosting (XGB)

Light Gradient Boosting Machine (LGBM)
Deep Neural Network 0 Hidden Layer (DNNOL)
Deep Learning (DL) |Deep Neural Network 1 Hidden Layer (DNN1L)
Classifier(s) Deep Neural Network 2 Hidden Layer (DNN2L)
Deep Neural Network 4 Hidden Layer (DNN4L)

3.1 Performance Metrics

In this work, we use the following performance metrics to evaluate different
phases of the RL-MAGE framework.

— Accuracy: is used to measure the performance of a malware detector. It is
the ratio of the number of samples correctly classified by the total number
of samples. Higher accuracy is better.

— Mean Accuracy (MA): is the average of the accuracies of many malware
detectors.

— Accuracy Reduction: is the difference between the accuracy of a malware
detector before and after the attack. It is used to evaluate the robustness
of a malware detector. Lower accuracy reduction indicates that a malware
detector is more immune to attacks.

— Evasion Rate (ER): is the percentage of adversarial samples (generated
by an attack agent) to the number of malware samples in a dataset. A
high evasion rate indicates a strong adversarial attack and a weak malware
detector.

— Mean Evasion Rate (MER): is the average evasion rate of a group of
adversarial attacks against a group of malware detectors.

— Perturbation Application Percentage (PAP) is the number of adver-
sarial applications in which a particular feature was modified (perturbated)
by an attack agent to the total number of adversarial applications.

— Perturbation Frequency Percentage (PFP): of a feature is the percent-
age ratio of the number of times that feature was modified (perturbated) to
the total number of perturbations during an attack.

4 Experimental Results

This section will discuss the results of all the conducted experiments. It includes
the baseline models, MEA attack, ARShield defense, and MEA re-attack on
ARShield models.
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4.1 Baseline Android Malware Detection Models

We trained 30 unique baseline malware detection models based on 15 classifies
(from 4 families: Machine Learning Classifiers, Bagging based Classifiers, Boost-
ing based Classifiers, Deep Learning Classifiers) and two static features (permis-
sion and intent). We measure the performance of these models using Mean Accu-
racy (MA) and Area under the ROC Curve (AUC). The Mean Accuracy (MA)
of 93.28% was achieved by the 15 permission based malware detection models.
The maximum MA of 94.27% was obtained by 4 DNN models and the minimum
MA of 92.26% by 4 Boosting Models. The average AUC for 15 permission based
models was 0.93. On the other hand, the MA of 78.34% was obtained by the 15
intent based malware detection models. The highest and lowest MA of 78.73%
and 78.07% were obtained by 4 DNN and 4 Boosting models, respectively. We
obtained a mean AUC of 0.78 for the 15 intent based malware detection models.
We observe that the permission based malware detection models perform much
better than the intent based detection models. The mean accuracy and AUC of
all 30 malware detection models were 85.81% and 0.86, respectively.

4.2 Adversarial Attack on Malware Detection Models

The MEA agents (A2C-MEA, TRPO-MEA and PPO-MEA) modify the malware
samples (by adding perturbations) such that the generated adversarial samples
can evade the malware detection models. The alterations made in the attack
add perturbations (permissions and intents) while preserving the syntactic and
semantic integrity of the modified application. The attack is designed to minimize
the alterations, while their count is limited to 5 for permission models and 4 for
intent models. We use metrics such as the Evasion Rate (ER), Mean Evasion Rate
(MER), and change in Mean Accuracy (MA) to evaluate the attack strategies.

4.2.1 Evasion Rate @ MEA Attack: Evasion Rate (ER) is defined as
the percentage of malware applications (which are classified as malware by the
baseline models) that are successfully converted to adversarial applications by
introducing alterations/perturbations such that they are forcefully misclassified
as benign by the same baseline models. MER is the mean evasion rate across
classifier families or features. Figure 3 plots the MER over the number of al-
terations by the 3 MEAs (A2C-MEA, TRPO-MEA, and PPO-MEA) against
different families of malware detection models.

