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Abstract. We present a novel method to identify and locate weather
fronts at various pressure levels to create a three dimensional structure
using weather data located at the North Atlantic. It provides statistical
evaluations regarding the slope and weather phenomena correlated to the
identified three dimensional structure. Our approach is based on a deep
neural network to locate 2D surface fronts first, which are then used as an
initialization to extend them to various height levels. We show that our
method is able to detect frontal locations between 500hPa and 1000hPa.
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1 Introduction

Weather fronts are important synoptic scale phenomena influencing the atmo-
spheric environment and weather conditions surrounding it. They can be corre-
lated to extreme weather events such as extreme precipitation [4, 14] or cyclones
[16]. Fronts are usually depicted on a 2D-spatial grid, showing the global position
of a front at the surface level [14, 8]. While this depiction can be sufficient to
satisfy the information about the current location of a front, it neglects the fact
that a front is actually a three dimensional, inclined structure instead of just
a line in 2D-space. Previous methods for detecting fronts relied on data with
low spatial resolution, which makes it hard to analyze frontal inclination due to
horizontal coarseness. With recent high resolution data sets such as ERA5 [6]
we can now provide spatially more accurate locations of fronts which allows us
to determine improved representations of the 3D-structure of fronts.

Classical computational approaches for the detection of spatial 2D fronts rely
on derivations of a thermal field such as wet bulb temperature, or equivalent po-
tential temperature, respectively [8, 1, 7]. Many of these methods need coarser
resolutions or a smoothed thermal field, since they were developed for synoptic
scale features on low resolutions. The field of frontal detection is still highly
active and tools are still refined regularly; e.g. [17]. Deep learning (DL) based
methods have recently been successfully applied to several different problems
in atmospheric physics from cyclone tracking [5] to forecasting [11, 15]. These
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methods have shown to be able to exceed the performance of traditional numer-
ical methods for example in the field of numerical weather prediction (NWP).
Machine Learning (ML) has also been applied to the task of front detection.
Previous work to detect 2D fronts used random forests [3] and neural networks
[12, 10, 2]. In contrast to traditional algorithms these methods can be trained on
high resolution grids and may therefore be directly applied to data sets at this
resolution. In recent work [14], we presented a deep neural network for detect-
ing and classifying frontal lines directly on ERA5 renalysis data. The used data
is provided as a latitude-longitude (lat-lon) grid at a resolution of 0.25◦ along
both horizontal axes. In contrast to other DL-based front detection methods this
model directly outputs the identified fronts as thin lines allowing for high spa-
tial accuracy. Additionally, the model classifies the detected fronts into 4 types
(warm, cold, stationary, occluded). While the evaluation was restricted to areas
covering parts of the northern Hemisphere extending from North America over
the Atlantic to Europe, we also showed qualitatively plausible results for other
parts of the globe.

None of these methods is able to detect the actual three dimensional shape of
a front. So far there is only one approach for the detection of three dimensional
frontal fields [9]. It applies Hewson’s method to several height levels.

However, the approach performs several iterations of smoothing before frontal
detection, which removes fine scale features, reducing the gained information
from high resolution data. This is necessary due to the applied frontal detection
algorithm, which relies on a smoothed temperature field for good results, since
it was developed for coarse resolution data sets.

A typical problem for DL-based methods is the need for labeled training
data. While the ECMWF provides atmospheric grids for several decades there
exists - to the best of our knowledge - no data set regarding three dimensional
structure of weather fronts. As such supervised training of a network to detect
three dimensional fronts is not directly possible and other methods are needed
to complement DL-based front detection.

In this work we propose a new method based on our recently described DL
model [14]. We use the 2D fronts inferred by the network and add a new post
processing pipeline, which extends them to frontal surfaces within the three
dimensional ERA5 grid. To avoid processing a complete 3D grid, we also use the
information obtained from the network output such as the frontal location and
classification for more efficient computation.

Furthermore our model does not rely on fixed thermal thresholds to filter out
wrong results such as the method proposed by [9]. Instead we use an adaptive
threshold to filter false positives per frontal object.

