
Digital twin simulation development and
execution on HPC infrastructures⋆

Marek Kasztelnik1[0000−0002−8473−5236], Piotr
Nowakowski1,2[0000−0002−2369−3685], Jan Meizner1,2[0000−0003−4094−6557], Maciej
Malawski1,2[0000−0001−6005−0243], Adam Nowak2[0009−0001−7842−5522], Krzysztof

Gadek2[0009−0001−9504−5484], Karol Zajac2[0000−0003−1393−8236], Antonino
Amedeo La Mattina3,4[0000−0002−9927−2393], and Marian

Bubak2[0000−0001−6083−0549]

1 ACC Cyfronet AGH University, Kraków, Poland
2 Sano Centre for Computational Medicine, Kraków, Poland

3 Department of Industrial Engineering, Alma Mater Studiorum - University of
Bologna, Bologna, Italy

4 Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy

Abstract. The Digital Twin paradigm in medical care has recently
gained popularity among proponents of translational medicine, to enable
clinicians to make informed choices regarding treatment on the basis of
digital simulations. In this paper we present an overview of functional
and non-functional requirements related to specific IT solutions which
enable such simulations – including the need to ensure repeatability and
traceability of results – and propose an architecture that satisfies these
requirements. We then describe a computational platform that facilitates
digital twin simulations, and validate our approach in the context of a
real-life medical use case: the BoneStrength application.

Keywords: Personalized medicine · Digital shadow · Digital execution
environment · HPC

1 Motivation

Applications of the Digital Twin paradigm in medical care have recently gained
popularity among proponents of translational medicine. A digital twin is typi-

⋆ This work was supported by the EDITH, a coordination and support action funded
by the Digital Europe program of the European Commission under grant agreement
No. 101083771. This work was also supported by the European Union’s Horizon
2020 research and innovation program under grant agreement Sano No. 857533 as
well as the Sano project carried out within the International Research Agendas pro-
gram of the Foundation for Polish Science, co-financed by the European Union under
the European Regional Development Fund. This work was (partly) supported by the
European Union’s Horizon 2020 research and innovation program under grant agree-
ment ISW No. 101016503. We also gratefully acknowledge Poland’s high-performance
computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing
computer facilities and support within computational grant No. PLG/2022/015850.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

2 M. Kasztelnik et al.

cally described as a virtual representation of a real-life process. In the context of
medical interventions, it refers to a computational model which represents a spe-
cific patient, usually focusing on a specific ailment or pathological process, and
enables a medical care professional to make informed choices regarding treat-
ment on the basis of digital simulations. The model can fetch patient data from
databases or from the IoT devices worn by the patient [30], in order to simulate
the given ailment/organ/etc.

Based on our expertise connected with building patient digital twins on HPC
we discovered a set of patterns (as well as antipatterns) for the calculations
executed and data managed on supercomputers by researchers. (1) Researchers
tend to try to run models as fast as possible and focus on results, often forgetting
about model versioning and traceability. (2) Data is usually transferred to HPC
from a local computer into the user’s personal directory, which is not accessible
by other team members. (3) When a calculation for a given use case is finished,
other calculations are sometimes executed, which often leads to overwriting result
data. As a result, it is difficult or even impossible for other researchers to recreate
a specific experimental setup. Moreover, the problem of research sustainability
is not new (see e.g. [33] and [27]) and there are even dedicated institutes that
assist in performing sustainable research (e.g. [17]). The Cyfronet DICE team [5]
has been involved in such initiatives for a long time [32]. We build tools that
simplify the way data is managed, versioned, and made accessible to others.

The objective of this paper is to present an overview of functional and non-
functional requirements related to specific IT solutions which enable simulations
for Digital Twins in medicine – including the need to ensure repeatability and
traceability of results. We propose an architecture that satisfies these require-
ments and promotes the principles of 3R5. Subsequently, we present the Model
Execution Environment [20] – a reference implementation of our concept. We val-
idate our approach in the context of a real-life medical use case: BoneStrength –
an in silico trial solution for efficacy evaluation of treatments preventing proximal
femur fracture. Given that we do not focus on interactions between the model
and the real patient (instead relying on data fetched from external databases or
IoT devices), the described solution can be treated as a digital user shadow, or
digital execution environment.

2 Typical requirements of digital twins simulation

Digital twins are intended to stand in for the patient when medical simulations
need to be carried out. Accordingly, the concept of a digital twin should be
understood as a set of data which represents the specific patient in relation to
a specific condition or treatment process, in particular circumstances. The data
in question is not typically restricted in any manner - indeed, it may include
unstructured textual data (such as measurement results), binary data (images
and scans), structured repositories (databases storing patient information), or

5 Repeatability, Replicability, Reproducibility

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 3

even free-text descriptions, such as those provided by medical practitioners who
interact with the patient.