During the A2C-MEA attack, we observed an MER, of 84.57% against the 15
permission based models while making just 2.20 perturbations on average. While
against the 15 intent based models, the MER obtained was 98.22% with 1.27
mean perturbations. We record the maximum MER in deep learning models,
99.68% on permission based models, and 99.62% on intent based models. The
TRPO-MEA attack obtained an MER of 89.44% using 2.52 mean perturbations
against 15 permission based models. The highest MER of 99.65% was seen in 4
DL models. The MER obtained against 15 intent models was 97.10% using aver-
age 1.38 perturbations. Boosting models showed the maximum MER of 98.65%.
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Fig. 3: Performance of Malware Evasion Attack (A2C-MEA, TRPO-MEA
and PPO-MEA) against different android malware detection models.

Finally, in the case of PPO-MEA aittack, we achieved an MER of 87.36% and
96.99% against 15 permission and 15 intent based models with just 2.42 and 1.69
perturbations, respectively. We again observe the highest MER on deep learn-
ing models. We can see that the MER in intent based models is much higher
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compared to the permission based models, showing us that intent based models
are more vulnerable to MEA attacks. Finally, the A2C-MEA, TRPO-MEA, and
PPO-MEA achieved an MER of 91.40%, 93.27%, 92.17%, respectively, against
30 malware detection models.

4.2.2 Accuracy Reduction @ MEA Attack After a successful malware
evasion attack, a drop in accuracy is expected due to a high number of forced mis-
classifications. Figure 4 shows the accuracies of the different families of baseline
malware detection models (blue bar) and after the MEA attack on baseline mod-
els (red bars). The A2C-MFEA attack on 15 permission based models dropped the
MA from 93.28% to 55.89%. DL models show the highest drop of 44.93%. The
MA for 15 intent based models dropped from 78.34% to 46.55%, with 4 boost-
ing models showing the highest drop of 32.38%. In the TRPO-MEA aitack, the
MA of the 15 permission based models reduced from 93.28% to 53.66%. Max-
imum drop in DL models (44.91%). While in the 15 intent based models, the
MA dropped to 46.92% from 78.34%. Finally, the PPO-MFEA attack dropped
the MA from 93.28% to 54.62% in 15 permission based models and from 78.34%
to 46.96% in 15 intent based models. We observe the highest drop in DL mod-
els in both permissions (44.89%) and intent (32.07%) models. We observe that
the reduction in accuracy is greater in permission based models as compared to
intent based models. Finally, the A2C-MEA, TRPO-MEA, and PPO-MEA re-
duced the MA from 85.81% to 51.22%, 85.81% to 50.29% and 85.81% to 50.79%,
respectively, in 30 malware detection models.

4.2.3 Vulnerability List Table 2 lists the top 5 most pertubated android
permissions and android intents by the three MEA agents (A2C-MEA, TRPO-
MEA, and PPO-MEA). They are evaluated using the metrics Perturbation Ap-
plication Percentage (PAP) and Perturbation Frequency Percentage (PFP).

The android.permission. USE_CREDENTIALS and android.permission.
READ_CALL_LOG are the two most pertubated android permissions, being
added in more than 60% of applications. On the other hand, the intent an-
droid.intent.action. MY_PACKAGE_REPLACED is modified in more than 70%
of applications making it the most pertubated android intent.

Out of all the perturbations made during the attacks on permission based
classifiers, android.permission. USE_CREDENTIALS and android.permission.
READ_CALL_LOG were around 50% of them. For A2C-MEA, these 2 had a
combined PFP of 63.41%. Whereas, out of all intents, android.intent.action.
MY_PACKAGE_REPLACED had the highest PFP. It contributed to more than
70% in A2C-MEA and TRPO-MEA.

4.3 ARShield Defense Strategy

The final stage of the proposed framework is the ARShield defense strategy. We
measure the improvements in the detection and robustness performance of the
ARShield models over the baseline models in terms of accuracy, evasion rate,
and change in accuracy of the models after MEA attacks.
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Table 2: List of top android permissions and android intents that are most per-
turbed during A2C-MEA, TRPO-MEA and PPO-MEA attacks on malware de-
tection models.

