
SLAM methods for Augmented Reality systems
for flight simulators⋆

Onyeka J. Nwobodo1[0000−0002−2706−6830], Kamil
Wereszczyński1[0000−0003−1686−472X], and Krzysztof Cyran1[0000−0003−1789−4939]

Department of Computer Graphics, Vision and Digital Systems,Silesian University of
Technology, Akademicka 2A, 44-100 Gliwice, Poland

{onyeka.nwobodo, kamil.wereszczynski, krzysztof.cyran}@polsl.pl phone:

Abstract. In this paper, we present the review and practical evalua-
tion of the flight simulators of Simultaneous Localization and Mapping
methods. We present a review of recent research and development in the
SLAM application in a wide range of domains, like autonomous driving,
robotics and augmented reality (AR). Then we focus on the methods
selected from the perspective of their usefulness in the AR systems for
training and servicing the flight simulators. The localization and map-
ping in such an environment are much more complex than in others since
the flight simulator is relatively small and close area. Our previous exper-
iments showed that the built-in SLAM system in HoloLens is insufficient
for such areas and has to be enhanced with additional elements, like QR
codes. Therefore, the presented study on other methods can improve the
localization and mapping of AR systems in flight simulators.

Keywords: SLAM, flight simulators, Deep Learning, LiDAR, Augmented
Reality

Introduction

Simultaneous localization and mapping(SLAM) have attracted much interest
recently, particularly in intelligent systems and robotics. There are problems
with implementing SLAM due to its complexity. This problem has existed for
over 30 years, especially when finding a solution[1]. However, various approxima-
tions have come close to resolving this challenging algorithmic problem following
decades of mathematical and computational effort[2]. Solving the SLAM prob-
lem will enable a wide range of potential applications for autonomous robots[3].
A robot that can navigate its environment without human intervention is said
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to be autonomous. For a robot to successfully navigate, it must have a thor-
ough understanding of its surroundings and be able to track its position in
that environment consistently and accurately. Scientists employ various meth-
ods to enhance the autonomy and self-discovery of robot navigation, leading to
the development of augmented reality(AR) systems. The state-of-the-art SLAM
technology uses multiple sensors, such as LIDAR, cameras, and IMU, to create
highly accurate and detailed maps.

Simultaneous localization and mapping(SLAM) is a method robotics and
computer vision professionals use to locate a robot while simultaneously creat-
ing a map of its surroundings. SLAM aims to estimate the agent’s location and
the environment’s structure using sensor data such as lidar, cameras, GNSS re-
ceivers and antennas, an Inertial Measurement Unit(IMU), and odometry. It is
known as "visual SLAM" when the SLAM algorithm is based on camera sensors,
and "LiDAR SLAM" is based on laser scanners[4].
Microsoft HoloLens is a head-mounted device that projects augmented real-
ity(AR) into the users’ field of view. It is a direct-based feature with built-
in visualization and no camera trajectory module. The HoloLens is an optical
see-through gadget with numerous sensors, including an accelerometer, magne-
tometer, and gyroscope. Numerous good SLAM techniques have greatly aided
the development of SLAM technology, including MonoSLAM[5], DTAM[6], LSD
SLAM[7], RATSLAM[8], KinetFusion[9], RGB-D SLAM[10]. DeepVo[11].Various
SLAM methods target different objectives; Microsoft HoloLens uses a variant of
the SLAM technology to enable its augmented reality capabilities. Therefore, in
this work, we discuss different SLAM methods for Microsoft HoloLens and flight
simulators, furthermore compare these methods and the deep learning SLAM
methodology in a flight simulator environment.