As such our method is – to the best of our knowledge – the first to enable
statistical analysis of three dimensional fronts over multiple timestamps. It is
able to provide qualitatively good results, which are in agreement with theories
regarding the shape and characteristics of a front. As we are not restricted to
singular cases, our method can be a valuable tool in research of front related
weather phenomena. In comparison to previous methods our algorithm can be
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directly applied onto the ERA5 grid, without any smoothing, making full use of
high resolution data.

2 Data

2.1 Atmospheric Data

Processing and evaluation is performed on ERA5 reanalysis data using pres-
sure levels extending from 1000 hPa (surface) to 500 hPa (approx. 5km above
sea level). For our algorithm we use data covering the area [−90, 50]

◦
E and

[90, 0]
◦
N . As we want to extract wide cross sections we only take surface front

pixels into account, that are located within the region spanning [−65, 25]
◦
E and

[65, 25]
◦
N . This region mostly covers the North Atlantic, minimizing influences

of orography such as mountains. The area also contains the northern mid lati-
tudes, where frontal systems are commonly located [18]. The used ERA5 data
does not mask invalid grid points which would be located within the terrain (e.g.
data at 1000 hPa in Greenland), but rather uses interpolation to provide values
for these areas. We do not alter this data except for the calculation of the equiv-
alent potential temperature θe, which is a conserved quantity of reversible phase
transitions, and thus well suited for investigations of fronts. It can be calculated
from the atmospheric variables (pressure p, temperature T , water vapor mixing
ratio qv). We used the approximation provided by MetPy v1.3.1 [13].

2.2 Frontal types

Fronts are distributed into the 4 categories: warm, cold, stationary, occluded.
Warm and cold fronts have a clear structure consisting of a warm and a cold side.
Stationary fronts are mainly defined by their travelling speed and not by their
gradient direction. Occluded fronts on the other hand are the result of a cold
and a warm front overlapping. Thus gradient strength is reduced at lower levels,
while they are split into two parts at higher altitudes, where the two fronts have
not overlapped yet. Thus, we mainly focus on determining the three dimensional
structure of warm and cold fronts, even though the network is able to provide
surface fronts for all 4 categories [14].

3 Methods

Our pipeline consists of 4 stages processing the detected 2D surface fronts pro-
vided by the deep neural network. For each pixel in the surface front we calculate
the normal direction and extract a cross section of the underlying thermal field
along this vector. We evaluate each point of a cross section and perform local
optimization to find the positions of the front at each processed pressure level
within each cross section. The workflow is illustrated in Figure 1 and explained
in more detail in the following subsections.
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1. Estimate normals 2. Extract cross sections

3. Calculate scoring matrix

4. Optimize in shifting window

New Pipeline to extend 2D surface fronts to 3D

Deep Neural Network to detect 2D surface fronts

ERA5 data 2D surface frontsNeural Network

Fig. 1: Top Box: 2D surface fronts are detected from ERA5 data using a deep
neural network. Bottom Box: Steps performed in our pipeline for one normal per
front: (1) Normal directions of surface fronts are estimated; (2) cross sections
along these normal directions are extracted; (3) each pixel is evaluated, creating
a scoring matrix; (4) the minimum within a shifting window (turquoise area) is
calculated and returned as front (red dots).

3.1 Surface front detection

Prior to our new pipeline we locate and classify surface fronts within the ERA5
data grid. For this task we use our neural network described in [14]. The network
was trained using the frontal labels provided by two different weather services
(German Weather Service, North American Weather Service), both of which
covering parts of the Northern Atlantic region in their analysis. Our evaluation
also shows that the network performs well over the sea covered surface - such as
the Northern Atlantic, which we use in this work. The network output consists of
a multi channel 2D grid where each channel denotes the locations of the different
frontal classes (warm, cold, stationary, occluded) on the ERA5 grid.