Perturbation Name Frequency Sample
Percentage|Percentage
A2C-MEA
Android android.permission.USE_CREDENTIALS 32.41 73.69
Permission android.permission.READ_CALL_LOG 31.00 70.48
(Maximum 5 android.permission. READ_PROFILE 19.28 43.84
erturbations) android.permission. CAMERA 15.65 35.58
pertur s android.permission. GET_ACCOUNTS 0.52 1.18
Android android.intent.action. MY_PACKAGE_REPLACED 55.80 70.67
Intent android.intent.action. MEDIA_BUTTON 33.00 41.79
(Maximum 4 android.intent.action.SEND 5.98 7.57
erturbations) android.intent.action. TIMEZONE_CHANGED 2.46 3.12
p ) android.intent.category. DEFAULT 1.38 1.74
Android android.permission.USE_CREDENTIALS 26.22 68.48
Permission android.permission.READ_CALL_LOG 23.19 60.58
(Maxin;;nn 5 android.permission.READ_PROFILE 19.04 49.73
turbations) android.permission. CAMERA 11.56 30.19
perturbations android.permission.GET_ACCOUNTS 328 21.63
Android android.intent.action. MY_PACKAGE_REPLACED 56.78 78.58
Intent android.intent.action. MEDIA_BUTTON 15.59 21.57
(Maximum 4 android.intent.action.SEND 8.65 11.98
erturbations) android.intent.action. TIMEZONE_CHANGED 4.23 5.85
p i android.intent.category MONKEY 2.84 3.94
Android android.permission.USE_CREDENTIALS 27.37 67.98
Permission android.permission. READ_CALL_LOG 25.40 63.07
(Maxin; m5 android.permission.READ_PROFILE 20.96 52.06
turb ltl ) android.permission. GET_ACCOUNTS 10.51 26.10
perturbations android.permission. CAMERA 9.53 23.66
Android android.intent.action. MY_PACKAGE_REPLACED 40.76 68.24
Intent android.intent.category. BROWSABLE 12.48 20.89
. android.intent.action. . . .

(Maximum 4 droid.i ion. PACKAGE_REMOVED 10.77 18.02
erturbations) android.intent.action. TIMEZONE_CHANGED 9.24 15.47
p android.intent.action. MEDIA_BUTTON 8.58 14.36

4.3.1 Detection Performance: Figure 4 shows the accuracies of the 4 fami-
lies of malware detection models at various stages of the RL-MAGE framework.
On applying ARShield defense using the A2C-MEA adversarial samples, the
Mean Accuracy (MA) of permission based models increased from 93.28% to
95.39%, an improvement of 2.11%, and the MA of intent based models jumped
from 78.34% to 84.38%, which is an improvement of 6.04%. We see maximum
improvement in MA for boosting models, of 2.41% and 6.22% in permission and
intent based models respectively.

On applying the TRPO-ARShield, we observe a boost in the mean accuracy
of the permission models by 2.00%, from 93.28% to 95.28%. Maximum improve-
ment of 2.23% is shown by bagging Classifiers. In the case of intent based models,
we observe a more significant increase of 6.19%, from 78.34% to 84.53%. Deep
learning classifiers showed the most improvement of 6.37%.

Similarly, the PPO-ARShield improved the MA of permission and intent
models from 93.28% to 95.44% and 78.34% to 84.22%, which is an improvement
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Fig. 4: Performance of different android malware detection models against
A2C-MEA, TRPO-MEA and PPO-MEA
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of 2.16% and 5.88%, respectively. Here too, we notice boosting models improv-
ing the most. MA of permission and intent based models improved by 2.33%
and 6.03% respectively. From the data, we observe that the ARShield defense
positively impacts the malware detection capabilities of the models, leading to
an overall accuracy improvement of 4.06% across all models. Out of the four
families, boosting classifiers benefit the most with ARShield defence.

4.3.2 Robustness Performance: Apart from improving the malware detec-
tion performance of the malware detection models in normal circumstances, the
ARShield defense also improves the adversarial robustness of the models to help
them defend against adversarial attacks.