A system capable of performing digital twin simulations, must – unless geared
for a specific procedure or disease type – be agnostic as to the supported classes
and formats of data items. This is a primary requirement facing such systems,
which, in turn, translates into the need to support (by means of integration)
a comprehensive data repository, where various data items may be queried, re-
trieved and fed into the computational models which constitute the given simu-
lation workflow.

In addition to the above, the platform must provide access to a computational
infrastructure – given that, naturally, the very concept of digital twin simulations
implies that data needs to be processed in some manner. Depending on the scope
and specific aims of the simulation, a variety of specific requirements may emerge.
First of all, the scale of the simulation must be taken into account. The following
types of computational resources may be required:

– standalone servers (for small-scale simulations),
– cloud computing infrastructures (for simulations in which a moderately sized

set of data is processed using complex algorithms),
– classical HPC (High Performance Computing) solutions such as computing

clusters (for scale-out studies which involve processing large amounts of data
and “parameter study” types of computations).

Additional functional requirements associated with digital twin simulations
refer to the properties of the underlying computational infrastructure - both in
terms of hardware and software. The following notable requirements are often
encountered:

– availability of specific hardware components, mainly in the context of GPGPU
processing,

– availability of specific software packages and libraries - which are often com-
mercial and sometimes costly to use,

– ensuring security of data and computational models themselves - as digi-
tal twin simulations frequently process sensitive medical data, special ar-
rangements must be made to guarantee that such data is protected against
unauthorized access.

3 A critical review of platforms for digital twins

One of the important aspects that we have focused on was the thorough State
of the Art analysis, to identify potential candidates for a digital twin platform.
We focused on infrastructural as well as software aspects.

Relevant medical simulations may be run on a wide range of computational
platforms, ranging from dedicated workstations, through local clusters to large-
scale Cloud [31] and HPC Systems [26]. Each of those systems provides distinct
features and challenges. As local workstations lack sufficient power for serious

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

4 M. Kasztelnik et al.

computations, the preferred option is usually to utilize more sophisticated sys-
tems – which, due to their multi-tenant and shared nature, require appropriate
integration with an execution platform.

The most straightforward type of infrastructure is a computational cloud, as
while the platform is usually multi-tenant in nature (even for private clouds),
the user usually obtains unrestricted access to a set of instances. However, not
every model can be run in the cloud. Even though modern cloud providers offer
dedicated solutions for batch or HPC-like use cases such as Azure Batch [4],
virtualization overhead and the need for flexibility may nevertheless hinder per-
formance when compared to purpose-built HPC systems.

The aforementioned HPC systems provide great performance in terms of
computational power, storage and interconnect; however, they carry drawbacks
in other areas that need to be addressed by the platform. Those are mostly
related to ensuring secure access, which, while standardized to some degree, may
vary from system to system (GSI-SSH [8], plain password-based SSH, key pairs,
native API), as well as the multi-tenant nature of the system, which makes it
more difficult to install additional end-user software, and also imposes the need
to strictly control access to data.

Clearly, the infrastructure by itself is not sufficient to solve the problem
of digital twin simulations. Another important aspect relates to the software
components required to build an integrated simulation platform. Due to the
complex nature of such applications, the most manageable way to express and
run simulations is via a specialized workflow system [22].

An example of a workflow platform is the Arvados Workflow System [3].
It is based on the well-developed Common Workflow Language (CWL) [21] and
provides a mechanism for integration with a wide range of aforementioned infras-
tructures both cloud- and HPC-based; however there are two significant draw-
backs. First and foremost, integration with HPC requires significant modification
of the HPC cluster itself, including deployment of tools and services both on the
login and compute nodes. For large-scale clusters, this may be infeasible for op-
erational and/or security reasons. Secondly, even though Arvados supports Sin-
gularity (now referred to as Apptainer) containers [2] commonly used for HPC,
it is clearly stated that this support is still experimental and Docker should be
used instead. However, Docker is not commonly encountered on multi-tenant
HPC systems for security reasons. It is also important to mention that Arvados
requires some form of containers (Docker or Singularity/Apptainer) to deploy
workflows on the HPC cluster, and cannot operate on standalone jobs.