The SLAM problem has numerous current solutions, which can be categorized
as filter-based and global optimization approaches. The filter-based approach is
the classical approach that recursively performs prediction and update steps.
They are typically thought of as a maximum posterior(MAP) method where
the robot’s previous distribution is estimated using data from sensors like the
IMU. The likelihood distribution is constructed by combining the IMU data with
those made by a camera or LiDAR[12]. The IMU sensor measurements utilize
the prediction step of a standard SLAM filtering technique to forecast the vehi-
cle’s motion(odometry)[13]. At the same time, the estimated camera posture and
measured image attributes are employed as a likelihood distribution to update
the predictions in the update step[12]. This includes all the Kalman filter fami-
lies (EKF, UKF and SEIF) and particle filters. The global optimization method
relies on keeping a few keyframes in the environment and estimates the motion
through bundle adjustment(BA). Kummer et al.[14] estimate the robot trajec-
tory like the SLAM graph by processing all sensor measurements. They typi-
cally use least-squares adjustment methods and optimization, considered more
accurate than the filtering process[15]. This is currently a popular approach for
vision-based SLAM such as ORB-SLAM. Following this, other researchers have
attempted to increase the effectiveness of SLAM systems by utilizing new fea-
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ture extraction and matching algorithms, including orientated FAST and rotated
BRIEF(ORB)[16] and Speeded-Up Robust Features[17].

SLAM has various applications in decision-making processes, including au-
tonomous driving (on land, air, sea, and underwater), robotics, and augmented
reality.
SLAM-based Augmented Reality(AR) is a technology that mixes real-world im-
agery and computer-generated graphics to improve user experience[18]. SLAM-
based AR uses cameras and sensors to map the surroundings in real-time and
precisely put virtual items in the real world. This enhances the stability and pre-
cision of virtual objects in the real environment and makes for a more immersive
AR experience. To provide the appearance that the virtual and real worlds are
completely integrated, displaying AR items in the proper place and adhering
to the user’s perspective demands a solution to numerous static and dynamic
registration issues[19]. Recently, scientists have employed SLAM’s accuracy and
real-time performance for virtual registration in AR[20]. Regarding direct ap-
proaches[7], a camera-based method, LSD-SLAM, enables the construction of
large-scale, semi-dense maps that do not require adjusting bundles of features.
ORB SLAM is another approach to visual SLAM proposed by[21] that uses a
feature-based approach to simultaneously estimate the camera pose and build a
map of the environment. To partially resolve the scale ambiguity and provide mo-
tion cues without the use of visual features, Visual Inertial SLAM (VISLAM) can
combine VSLAM with Inertial Measurement Unit(IMU) sensors(accelerometer,
gyroscope, and magnetometer)[22]. The HoloLens device’s ability to localize has
been demonstrated by a recent study on the technology’s position tracking[23].
According to [24], with the help of Microsoft’s newly released spatial mapping
capability, the HoloLens can map scenes in its immediate surroundings. Envi-
ronmental objects such as walls, floors, and obstacles can be found using spatial
mapping.

SLAM on Microsoft HoloLens is used to build 3D maps of an environment
and track the device’s position within it in real-time. It uses inbuilt cameras
and sensors to detect and track distinctive environmental features and estimate
the device’s pose. The HoloLens device combines RGB cameras, depth sensors,
and IMUs(Inertial Measurement Units) that can be used for SLAM. The device
can use visual SLAM, visual-inertial SLAM, or RGB-D SLAM to estimate the
camera pose and build an environment map. Using SLAM, the HoloLens device
can provide a more accurate and stable AR experience, as it can track the user’s
movements and the position of objects in the environment. More recent work
at Microsoft has concentrated on large-scale scene reconstruction utilizing voxel
hashing[25] and RGB-D camera re-localization[26] for recovering from tracking
failures. In the area of SLAM methods in flight simulators, Skurowski et al.[27]
uses the QR codes for marking the crucial points in the simulator. We made this
study to avoid including the additional and non-natural elements of the flight
simulator cockpit.

The following is this paper’s main contributions:
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1. The analysis is completed by running/discussing five selected states of the
SLAM methods, which have been chosen to represent the diversity of the
existing SLAM methods on Microsoft HoloLens and flight simulator,

2. The accuracy of the existing SLAM methods on Microsoft HoloLens is com-
pared with the presented SLAM and deep learning methods in a flight sim-
ulator environment.