3.2 Cross sections

Given the locations of the surface fronts for each class we identify frontal objects
by their connectivity and ignore small objects in the following steps. For each
front remaining we extract a cross section along an estimated normal for each
pixel in each determined surface front. Each cross section contains values for the
equivalent potential temperature θe, at each pressure level in our data set for
100 sample locations before as well as 100 sample locations behind the location
of the surface fronts. Sample locations are determined by estimating a normal
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and then sampling the temperature field at 20 km intervals along the normal
direction. As the earth can be approximated by a sphere we estimate the normal
on the tangential plane of each pixel on a sphere rather than on the flat lat-lon
grid. Variable values for sampling locations not located directly on a grid point
are interpolated. Points where the cross section exceeds the limits of our input
region, as well as cross sections containing invalid data (e.g. due to an error in
the files or interpolation with values outside the data region) are removed. The
orientation of each cross section is chosen such that the sign of the dot product
with the wind is positive.

Oversampling The determined surface fronts may be smaller - in terms of pixel
count - than the same front at higher altitudes. For example a front may extend
in a radial fashion where the radius increases with altitude, leading to a larger
circumference of the circular sector. This may result in comparatively sparse
samples of higher altitudes, even though the lower levels may be densely sampled.
To compensate for this we create multiple samples from each surface front pixel
by additionally creating cross sections with slightly deviated positions and/or
angles. For angular deviations of each point we additionally sample cross sections
where the normal is rotated by ±30◦, resulting in 3 different rotations including
the non-rotated cross sections. Additionally we sample each of those 3 normal
directions at shifted positions. We evaluate a total of 9 shifted positions. These
shifted sample points are calculated as the points at a distance of [−4,−3, ..., 3, 4]
from the surface front pixel in the direction perpendicular to the non rotated
normal direction. This results in a total sampling of 27 cross sections per point.

Orientation correction It is important that cross sections are correctly ori-
ented, because the algorithm may not correctly process wrongly oriented sam-
ples, as they exhibit contrary features such as an inverted sign of the gradient.
However, in some cases the wind may be oriented (near) perpendicular to the
front-normal. In these cases the orientation based on the wind direction may
be unreliable, leading to wrongly oriented cross sections. Oversampling - mainly
caused by the rotation - may further add some wrongly oriented samples. As
such we adjust the orientation of samples by taking batches of each frontal ob-
jects pixels and reorient each sample within a batch based on their sign of the
dot product with the mean direction of the batch.

3.3 Extension to other pressure levels

Once we obtain the 2D cross-section slices for each surface front pixel we can
calculate the front location for each height level within that slice.

In a first step we flip the orientation of our cold fronts such that the cold
region is located right to the center, as it should already be the case for warm
fronts. This way we can calculate the positions regardless of the frontal type and
potential differences in the sign of the gradients. A front typically bends over
its cold region, meaning that the purely warm side has little to no information.
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We can therefore cut large parts of the warm region located left of the center of
each cross section to reduce computation, without a loss of information. We cut
the first 60 pixels of each cross section, keeping a buffer of 40 pixels left of the
center.

To find the frontal location in each cross section we first score each pixel of the
cross section to create a score matrix. This score matrix is created evaluating
the scoring functions as described in Subsection 3.4. Once the scoring matrix
is calculated we can determine the frontal structure. Starting from the surface
front which we initially locate at the center of the bottom of our cross section,
we crop a smaller region of 40 pixels width centered at the x position of our
surface front position and a height (extent in y-coordinate) of h = 1 pixel. We
call this the current window. The optimal front location is then determined by
minimizing a scoring function within the current window. Once we determined
h separation points (1 point per pressure level) we shift our window such that
it is now centered at the mean x position determined as our front location and
covering the next set of h pressure levels. With this windowing approach we
restrict the front detection to a smaller region where the simple optimization is
applicable, as we assume that only one front is located within the window. The
shifting of the window with increasing altitude allows us to potentially follow
the fronts inclination across the whole width of each cross section, without the
need to increase the window size. This method may fail if the difference between
two succeeding height levels is larger than the distance covered by the window.
Overall our approach essentially reduces the problem of locating a front in a
three dimensional space to a set of 2D local optimization problems. As there is
no dependency between cross section - even of the same object - the method
can be easily adapted for parallel processing using multiple threads on GPUs or
CPUs.