Another large and well-known workflow system is Pegasus [23]. The system
is robust and offers the ability to run computations on a wide range of infras-
tructures including grids, clusters and clouds. It also provides advanced features
such as provenance and error recovery. However, while the above features are
desirable, we have decided that at the current stage the overall complexity of
this solution is too great given the requirements of the Digital Twin Platform.
On top of that, we would still need to implement domain-specific features that
are not present in this generic platform.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 5

Additionally we have analyzed the High-Performance Computing and Cloud
Computing with Unified Big-Data Workflows platform created in the scope of
the LEXIS Project [25]. The platform integrates HPC and Cloud computing en-
abling multi-system and multi-site deployment of workloads as well as provides
required utilities such as orchestration, billing, AAI, API and Portal. HPC ac-
cess is enabled by custom middleware called HEAppE [9] that utilizes SSH and
SCP/Rsync protocols for running jobs on clusters. The Cloud component utilizes
Alien4Cloud [1] with extended TOSCA [19] templates for deployment to plat-
forms such as OpenStack [13]. Regarding data, iRODS and EUDAT/B2SAFE [6]
are used. Access is secured by the Keycloak [11] based AAI system where ac-
counts are mapped to cluster accounts, as well as appropriate custom integration
with iRODS [24]. While the overall work done in the scope of the LEXIS Project
is impressive and we believe that the platform may be useful for large multi-site
deployments involving both HPC and Clouds the significant deployment over-
head, which involves installation of custom middleware (both on HPC and cloud
compute sites, as well as on storage sites), along with a dedicated AAI system, is
too great given the stated needs of our research. Moreover, as in the case of the
Pegasus system described above, the platform is not dedicated to the medical
domain and would require extensions to be fit for such purpose. Finally, we have
found that one of the crucial components, Alen4Cloud, is no longer maintained
according to its official website (since July 2022); thus, the user would need
to provide their own maintenance services, or find a substitute - which might
require significant effort as this component lies at the core of the platform.

4 The concept of a universal platform for digital twins

Our aim was to create a platform for digital twin simulations that may be used
by scientists to submit their computations to e-infrastructures such as HPC
clusters in an easy and accessible way. This concept is presented in Figure 1.
Users interact with the platform through a web browser after being authenti-
cated and authorized by an appropriate IDP, which also can generate required
credentials (such as a user grid proxy certificate, to be used for access to the
e-infrastructure). When the simulation is started by the user, all required code,
along with input data, is automatically transferred to the infrastructure (such as
an HPC cluster). The platform monitors the status of the simulation and notifies
the user when it is finished. It also provides a way to download and compare
results online.

Our conceptual work on the presented platform was guided by the following
principles:

– Model versioning - previous versions of the model are stored and may be
referred to if needed

– Repeatable runs (3R vision)
• Repeatability - a researcher can reliably repeat their own computation
provided the conditions are the same (same team, same experimental
setup)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

6 M. Kasztelnik et al.

• Replicability - an independent group can obtain the same results using
the authors’ own artifacts (different team, same experimental setup)

• Reproducibility - an independent group can obtain the same result us-
ing artifacts that they develop completely independently (different team,
different experimental setup)

Fig. 1. General concept of the platform.

Following up on the above vision, we also adhered to the key requirement to
enable a group of scientists with various backgrounds (such as medicine, physics,
chemistry and computer science) to take part in digital simulation-driven exper-
iments via a coherent and manageable system. As mentioned above, the system
should enable execution of computational models controlled by a set of scripts
with a versioning system, on the one hand enabling collaborative editing, while
on the other hand tagging specific versions that may be later selected to suit
the researchers’ needs. Those models need to operate on data stored in a storage
backend appropriate for the compute infrastructure. Another important goal is
to streamline access to said compute infrastructures, which involves abstraction
of the underlying APIs such as remote access mechanisms and system tools (in-
cluding queuing tools). In addition to the above, the platform needs to provide
a straightforward way to display, download and analyze simulation results.

The platform should also provide a mechanism to reuse models while sup-
porting custom artifacts, thus realizing our 3R vision by producing consistent
results regardless of conditions (teams, artifacts, setup).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 7

5 Overview of implementation

The Model Execution Environment (MEE) is a prototype implementation of
the architecture described in the previous section. It was deployed [12] and it is
used to validate core digital twin creation and modeling concepts in the scope
of applications from a range of projects, including EurValve [7] (human heart
simulations), PRIMAGE [14] (Neuroblastoma, Diffuse Intrinsic Pontine Glioma
tumor growth simulations), and In Silico World (ISW) [10] (in silico trials for
bone fracture risk prediction, along with various other models). Below we dis-
cuss implementation details and list the advantages and disadvantages of the
proposed tool.