In the case of A2C-MEA reattack on 15 permission ARShield models, we
observe an MER of 1.27% with a reduction in MA from 95.39% to 94.69%
(0.7% drop). Whereas in 15 intent ARShield models, we record a drop in MA of
2.28%, from 84.38% to 82.10%, and an MER of 1.38%. Performing the TRPO-
MEA attack on the 15 permission ARShield models leads to a drop in MA from
95.28% to 94.48%, which is a dip of just 0.80%. The MER obtained is 1.25%. On
the other hand, in 15 intent based ARShield models, we get an MER of 0.84%
with a 2.40% drop in MA from 84.53% to 82.14%. In the case of the PPO-MEA
attack on permission ARShield models, we get an MER of 1.14%, reducing the
MA from 95.44% to 94.72% (0.72% drop). The same attack on intent ARShield
models resulted in an MA drop from 84.22% to 81.72% (2.50% drop) and an
MER of 1.66%.

Permisison based ARShield models of basic machine learning category show
the highest MER during reattack. We get 2.34%, 1.20%, and 1.74% MER with
A2C-MEA, TRPO-MEA and PPO-MEA respectively. On the other hand, intent
based ARShield models of bagging category show the highest MER during reat-
tack. We observe 3.14%, 3.00% and 3.67% with the above 3 MEAs respectively.
The above results show that the newly enforced ARShield models are much more
effective and robust against adversarial attacks.

5 Related Work

Since Papernot et al. in 2016 highlighted that deep neural networks are vulner-
able to adversarial attacks, there has been a lot of focus on adversarial attacks
on neural networks [12]. However, attacks on applications of traditional machine
learning have not received similar attention as image classification problems.
With billions of users using android daily, the platform’s security against mal-
ware is of high priority. Researchers like Taheri et al., Rathore et al., and Grosse
et al. came up with novel adversarial attacks like generative adversarial network
(GAN), single policy attack (SPA), and adversarial sample crafting on android
malware detectors and achieved good results [23, 20,16, 10]. But these attacks
were proposed for white box scenarios which are not representative of the real
world. Greybox and black box scenarios more closely represent the real world.
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Researchers have extensively studied adversarial attacks in the image classi-
fication application on grey and black box environments. In 2021, Sinha et al.
fooled DNNs by modifying just 1 pixel in sample images with a mean evasion rate
of 48.33% using the differential evolution attack in a grey box scenario [22]. How-
ever, there is still a lack of research on adversarial attacks on android malware
detection in a partial or no-knowledge environment. Rathore et al. proposed a
multi-policy attack that attacked android permission based malware detectors in
a grey box scenario but achieved an evasion rate of just 53.20% across 8 machine
learning models [14]. In 2021, Rathore et al. used GAAN to achieve a evasion
rate of 94.69% but with 10 bit alterations [16]. When it comes to black box sce-
narios, Bostani et al. developed EvadeDroid achieved 81.07% evasion rate but
used 8 android features and 52.48 £+ 29.45 alterations [8]. Using ShadowDroid,
Zhang et al. claimed a 100% evasion rate using 5.86 mean alterations [24]. But
they used 8 different types of android features and studied just one classifier
(SVM) without focusing on the generality of the attack which is very important
in a partial knowledge scenario where the nature of the classifier is unknown.

6 Conclusion

In this work, we propose a novel RL-MAGE framework to improve the classifi-
cation performance and robustness of android malware detectors. We designed
three reinforcement learning agents, A2C-MEA, TRPO-MEA, and PPO-MEA,
for evasion attacks and the ARShield defense strategy to improve malware detec-
tors. The 30 baseline malware detectors achieved mean accuracy of 85.81%. Out
of the three on-policy reinforcement learning algorithms, we observe that TRPO
is the best algorithm for evasion as well as defense task. TRPO-MEA achieved
the highest evasion rate of 93.27% with 1.95 mean alterations in 30 malware de-
tectors. The TRPO-ARShield models also achieved the highest mean accuracy
of 89.91% while displaying the lowest evasion rate of just 1.05% during re-attack.
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