3.4 Scoring function

The presented algorithm finds the optimal position as the position that optimizes
a scoring function at each pressure level. Our scoring function consists of three
parts each being connected to a typical characteristic of weather fronts.

Lg = ∇xθe (1)

Le =
∣∣∣∣(var[θi,j+1

e , ..., θi,j+k
e ], var[θi,j−k

e , ..., θi,j−1
e ]

)∣∣∣∣
2
, i, j ∈ N (2)

Ld = mean[θi,j+1
e , ..., θi,j+k

e ]−mean[θi,j−k
e , ..., θi,j−1

e ], i, j ∈ N (3)

where index i indicate the vertical level, j denotes the horizontal grid position,
and we set k = 20 as half the running window size of 40 respectively. Equation 1
describes the horizontal gradient of the temperature field. As we orient each
sample such that the cold side is located at higher x indices the location of the
strongest negative gradient is considered to be the ideal position for our front.
This is consistent with the classic definition where the front is located at the zero
pass of the thermal front parameter, which in our case simply becomes the 2nd
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derivative of θe. We can use an optimization approach for this equation instead
of a commonly seen threshold based decision, as

a) we only look at a locally restricted area, where we can assume that the
frontal gradient is the most dominant effect

b) due to our initialization we already know that a front is located here, so we
have a lower risk of false positives.

However, we need to respect that fronts may not extend all the way up to
500 hPa. We therefore added a variable threshold that only points where equation
1 is among the lowest 10% of all gradients within a front at each pressure level
are considered valid locations for a front. As a result, points with very weak
gradients are omitted and not seen as fronts. The latter threshold is adaptable
to the general surroundings meaning that it works for both very strong fronts
with a strong gradient as well as weaker fronts where the gradient may be not
as dominant.

Equation 2 describes our assumption that the air masses before and after a
front should be locally consistent, i.e., we do not expect high variation in the
temperature within one air mass. As a result regions with very high temperature
variance in any air mass are considered less ideal locations for a front.

Finally, Equation 3 describes the fact that the cold air mass is considered to
have a lower mean equivalent potential temperature than the warm air mass.
Our final scoring function therefore can be described as

L = wgLg + weLe + wdLd (4)

with positive weights wg, we, wd ∈ R. For our evaluations we set all weights to
1.

3.5 Final processing

Once we calculated the separation point for each height level, we have obtained a
1D array consisting of the optimal frontal position for each level. If we combine
all these result vectors for all cross section of a frontal object, we can create
a point cloud sampling of the 3D frontal object. If desired one could use post
processing techniques to create a 2D-surface instead. However, for our purposes
point clouds are sufficient as we are interested in statistical evaluation of the
resulting fronts. As our initial surface fronts are already classified we also have
a classification for the three dimensional fronts by simply copying the initial
frontal type for all levels.

4 Results

We present several applications of our method and show results for the evaluated
dataset consisting of hourly reanalysis data for 2016. Due to a lack of a ground
truth dataset of annotated 3D fronts we can only provide qualitative evaluations.
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These evaluations show that the characteristics of our three dimensional fronts
are in accordance with classical theoretical knowledge surrounding fronts and
their expected behaviour. Further we can see that aggregated results as well as
the visual presentation are plausible. Figure 2 shows warm and cold fronts as
identified by our proposed method at 1000hPa, 850 hPa and 650 hPa for 2016-
09-23 00:00 UTC over a background of θe (interval: [270, 360]K). We can clearly
see an inclination of the central meridional warm front, as it "moves" eastward
with increasing altitude. While the central cold front stays roughly at the same
location, indicating a much steeper inclination instead. Note that occluded and
stationary fronts are not shown.

For all our tests we first calculated surface front positions and saved them to
disk. This way the rest of the pipeline could be executed without the need for
a GPU. In these evaluations we removed results where the optimal separation
point was found to be at 0 location within the reduced cross section grid. In
addition, all locations where no valid separation location was found were also
set to 0 before the filter was applied, removing those as well from the evaluation.
This results in approximately 7% to 20% of cross sections being filtered per
level. Here we can observe that the lower and upper levels contain more filtered
samples compared to the levels around 850 hPa, which indicates that frontal
characteristics are more pronounced at this level instead of high altitudes or
near surface. Potential causes why no valid separation could be found include
falsely identified surface fronts, weakly expressed frontal characteristics at the
edges of a front, bad samples caused by the additional sampling or that the front
is not present at this level at all.