MEE is a specialized high-level service to manage data and computations in
the context of a patient cohort. It is integrated (via GSI-SSH and Proxy Certifi-
cate delegation, with automatic proxy generation using the OpenID mechanism)
with several HPC clusters available with the scope of the PLGrid infrastructure6,
delivering access to 8 PFlops of computing power and multiple petabytes of stor-
age. The platform follows the architecture described in Section 4 and presented
in Figure 1. The main goal of MEE is to hide the complexity of the underlying
infrastructure (HPC) as well as introduce a unified way for patient/case data to
be stored and maintained. It promotes the following principles:

– Model versioning with the integration of git repositories. Users can simply
push code to a repository and then run their calculations using the speci-
fied model version. Managing and transferring model code to HPC is done
automatically.

– Repeatable runs achieved through integration with git repositories. Each
run record model stores a version (git SHA) which can be used to rerun the
same calculation. As a result, we can meet 3R (repeatability, replicability,
reproducibility) criteria.

– Integration with HPC. MEE is integrated with the PLGrid infrastructure
which allows us to delegate user rights from MEE to the HPC supercomput-
ers.

– Organized way to store patient data and the calculation results.
The main building block of the MEE environment is a single patient. Each
patient has a dedicated storage space on a storage resource (e.g. HPC, S3)
where patient data is stored. Inside, we also have a space for calculation-
specific inputs and results. Patients can be grouped into cohorts upon which
simulation campaigns can be executed (a campaign involves running the
same pipeline for each member of a given cohort). This unification represents
another step towards realizing the 3R concept.

The user interacts with MEE by using a local web browser (no further depen-
dencies need to be installed on the user’s machine). The first step is for the MEE

6 The PLGrid infrastructure is a joint effort of the largest HPC centers in Poland. It
offers coherent management of users, groups and computational grants, as well as
unified access to the integrated HPC clusters [28].

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

8 M. Kasztelnik et al.

administrator to define a set of simulations - which we call steps (see Fig. 2), by
providing credentials enabling access to the simulation’s code repository. Each
step can define a list of required inputs needed to start the calculation. Steps
can be grouped into flows. A flow is a template used to build a pipeline for a
specific patient/case. The patient data structure defines the location where the
personalized input data is stored. It contains a list of pipelines executed on the
patient data. Each pipeline defines the output location and a list of computa-
tions executed on HPC. Each computation needs to be configured before it can
be started (a specific version of the simulation, as well as the required input
parameters, need to be selected).

Flow
Model

repository

Data File Type

1. File regexp

2. Viewer type

Parameter

e.g. String, Select,

 Number. etc

HPC Step
1. Model location

2. Requirement inputs

3. Parameters de�nition

HPC Step
1. Model location

2. Requirement inputs

3. Parameters de�nition

HPC Step
1. Model location

2. Requirement inputs

3. Parameters de�nition
Computation

1. Step type

2. Model version

3. Parameters values

4. Execution status

Computation

1. Step type

2. Model version

3. Parameters values

4. Execution status

Computation
1. Step type

2. Model version

3. Parameters values

4. Execution status

Pipeline
1. Flow type

2. Results

Computation

1. Step type

2. Model version

3. Parameters values

4. Execution status

Computation

1. Step type

2. Model version

3. Parameters values

4. Execution status

Computation
1. Step type

2. Model version

3. Parameters values

4. Execution status

Pipeline
1. Flow type

2. Results

Computation

1. Step type

2. Model version

3. Parameters values

4. Execution status

Computation

1. Step type

2. Model version

3. Parameters values

4. Execution status

Computation
1. Step type

2. Model version

3. Parameters values

4. Execution status

Pipeline
1. Flow type

2. Results

3.

Patient
1. Patient data

2.

Fig. 2. Data structure used in MEE.

Pipelines consist of separate computations which are called pipeline steps. In
most cases, these are pieces of software (e.g. Matlab scripts, CFD simulations,
etc.) executed on the HPC cluster. Each pipeline step can be configured for
integration with a collaborative source control project. For this purpose, MEE
is integrated with the Git versioning systems (e.g. github.com, GitLab.com
services can be used). There, MEE users are able to apply the typical features of
a sophisticated source control tool to collaboratively develop, share and test their
code (e.g. a simulation). Inside the repository, the template of the HPC queuing
configuration script, as well as the rest of the simulation source code, should be
stored. In order to launch a computation on HPC, the user needs to select which
model version should be used. The model version is taken from the Git repository
(MEE shows all repository branches and versions). When this value is selected,
the queuing configuration template file is downloaded from the repository and
converted to a final queuing system configuration file (in our case, a Slurm [16]
startup script) dedicated for the selected case. To enable customization, MEE
delivers a set of helpers which can be applied in the queuing configuration script
in order to customize it. Notable helpers are briefly listed below:

– clone repo injects code responsible for cloning the simulation repository in
the version specified by the user.