In numerous studies, SLAM techniques are reviewed and contrasted. Depend-
ing on the robot’s goals, they provide information on the dependability, real-
time estimation, and accurate depiction of the surroundings, as well as the lo-
cation and orientation of the robot. As reviewed and compared by the following
authors[28–32]. It is discovered, nonetheless, that none of the articles compares
SLAM techniques using Microsoft HoloLens in a flight simulator environment.
The primary motivation supporting this research is to evaluate the Microsoft
HoloLens SLAM techniques and compare them to the chosen SLAM and deep
learning techniques in flight simulator scenarios. The outcome will make selecting
the SLAM methods most appropriate to HoloLens in a flight simulator environ-
ment easier for accurate, reliable, and long-term motion estimation to render
smooth and stable holograms.

1 Materials and Methods

RGB-D SLAM: It is a system that creates a real-time 3D model of the sur-
roundings by fusing RGB and D(depth) information. The additional depth infor-
mation aids in overcoming some of the difficulties associated with using standard
RGB-only SLAM techniques, such as coping with repeated or texture-less sit-
uations. The system uses an RGB-D camera, which records information about
each pixel’s color and depth, and algorithms to predict the camera’s position and
create a 3D environment model as the camera moves[33]. Modern RGB-D SLAM
systems align point features whose spatial coordinates are determined by corre-
sponding sensor depth data using the Iterative Closest Point (ICP) technique.
However, because visual features typically lie at the edges of actual objects,
noise frequently contaminates the depth measurements of features. Utilizing the
benefits of the RGB-D camera’s depth image is one technique to deal with this
problem. For instance, planes can be inferred from the depth information, and
the locations on these planes have less noise than the corners. Instead of us-
ing point characteristics as primitives, researchers have proposed using planes.
Towards that end, Gao and Zhang[34] provide a technique that extracts and
chooses reliable depth values or planer point features. Dai et al.[35] use Delau-
nay triangulation, in which changes in the triangle edges in adjacent frames are
compared to assess the correlation of feature points and differentiate between
dynamic from static map points. To create a realistic and immersive experience
in a flight simulator environment, the RGB-D SLAM approach employing depth
data from an RGB-D camera for HoloLens can be a solid choice.

Advantages:
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1. Improved spatial awareness: The HoloLens cameras’ RGB and depth data
can create a more realistic depiction of the surroundings, giving users en-
hanced depth perception and spatial awareness.

2. Real-time mapping: The HoloLens’ ability to update its map of the sur-
roundings in real-time thanks to RGB-D SLAM makes it perfect for usage
in dynamic simulation scenarios like flight simulators.

3. Increased interaction: The HoloLens can offer customers a more interactive
and immersive experience in the flight simulator environment with an accu-
rate representation of the environment.

Limitations:

1. High computational requirements: High computing power is needed to pro-
duce an accurate map in real-time using the RGB-D SLAM algorithm. This
presents a challenge for processing-constrained devices like the HoloLens.

2. Sensitivity to lighting conditions: RGB-D SLAM methods depend on precise
depth data, which is susceptible to variations in lighting. The maps that the
HoloLens produces may need to be more accurate.

3. Occlusions: It can be challenging for the HoloLens to effectively acquire depth
information when environmental objects overlap in certain circumstances.
The maps produced by the RGB-D SLAM algorithm may need to be revised.