(a) 1000 hPa (b) 850 hPa (c) 650 hPa

270 280 290 300 310 320 330 340 350 360

e (K)

Fig. 2: Locations of cold (blue) and warm (red) fronts at 1000 hPa (a), 850 hPa
(b) and 650 hPa (c) for 2016-09-23 00:00 UTC. Shown Snippet Coordinates:
[70, 30]

◦N, [−80, 10]
◦E. Background: θe (interval: [270, 360]K)

4.1 Probability density distribution of temperature difference

A typical warm or cold front is classified by a strong temperature gradient be-
tween two air masses. During the passing of a warm front the temperature rises,
while for a cold front it falls. For our cross sections this means that a warm front
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Identification and location of 3D frontal systems 9

should have a cold side to the right side of the center (i.e. the side the front has
not yet passed) and a warm side at the left of the center (i.e. the side where
the front already passed through). For a cold front the location of the warm and
cold side are swapped.

To highlight the effect of a passing front we plotted the distribution of the
difference of the mean temperature in a region 200 km behind the identified
front and the mean temperature in the region 200 km ahead of the front at
500 hPa, 850 hPa and 1000hPa for the results of our algorithm. We further plot
the results of a baseline at 850 hPa, where the locations at which we evaluate the
temperature difference within a cross section were randomly sampled instead.

Algorithm results Figure 3 shows the histogram of temperature differences
for fronts identified by our algorithm. As expected we can see for all presented
levels that the temperature does indeed rise (fall) with the passing of warm (cold)
fronts. We can further see that the strongest temperature difference can be found
at 850 hPa, a level commonly used for detecting fronts. Further the plot shows
that the temperature difference at 1000hPa is higher than at 500 hPa, indicating
that the temperature gradient at higher levels is less expressed than at (near)
surface level. For both cold and warm fronts we can see that a small percentage
of identified front locations express a wrong sign in the temperature difference,
which is most likely caused by false positive frontal positions or wrongly oriented
samples.
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Fig. 3: Histograms showing the distribution of temperature differences across (a)
cold and (b) warm fronts as calculated by our method at different height levels.

Randomly sampled baseline As a comparison we plotted the temperature
differences at 850 hPa if the frontal separation was uniformly randomly sampled
instead of using our algorithm in Figure 4. The data for the random samples
consists of the same cross sections used for the cold (warm) fronts. To create
these plots we aggregated the results every 168 hours (1 week) within 2016. In
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addition to the histogram we also fitted both a normal and a Laplace distribution
to the data. As can be seen the Laplace distribution provides a good fit for the
temperature difference of the random samples. Further the choice of warm or
cold front cross sections barely changes the distribution of the random samples.
In both cases the mean µ and the peak is located near 0. We realize that in
this case the position of the standard deviation σ of both distributions almost
coincide, thus it makes sense to use σ as a measure for testing the quality of the
derived probability densities.
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Fig. 4: Histograms of temperature differences for randomly separated cross sec-
tions. Additionally displays a fitted laplace and normal probability density func-
tion as well as mean ±1 or 2 standard deviations.

4.2 Temperature difference at various levels

In this section we present results for all height levels, showing how the algorithm
fairs against the randomly sampled case and showing that the algorithm does
provide meaningful results. In Figure 5, we plotted the mean temperature differ-
ence of the random separation case, as well as µ± σ and µ± 2σ for each height
level. Additionally boxplots of the results of our algorithm at each evaluated
pressure level were added to highlight the differences to the randomly sampled
case.

As seen in the previous section the most dominant temperature difference,
even for the random case, lies around 850 hPa. This is in agreement with var-
ious non-DL-based front detection algorithms, that rely on the thermal field
at 850 hPa to determine the location of fronts. Our results confirm that this
commonly used but empirically chosen pressure level is indeed a good choice.