– stage in input-file-type searches for the simulation input file in the results
of past computations, pipeline input, and patient input directories.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 9

– stage out file-path uploads simulation results to the pipeline output di-
rectory.

– value of parameter-key injects the value specified by the user while start-
ing the calculation.

Below we present an example queuing configuration template script taken from
the PRIMAGE project. It runs an agent-based simulation which is a hybrid
model pertinent to the tissue level: patches of the whole tumor. The simulation
comprises a continuous automaton representing the microenvironment, discrete
agents representing neuroblasts and Schwann cells occupying the microenviron-
ment, and a centre-based mechanical model for resolving cell-cell overlap.

1 #!/bin/bash -l
2 #SBATCH -N 2
3 #SBATCH --ntasks -per -node=2
4 #SBATCH --mem -per -cpu=3GB
5 #SBATCH --time =04:00:00
6 #SBATCH -A {% value_of grant_id %}
7 #SBATCH -p plgrid -gpu
8 #SBATCH --gres=gpu:2
9

10 {% clone_repo %}
11

12 module load plgrid/apps/cuda /10.1
13 module load plgrid/tools/gcc /8.2.0
14

15 nvidia -smi
16

17 {% stage_in amb -input amb -input.json %}
18

19 ./amb -input Models/Prototype_v2 .0/ ABM13 .4/ FGPU_NB --in amb -input.json --
primage amb -output.json

20

21 {% stage_out amb -output.json %}

Listing 1.1. Example queuing configuration template script.

Lines 2 to 8 define the required resources for the simulation. In line 6 we can
see how to inject the value of the parameter selected by the user while starting
the simulation. The clone repo directive (line 10) injects code to clone the
simulation repository in the version selected by the user. The certificate used to
clone the repository is registered in the Gitlab/Github as a deploy key. It has
only read capability, thus the computation cannot push any modification the
the repository. In line 17 we request input for the simulation which should be
downloaded from the platform. Next, the simulation is started, and in line 21
we request upload of simulation results to the pipeline output directory. Once
the simulation begins, the template is converted to a customized script, specific
for the selected patient and pipeline:

1 #!/bin/bash -l
2 #SBATCH -N 2
3 #SBATCH --ntasks -per -node=2
4 #SBATCH --mem -per -cpu=3GB
5 #SBATCH --time =04:00:00
6 #SBATCH -A plgprimage4
7 #SBATCH -p plgrid -gpu
8 #SBATCH --gres=gpu:2
9

10 export SSH_DOWNLOAD_KEY="-----BEGIN RSA PRIVATE KEY -----

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

10 M. Kasztelnik et al.

11 xx
12 -----END RSA PRIVATE KEY -----
13 "
14 ssh -agent bash -c ’
15 ssh -add <(echo "$SSH_DOWNLOAD_KEY ");
16 git clone git@gitlab.com:primageproject/Models
17 cd ‘basename cyfronet/Models .git ‘
18 git reset --hard c0719f1c7e2990554821181a505d056a837eb236 ’
19

20 module load plgrid/apps/cuda /10.1
21 module load plgrid/tools/gcc /8.2.0
22

23 nvidia -smi
24

25 curl -o "Models/Prototype_v2 .0/ ABM13 .4/amb -input.json" "https :// mee.s3p.cloud
.cyfronet.pl/production/patients/case2341/inputs/amb -input.json?X-Auth -
Secrets=xxxxxxx"

26

27 ./amb -input Models/Prototype_v2 .0/ ABM13 .4/ FGPU_NB --in amb -input.json --
primage amb -output.json

28

29 curl -T amb -output.json "https ://mee.s3p.cloud.cyfronet.pl/production/
patients/case2341/pipelines /32/ outputs/amb -output.json?X-Auth -Secrets=
xxxxx"

Listing 1.2. Customized for the patient and pipeline queue system starting script.

To run the pipeline on the HPC cluster the user simply needs to log in to the
system and click the run button. Underneath, during the login process, MEE
asks the PLGrid IDP7 about the user’s grid proxy certificate, which is later on
saved in an encrypted form in the MEE database. The Grid proxy certificate
enables user rights delegation and it is used to submit Slurm jobs to HPC by
using the Rimrock service [15]. MEE monitors job execution and notifies the
user about the result. Once the calculation is finished, the user can click a link
to download results. Whenever a new pipeline is launched, a separate storage
space is created. As a result, we can be sure that outputs are never overwritten.