ORB-SLAM(oriented Fast Rotation Brief SLAM): One of the latest
monocular vision-based SLAM techniques with an open-source implementation
is ORB-SLAM[36] using a real-time SLAM library called ORB-SLAM, monoc-
ular, stereo, and RGB-D cameras can calculate their camera trajectories and
sparse 3D reconstructions. It uses ORB Rotated BRIEF(Binary Robust Inde-
pendent Elementary Features) and Oriented FAST(Accelerated Segment Test)
feature detectors developed by[16]. According to Mur-Artal et al.[21], this tech-
nique estimates position and maps from an image sequence in real-time. The pri-
mary ORB-SLAM process creates an environmental map comprising keyframes
and map points. Each keyframe stores a list of 2D features and their location
in ORB-SLAM coordinates. Tracking, local mapping, and loop closure are the
three parallel threads that comprise the ORB-SLAM process.1)Using motion-
only BA to reduce re-projection error and camera localization with each frame
by finding matching features on the local map. 2)The local mapping to main-
tain control over, enhance local mapping and perform local BA. 3)Loop closure
uses position graph optimization to find large loops and correct accumulated
drift. After optimizing the position graph, this thread triggers a fourth thread
to perform a full BA to determine the best solution for structure and motion. To
address the issue of the low number of feature point extraction and the simple
keyframe loss, Cai et al.[37] proposed an enhanced visual SLAM based on affine
transformation for ORB feature extraction. However, the environments used in
these methods are frequently static, which is insufficient to meet the demands
of the complex task in a dynamic environment. Various approaches address the
dynamic problem[38, 39].
Advantages:
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1. Real-time performance: In a flight simulator scenario where quick judgments
are necessary, ORB-SLAM can give real-time mapping and localization of
the environment, which is essential.

2. Robustness: ORB-SLAM excels in a flight simulator environment because
it is highly resilient to changes in illumination conditions and can endure
abrupt motions and shocks.

3. Open-source: Open-source platform ORB SLAM is easily customized and
adaptable to fulfill unique requirements.

Limitations

1. Dependence on keypoints: ORB-SLAM relies on locating and following the
keypoints in the image, which things like occlusions and changes in lighting
can impact. The effectiveness of ORB-SLAM may be hampered if keypoints
are not precisely identified or tracked.

2. Limited map-building capabilities: Real-time tracking is the purpose of ORB-
SLAM. In comparison to other SLAM algorithms that place a higher priority
on creating a comprehensive map. As a result, its map-building capabilities
may need to be revised.

3. High computational requirements: In real-time applications, especially in
a resource-restricted setting like a HoloLens, ORB SLAM takes a lot of
processing resources, which can be difficult.

LSD-SLAM(Large scale direct monocular SLAM): It is a direct monocu-
lar SLAM method that tracks and maps objects directly using picture intensities
rather than key points. Direct image alignment is used to follow the camera, and
semi-dense depth maps created by filtering through several pixelwise stereo com-
parisons are used to estimate geometry[7]. Then, using a Sim (3) pose-graph of
keyframes creates large-scale maps with scale-drift corrections, including loop
closures. LSD-SLAM is a real-time executable on CPUs and even on contem-
porary smartphones. Traditional monocular SLAM techniques have limitations
in accuracy, scalability, and performance in vast and dynamic situations. LSD-
SLAM was created to address these issues. There are two primary phases to this
method: 1)Keyframe selection: Keyframes are chosen based on the visualization
information of the incoming image changes, and 2)Direct Image Alignment: The
best transformation(i.e. rotation and translation) that aligns the two images is
found by directly comparing the current image to the keyframes in the map.
Forster et al.[40] suggested SVO(semi-direct visual odometry), a visual odome-
try(VO) without loop closure detection and re-localization, as a method for mea-
suring motion. SVO follows the features from accelerated segment test(FAST)
feature points and surrounding pixels by minimizing the photometric error to de-
termine the camera’s motion. Bergmann et al.[41] proposed an online photomet-
ric calibration that dynamically estimates the photometric parameters by solving
the least squares equation of the feature tracker and modifies the exposure situa-
tion of the input sequence to improve the performance of direct visual odometry.
It marks a significant advancement in direct formulation placement and map-
ping precision. Peixin Liu et al.[42] improved the visual slam technique based
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on the sparse direct method, in which input sequences’ silhouette and response
functions were optimized based on the camera’s photometric configuration. Opti-
mization equations were developed by tracking the input sequence’s Shi-Tomasi
corners with sparse direct visual odometry (VO) pixel tracking. Additionally,
the joint optimization equation was solved using the Levenberg-Marquardt(L-
M) method, and the photometric calibration parameters in the VO were updated
to realize real-time dynamic compensation of the input sequences’ exposure. This
reduced the impact of light variations on SLAM’s accuracy and robustness. A
Shi-Tomasi corner-filtered strategy further reduced the computational complex-
ity of the suggested technique, and the loop closure detection was realized using
the orientated FAST and rotated BRIEF(ORB) features.
Advantages:

1. Real-time performance: LSD-SLAM is appropriate for usage in flight simu-
lators because it is made to work in real-time.

2. High accuracy: Regarding motion tracking, LSD-LAM is a dependable source
because it can precisely follow the simulator’s movement.

3. Low computational power requirement: LSD-SLAM is appropriate for low-
end computer systems because it does not require much computational re-
sources.

Limitations:

1. Difficulty handling dynamic environments: LSD-SLAM can struggle with
dynamic environments, where objects rapidly move or change in real-time.

2. Sensitivity to lighting conditions: LSD-SLAM relies heavily on visual infor-
mation, making it susceptible to lighting conditions and camera noise.

3. Need for good initialization: LSD-SLAM requires an accurate initial pose of
the simulator, which can be challenging to achieve in specific flight scenarios.

4. Limited robustness: LSD-SLAM can be affected by insufficient or inaccurate
data, leading to incorrect results or lost track.

VINS(Virtual Inertial SLAM): Virtual inertial SLAM is a hybrid technique
that employs data from visual and inertial sensors, such as gyroscopes and ac-
celerometers, to map the surroundings and estimate the camera’s pose. The
technique tracks the camera’s movements and calculates its position in the sur-
roundings using the visual elements seen in photos. The inertial measurements
help increase the posture estimate’s precision by supplying information about re-
cent motion. The map is updated when new features are added, and old features
are removed as the camera moves through the surroundings. Several benefits
over conventional monocular or stereo-visual SLAM techniques are provided by
utilizing visual and inertial information in VINS algorithms. For instance, VINS
algorithms can accurately estimate the camera’s motion even without visual in-
put, which is frequently the case in chaotic or obscured surroundings. Addition-
ally, VINS algorithms are suited for use in applications that call for long-term
mapping or tracking because they may offer drift-free estimations of the cam-
era’s position and orientation over time. According to their method[43], inertial
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measurements should be tightly integrated into a keyframe-based visual SLAM
structure; in the visual SLAM system, both the re-projection error terms and
the cost function IMU are optimized. The technique to integrate visual informa-
tion and IMU can be classified into loosely coupled[44] and tightly coupled[43]
techniques. This can be achieved by evaluating whether the state vector includes
the visual information. The vision-based SLAM and the inertia-based modules
are often executed separately as part of the loosely connected techniques. Addi-
tionally, the measures are estimated using the combination of the results. The
loosely connected approach still suffers from the monocular SLAM drift issue. In
a tightly coupled technique, the depth information from the monocular SLAM
can be calculated, and the IMU deviation can be fixed by adding visual infor-
mation to the state vector. This approach is more reliable and accurate than
the traditional single-vision-sensor-based SLAM. Yin et al.[45] present a stereo
visual-inertial SLAM system, using a technique to detect dynamic features that
loosely coupled the stereo scene flow with an inertial measurement unit(IMU)
and tightly coupled the dynamic and static characteristics with the IMU mea-
surements for nonlinear optimization.
The Microsoft HoloLens SLAM algorithm uses inertial measurements from the
HoloLens’ IMU and high-quality visual information from the virtual environ-
ment to produce more precise and stable estimates of the device’s position and
orientation in a flight simulator environment than using just one of these sources
alone.
Advantages:
1. High precision: Visual and inertial sensors fused can accurately estimate

location and orientation.
2. Robustness: The system can operate effectively in low-light conditions or

without lighting. It can still deliver accurate position estimates when a tem-
porary loss of visual data occurs.