In comparison to the random case, the plots show that for most cases our
results are at least at a σ distance from µ, with the more extreme samples even
exceeding the 2σ distance. Mean (green triangle) and median (orange line) also
tend to be located closely to the 2σ line, sometimes even exceeding it.
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As mentioned in Subsection 4.1 and Figure 4, we can see that the random
fronts temperature difference distribution can be approximated using a laplace
distribution L(µ, b) with mean µ ∈ R and scale b ∈ R. We know that the stan-
dard deviation can be calculated as σ =

√
2b and from this we can calculate that

a point randomly sampled from a laplace distribution has a probability of approx.
75% ( resp. 94%) to lie within the interval [µ− σ, µ+ σ] (resp. [µ− 2σ, µ+ 2σ]).
This further enhances our point, that the extracted 3D fronts are meaningful.
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pressure level (hPa)

15

10

5

0

5

10

e (
K)
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e, 2

(a)

500 600 700 800 900 1000
pressure level (hPa)

10

5

0

5

10

15

e (
K)

difference of e after and before the front (2016)
e,  
e, +
e, 
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Fig. 5: Temperature difference across the detected fronts for different pressure
levels for (a) cold and (b) warm fronts as box plots including their mean (green
triangle) and median (orange line). Additionally the mean (µ) as well as the one
and two σ intervals for the randomly separated fronts is inserted as orientation.

4.3 Evaluation of frontal inclination

In a third evaluation we determine the inclination of weather fronts and provide
a histogram of how the inclination is distributed across fronts of each type. We
determine the inclination in degrees using the following formula:

inclination = arctan

(
|pressure_difference (hPa)|
horizontal_distance (km)

)
(5)

While the formula uses different units, it has the advantage of better showing
the inclination, as opposed to describing the vertical difference in terms of km,
since the atmosphere’s length scales are very different and thus the aspect ratio
(vertical vs. horizontal scale) is very small. For instance, the horizontal extent
of a pixel is 20 km while the vertical distance from 1000hPa to 500 hPa is only
approximately 5 km. Determining the inclination on this scale would make it
hard to see differences in the angles and results in mostly near zero inclina-
tions. In Figure 6 we show the mean cold (a) and warm (b) front as well as the
average inclination of the frontal objects from 1000hPa to 600 hPa (left) and
from 1000hPa to 850 hPa (right). To calculate the inclination of a frontal object
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we first determine the median position of the frontal separation points for each
pressure level. The inclination between two pressure levels is then described by
the line connecting the resulting positions for the corresponding pressure levels
(e.g. 1000hPa and 850 hPa or 600 hPa). The median position is chosen as it is
more robust towards outliers, where the algorithm may have failed to determine
one of the separation points correctly. The mean inclination of frontal objects
as depicted in Figure 6 is then obtained by connecting the median separation
positions averaged over all fronts. In case of the warm fronts (Fig. 6b) we can
clearly see the expected flat inclination, while for the cold fronts (Fig. 6a) we
can see a rather steep inclination of near 90◦ and a slight backward tilt for the
inclination. Both of these observations are in accordance with the typical theory
surrounding the shape and inclination of warm and cold fronts.
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Fig. 6: (a): Average frontal separation for cold fronts in red. Light blue line
indicates the average inclination from surface (1000hPa) to 600hPa (left) or
850hPa (right). Histograms show the distribution of inclinations accordingly.
(b): as (a), but for warm fronts.

4.4 Runtime

Tests were run on a compute node with an Intel 2630v4 CPU with 10 cores and
128GB RAM. For the pipeline we used precalculated fronts from the mentioned
neural network. Thus, frontal locations can be directly forwarded to the pipeline.
The pipeline itself was implemented in Python.