In order to perform the same calculations on multiple patients, MEE supports
cohorts and campaigns (see Fig. 3). A cohort provides a way to group patients.
Once it is created, the user can schedule a campaign: this creates a pipeline
with a shared configuration for each cohort patient. The difference between these
pipelines is that each one has inputs dedicated to a specified patient and produces
outputs in a dedicated storage space. Once the campaign ends, the user can
inspect or download results.

7 PLGrid identity provider, which is capable of generating user proxy certificates that
delegate user rights to the HPC infrastructure.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 11

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

.

..
C

o
h
o
rt

 1

C
o
h
o
rt

 2

Campaign

Pipeline

Pipeline

Pipeline

Pipeline

1. Pipeline template

2.

3. Consolided results

Fig. 3. The cohort groups patients and allows execution of the same set of calculations
for each cohort member in the scope of the campaign.

6 Example of usage - the BoneStrength application

We will demonstrate the usage of the MEE platform on the basis of BoneStrength
- an in Silico Trial solution for efficacy evaluation of treatments preventing prox-
imal femur fracture. It is one of the two Fast Application Track solutions in the
ISW project and consists of two main models.

– A Finite Element (FE) model, which predicts bone strength with a patient-
specific model in a side fall condition as a function of the direction of impact.

– A stochastic patient-specific model of the side fall, which predicts the prob-
ability distribution of the impact force that a large number of random falls
would cause in a certain patient.

The standard approach is patient-driven and it was born as a Digital Twin so-
lution. The simulation computes 28 falls (by varying the falling load direction in
the antero-posterior and medio-lateral directions, in order to explore all possible
fall configurations) per year of a single patient and then estimate the average
risk of fracture. A validated strain-based failure criterion allow predicting the
femoral strength, which means the force causing bone failure. By calculating the
ratio between the number of simulated falls that caused a fracture and the total
number of simulated falls, and considering the falling annual rate, the Absolute
Risk of Fracture at time zero (e.g., at the time the CT scan was performed)
(ARF0) can be calculated [18]. Another approach, called “Markov” version of
BoneStrength, is a simulation that aims to estimate the number of fractured pa-
tients over certain observation time. The very first phase is to generate series of
falling along 10 years and randomly assign their occurrence to the patients. Each
single case simulation will mark the patient as already fractured if the falling
lead exceeds the femur fracture load. This indicates that the next simulations
will not be executed for this patient. As it is a stochastic process, a bunch of
realizations – named campaign – are required to obtain an average result.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

12 M. Kasztelnik et al.

FE model simulations use ANSYS Mechanical APDL as solver, with MPI
parallelism to speed-up the computations. Each execution requires around 5-
6GB of disk space, 20GB of RAM and 4-8 cores, and needs 1-2 core-hours
to be completed. Since multiple configurations for many patients need to be
simulated, approximately 100 000 executions in total are intended to be processed
including both BoneStrength model versions. In this case, array jobs are used for
submitting multiple runs at the same time. In general, patient-driven simulations
are characterized by the association with a specific subject or case described with
its patient-related inputs. When it comes to large-scale realizations, where a set
of patients – named cohort – is going to be simulated under the same scenario,
but with different parameters, researchers must be able to identify the single runs
in order to detect most interesting results (e.g., find patient and parameters that
lead to bone fracture). The concept of the BoneStrength workflow is presented
in Fig. 4.

Fig. 4. Simulation workflow of the Markov BoneStrength version.

7 Evaluation - assessment of proof of concept

The presented architecture and MEE technology were used to simulate two
Markov versions of the BoneStrength application on a cohort of 1080 patients,
running a total of 7500 simulations as a campaign per model version. Each
submitted campaign task allocated 28GB of RAM and 4 CPUs, used ANSYS
software and parallelized simulations with IntelMPI. The campaign was run
on Prometheus Cluster at Cyfronet. The resource usage presented in Figure 7
indicates that each thread used in the ANSYS solver used an average of 813
CPU-seconds and 6.3GB of RAM. The Slurm mechanism reports over 90% of
job efficiency, which is the ratio of the total useful runtime of a job to the wall-
clock time requested by the user, expressed as a percentage value. This shows
that almost the entire CPU time for all allocated cores was utilized during the
job’s elapsed time – which, in turn, indicates that HPC resource wastage is kept
to a minimum.