3. Performance in real-time: The system’s ability to perform real-time esti-
mation, allowing for smooth and responsive navigation in the virtual envi-
ronment, suits it for robotics, augmented reality, and autonomous vehicle
applications.

4. Autonomy: The device is equipped with Visual Inertial SLAM, which permits
independent operation without external tracking systems.

Limitations:
1. Sensitivity to starting conditions: The system’s accuracy is strongly influ-

enced by the initial conditions, which might impact the system’s operation
if not properly calibrated.

2. Cost of computation: The system is challenging to implement on low-power
devices due to the high computational resource requirements.

3. Drift over time: The system’s mistakes may build up, causing drift in the
estimated position and orientation.

Deep learning SLAM methods
Deep learning has shown increasingly clear advantages in image processing, es-
pecially in data fitting, feature extraction, and spatial transformation, which
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has produced exciting results. The traditional manual algorithm compared with
studies on recognition[46], image segmentation[47], object detection[48] and im-
age classification[49] all of which showed the algorithm to be significantly better.
Slam’s deep learning implementation can circumvent the limitations imposed on
visual odometry and scene recognition by manually creating features. Addition-
ally, it helps build high-level semantics and develop the agent’s knowledge base,
improving the agent’s perceptual and cognitive abilities. The model has under-
gone data-driven training to make it more consistent with people’s interactions
and settings. The evolution of visual SLAM from geometry-based methods to
deep learning methods occurs. Recently, visual SLAM issues, including visual
odometry[50] and loop closure[51], have been addressed using both supervised
deep learning and unsupervised approaches. Due to these recent developments,
deep learning techniques have a significant potential to address the complex
problems of visual SLAM by incorporating adaptive and learning capabilities.
Using an unsupervised end-to-end learning framework, Geng et al.[52] propose
an ORB-SLAM method that better estimates camera motion and monocular
depth. Liet al.[53] employed SegNet, a well-known semantic segmentation net-
work, to segment the images and further separate dynamic objects. Zhang et
al.[54] use YOLO[55] to recognize objects in the environment, and to increase
the system’s accuracy, they used a semantic map to filter dynamic feature points.
The scientists’ current work suggests fusing SLAM and deep learning to speed
up the various visual SLAM system elements. Tateno et al.[56] describes a tech-
nique for accurate and dense monocular reconstruction where CNN-predicted
dense depth maps from a deep neural network combine depth measurements
with direct monocular SLAM. Li et al.[57], using UnDeepVO perform unsuper-
vised training on stereo images, then utilize monocular images to estimate pose
and create maps. Vijayanarasimhan et al.[58] present SfM-Net, a neural network
that trains the image generated from the geometry to extract 3D structure,
ego-motion, segmentation, object rotations, and translations in videos.

Advantages:

1. Fusion of SLAM with Deep Learning: One method integrates deep learning-
based techniques with conventional SLAM algorithms. For instance, a deep
neural network that enhances the accuracy of a traditional SLAM algorithm’s
output or a deep neural network that refines the output of a typical SLAM
method.

2. Increased accuracy: Deep learning can potentially enhance the accuracy of
maps produced by conventional SLAM techniques. To create more precise
3D maps, a deep neural network can be trained to estimate the depth of
objects in a given environment.

3. Increasing Robustness: Deep learning can also improve the robustness of
conventional SLAM systems. For instance, a deep neural network can be
taught to recognize and rectify faults in the SLAM output, improving its
ability to handle difficult situations like low light levels or rapid motions.

Limitations:
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1. Data collection and annotation: Deep learning algorithms need a lot of la-
beled data to be trained, which might be challenging to gather and label in
a flight simulator environment.