Parallelization is performed by splitting the dataset into multiple batches
of 6 days at hourly time resolution resulting in 144 timestamps per batch. For
each batch all types of fronts were calculated, with two calculations for oc-
cluded fronts. Since intermediate cross sections are stored in RAM instead of
main memory we requested 10GB for each batch. Processing a batch took less
than 150 minutes, varying with the amount of frontal pixels present at each
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timestamp. Per sample timestamp this results in a runtime of approximately 1
minute. As we did not store the cross section results our evaluations also had
to run the complete pipeline, resulting in similar runtimes. Reducing the size of
cross sections as well as the oversampling rate could further reduce runtime and
memory consumption, however we decided to keep those values high, to allow a
more thorough evaluation of the results, as runtime optimization was not a main
focus of this work.

4.5 Potential Extensions

ERA5 data contains theoretically invalid regions such as high pressure levels
in Greenland. In addition to these errors there is also a strong influence at
the ground level temperature based on the orography. As a result, some fronts,
located in the vicinity of land surface, may exhibit dominating ground gradients
based not on the frontal activity but rather the orography. These may lead to
wrongly extracted frontal locations on the lower levels, where this effect is more
dominant.

Our algorithm is only able to extend identified surface fronts. It is not de-
signed to identify new fronts that may not extend all the way to the surface.
Further, occluded fronts are currently not investigated, as the algorithm does
not support the case, where a front splits into several parts at higher altitudes.
Especially as in the case of an occluded front these parts have differently signed
gradients.

Further, we only evaluated our algorithm within the North Atlantic region.
Performance on other regions needs to be further evaluated, especially regarding
orographic features such as high mountains, which are less represented in our
data. However, it is well known that fronts as synoptic weather features are
heavily perturbed by mountainous regions on continents, thus loosing their clear
structure. Therefore, it is even not clear that extending our algorithm to such
regions is really meaningful.

5 Conclusions and Future Work

In this paper we presented a novel pipeline for finding three dimensional struc-
tures of frontal lines based on a surface front detection neural network. Our
algorithm uses the prior knowledge of frontal characteristics and surface front
positions to expand frontal lines from a two dimensional grid to three dimensional
structures. Our model is the first that enables statistical analysis of three dimen-
sional fronts. Therefore, we can provide a statistical evaluation of characteristics
of automatically detected three dimensional fronts, which previous methods were
not suited to do. Our method may thus provide important insights, deepening
the understanding of fronts and their three dimensional structure and how these
are connected to other weather phenomena. The code of the new pipeline will
be available at https://github.com/stnie.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_1

https://dx.doi.org/10.1007/978-3-031-36021-3_1
https://dx.doi.org/10.1007/978-3-031-36021-3_1


14 S. Niebler et al.

Possible enhancements of the proposed method include extensions to other
regions and providing more statistical evaluations regarding similarities and dif-
ferences in the frontal structure over the globe. This would enable further inves-
tigation on how the structure of a front influences phenomena often correlated
to frontal activity such as extreme precipitation. Our current pipeline focuses
on the warm and the cold weather fronts. While occluded fronts can possibly be
detected and found by our algorithm, it is currently not suited to describe the
nature of such fronts as two overlapping fronts. It may therefore be of interest
to extend this approach to cover the more complex shapes of occluded fronts.

Interesting computational extensions would include the generalization of the
proposed method to enable more complex structures including the detection of
frontal three dimensional volumes instead of surfaces. Storing the cross sections
on hard disk would require several TB of memory due to the oversampling of
each pixel and the large horizontal extent. To circumvent this we process each
timestamp individually. Even with multiple cores running in parallel and by
splitting the dataset into multiple batches, computation still takes several hours.
For a better applicability and faster experimentation we therefore plan to provide
a parallelized version of the pipeline on GPU systems.

Another interesting research direction would be the design of a neural net-
work similar to our previous work, to directly detect three dimensional fronts.
However, as currently there is no valid ground truth 3D data regarding weather
fronts, such an approach is not feasible at the moment. We do however believe
that creation of such a network would allow us to leverage the deep neural net-
works’ ability to model complex shapes and phenomena. This approach could,
as proven in the 2D case, create clearer results and reduce computation time. In
addition it may be able to better generalize, i.e. frontal activity over challenging
terrain or detecting the more complex shaped frontal types.
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