The observed distribution of campaign CPU time allocation reflects the usual
distribution resulting from different inputs/meshes of patients’ bones or the dif-
ficulty of finding a solution by the ANSYS software. Some reported outliers are a

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 13

CPU-Time Memory used Efficiency

Mean 813.2 sec 6448.9 MB 94.5 %

Median 769.8 sec 6447.0 MB 92.9 %

Fig. 5. HPC infrastructure resource usage for campaign run of 7500 simulations of Bon-
eStrength. The figure presents distribution of simulation’s CPU time, average memory
usage and HPC job efficiency regarding the provided allocation.

consequence of using an external ANSYS license server which sometimes forced
a reconnection during high load times. Thus, the course of the campaign was
limited to 400 simultaneously running jobs in order to avoid overuse of software
licenses.

As a part of the ISW project, the conducted research allowed us to prepare
initial sensitivity analyses for the BoneStrength solution, obtaining result files
from bone analysis and fracture risk prediction. The same concept of a Digital
Twin simulation is going to be applied in other BoneStrength model versions
and workflows, as well as other patient-specific medical solutions.

8 Conclusions and future work

The presented architecture and its reference implementation (the MEE plat-
form) have been validated in the course of three projects (EurValve, PRIMAGE
and InSilocoWorld) implementing medical applications from different fields of
the VPH domain. The feedback received from applications running on the plat-
form enabled us to identify platform elements which should be improved, as
well as new features which should be implemented in MEE. Additionally, based
on the Model Execution Environment, a separate platform was created for the
purpose of the PROCESS Project [29] called the Interactive Execution Envi-
ronment (IEE). Given its reliance on an advanced version of MEE, it provides
a comprehensive set of infrastructural features. Moreover, the IEE features a
mechanism for running Singularity containers which can be useful for provision-
ing of models. In the near future we intend to change the way patient, pipeline,
and computation data is stored to support easy usage traceability (who used the
data, who produced the results, etc.) We will also investigate how to introduce a
more generic abstraction of the computational process, which will enable support
for additional computational platforms such as native Kubernetes containers.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

14 M. Kasztelnik et al.

References

1. Alien4cloud. https://alien4cloud.github.io, accessed: 2023-04-18
2. Apptainer - the container system for secure high-performance computing. https:

//apptainer.org, accessed: 2023-04-11
3. Arvados workflow system. https://arvados.org, accessed: 2023-04-11
4. Azure batch. https://azure.microsoft.com/en-us/products/batch, accessed:

2023-04-11
5. Distributed computing environments (dice) team. https://dice.cyfronet.pl, ac-

cessed: 2023-04-11
6. Eudat collaborative data infrastructure. https://www.eudat.eu, accessed: 2023-

04-18
7. Eurvalve: Personalized decision support for heart valve disease. https://

eurvalve.sites.sheffield.ac.uk, accessed: 2023-04-11
8. Gsi-ssh. http://grid.ncsa.illinois.edu/ssh, accessed: 2023-04-11
9. Heappe middleware. https://heappe.eu/web/, accessed: 2023-04-18

10. In silico world: Lowering the barriers to a universal adoption of in silico trials.
https://insilico.world, accessed: 2023-04-11

11. Keycloak open source identity and access management. https://www.keycloak.
org, accessed: 2023-04-18

12. Model execution environment. https://mee.cyfronet.pl, accessed: 2023-04-11
13. Openstack. https://www.openstack.org, accessed: 2023-04-18
14. Primage, medical imaging, artificial intelligence, childhood cancer research. https:

//www.primageproject.eu, accessed: 2023-04-11
15. Rimrock: Robust remote process controller controller. https://rimrock.plgrid.

pl, accessed: 2023-04-11
16. Slurm workload manager. https://slurm.schedmd.com, accessed: 2023-04-11
17. Software sustainability institute. https://software.ac.uk, accessed: 2023-04-11
18. Bhattacharya, P., Altai, Z., Qasim, M., Viceconti, M.: A multiscale model

to predict current absolute risk of femoral fracture in a postmenopausal
population. Biomechanics and Modeling in Mechanobiology 18(2), 301–318
(2019). https://doi.org/10.1007/s10237-018-1081-0, http://link.springer.com/

10.1007/s10237-018-1081-0

19. Brogi, A., Soldani, J., Wang, P.: Tosca in a nutshell: Promises and perspectives.
In: Villari, M., Zimmermann, W., Lau, K.K. (eds.) Service-Oriented and Cloud
Computing. pp. 171–186. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

20. Bubak, M., Czechowicz, K., Guba la, T., Hose, D.R., Kasztelnik, M., Malawski, M.,
Meizner, J., Nowakowski, P., Wood, S.: The eurvalve model execution environment.
Interface Focus 11(1), 20200006 (2021). https://doi.org/10.1098/rsfs.2020.0006,
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2020.0006

21. Crusoe, M.R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., Tijanić, N.,
Ménager, H., Soiland-Reyes, S., Gavrilović, B., Goble, C., Community, T.C.:
Methods included: Standardizing computational reuse and portability with
the common workflow language. Commun. ACM 65(6), 54–63 (may 2022).
https://doi.org/10.1145/3486897, https://doi.org/10.1145/3486897

22. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and
e-science: An overview of workflow system features and capabili-
ties. Future Generation Computer Systems 25(5), 528–540 (2009).
https://doi.org/https://doi.org/10.1016/j.future.2008.06.012, https://www.

sciencedirect.com/science/article/pii/S0167739X08000861

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

Digital twin simulation development and execution on HPC infrastructures 15

23. Deelman, E., Vahi, K., Rynge, M., Mayani, R., da Silva, R.F., Papadim-
itriou, G., Livny, M.: The evolution of the pegasus workflow manage-
ment software. Computing in Science Engineering 21(4), 22–36 (2019).
https://doi.org/10.1109/MCSE.2019.2919690

24. Garćıa-Hernández, R.J., Golasowski, M.: Supporting keycloak in irods sys-
tems with openid authentication. presented at cs3—workshop on cloud storage
synchronization and sharing services. https://indico.cern.ch/event/854707/

contributions/3681126, accessed: 2023-04-18
25. Hachinger, S., Golasowski, M., Martinovič, J., Hayek, M., Garćıa-Hernández, R.J.,

Slaninová, K., Levrier, M., Scionti, A., Donnat, F., Vitali, G., Magarielli, D., Gou-
bier, T., Parodi, A., Parodi, A., Harsh, P., Dees, A., Terzo, O.: Leveraging High-
Performance Computing and Cloud Computing with Unified Big-Data Workflows:
The LEXIS Project, pp. 159–180. Springer International Publishing, Cham (2022)

26. Jadczyk, T., Malawski, M., Bubak, M., Roterman, I.: Examining Protein Folding
Process Simulation and Searching for Common Structure Motifs in a Protein Fam-
ily as Experiments in the GridSpace2 Virtual Laboratory, pp. 252–264. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

27. Katz, D.S.: Fundamentals of software sustainability
(2018), https://danielskatzblog.wordpress.com/2018/09/26/

fundamentals-of-software-sustainability/

28. Kitowski, J., Wiatr, K., Dutka, L., Szepieniec, T., Sterzel, M., Pajak, R.: Domain-
Specific Services in Polish e-Infrastructure, pp. 1–15. Springer International Pub-
lishing, Cham (2014)

29. Meizner, J., Nowakowski, P., Kapala, J., Wojtowicz, P., Bubak, M., Tran, V.,
Bobák, M., Höb, M.: Towards exascale computing architecture and its prototype:
Services and infrastructure 39, 860–880 (Jan 2021), https://www.cai.sk/ojs/

index.php/cai/article/view/2020_4_860

30. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the iot context: A survey on
technical features, scenarios, and architectural models. Proceedings of the IEEE
108(10), 1785–1824 (2020). https://doi.org/10.1109/JPROC.2020.2998530

31. Nowakowski, P., Bubak, M., Bartyński, T., Guba la, T., Hareżlak, D.,
Kasztelnik, M., Malawski, M., Meizner, J.: Cloud computing infrastructure
for the vph community. Journal of Computational Science 24, 169–179
(2018). https://doi.org/https://doi.org/10.1016/j.jocs.2017.06.012, https://www.
sciencedirect.com/science/article/pii/S1877750317307330

32. Nowakowski, P., Ciepiela, E., Hareżlak, D., Kocot, J., Kasztelnik, M.,
Bartyński, T., Meizner, J., Dyk, G., Malawski, M.: The collage au-
thoring environment. Procedia Computer Science 4, 608–617 (2011).
https://doi.org/https://doi.org/10.1016/j.procs.2011.04.064, https://www.

sciencedirect.com/science/article/pii/S1877050911001220, proceedings of
the International Conference on Computational Science, ICCS 2011

33. Venters, C., Jay, C., Lau, L., Griffiths, M., Holmes, V., Ward, R., Austin, J.,
Dibsdale, C., Xu, J.: Software sustainability: The modern tower of babel. CEUR
Workshop Proceedings 1216, 7–12 (01 2014)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_2

https://dx.doi.org/10.1007/978-3-031-36021-3_2
https://dx.doi.org/10.1007/978-3-031-36021-3_2