2. High computational requirements: Deep learning techniques demand a lot of
computer power, which can be difficult for a device like the Hololens, which
has a relatively low processing capacity.

3. Model size: Deep learning models can get rather large, making it difficult to
store and deploy them on a system like Hololens.

4. Deep learning algorithms can be expensive to train, making them less desir-
able for commercial flight simulator applications.

2 Results and discussion

We used HoloLens 2 to run SLAM techniques in the flight simulator, and we
got access to real-time live-streaming video of the simulator cockpits from every
camera. Utilizing the research mode (RM) depicted in Figure 1, data is collected
from the depth sensors, IMU, and gray-scale cameras. We used the Python li-
brary to connect to the HoloLens 2 server, send commands and configuration
data, receive and decode data, and analyze the data for usage with other li-
braries.

The main goal of utilizing HoloLens to run the SLAM methods on the cock-
pit was to determine how well each method could be customized to find patterns
and structures in the cockpit or map the flight simulator cockpit for precise and
reliable pose estimation. Our test results are displayed below. In our result, as
compared in Table 1, the SLAM methods discussed in our methods section, we
inferred with our experimental result, as shown in figure1 the performance of
SLAM methods in a flight simulator environment. RGB-D SLAM is considered
moderate compared with other SLAM techniques because flight simulators often
have a controlled and structured environment, so there are fewer variables and
obstacles to consider when detecting features in the environment. ORB and LSD
SLAM are visual-based techniques that use features extracted from the images
to perform SLAM. ORB SLAM is considered poor because it is not robust to
lighting changes or occlusion; it makes it difficult for the SLAM algorithm to dis-
tinguish between different objects in the environment, while LSD SLAM is poor
in terms of accuracy in a large-scale environment. VINS fuses information from

Methods Map qual-
ity

Localization
Accuracy

Computational
Cost

Robustness Efficiency In flight
simulator

RGB-D Moderate Good High Poor Fair Moderate
ORB Low Good Moderate Good Good Poor
LSD High Excellent Low Fair Fair Poor
VINS High Excellent High Excellent Good Good
DL Good Excellent Very high Good Low Good
Table 1. Comparative table of SLAM methods and flight simulator environment
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Fig. 1. Top picture shows the simultaneous capture from all the Hololens 2 sensors.
The left picture shows the feature detection, while the right one - the 3D Map of the
cockpit.

visual and inertial sensors; therefore, it is considered good because it provides
accurate results without additional sensors. Deep Learning (DL) is considered
good because it can learn to extract useful features from the sensor data and
adapt to a different environment.

3 Conclusion

This paper discussed and analyzed different SLAM methods in a flight simulator
environment. We obtained a high-resolution live stream video of a flight simu-
lator cockpit with a high dynamic range using HoloLens 2. We perform feature
detection on the video stream, and the SLAM algorithm then extracts features
from the cockpit structures. These futures can be used to estimate the robot’s
position and orientations relative to the environment’s features, track the robot’s
movement, and build a map of the environment in real-time. Comparing different
SLAM techniques is challenging because their performance depends on the com-
plexity of the surrounding environment and the type of sensors being employed.
Nevertheless, this work still suggests selecting a suitable SLAM technique for
HoloLens-based flight simulator scenarios. Future research should concentrate
on enhancing the effectiveness of Visual Inertial SLAM and upgrading it based
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on the findings of this publication. We will demonstrate how the proposed tech-
niques may be utilized to develop more accurate and reliable algorithms for
feature detection, tracking, and aligning virtual objects in the real world while
using augmented reality goggles. This will help to reduce the incidence of track-
ing failures. We will present the development of better sensor fusion techniques
by integrating with other sensors and fusing data from multiple sensors; the
system can better understand its environment and its position. This model can
aid in improving the SLAM system’s accuracy and help it better forecast air-
craft behavior under various flight conditions. In augmented reality, one of the
significant challenges is the ability to operate in a dynamic and unstructured
environment. We will create an algorithm capable of a wider range of environ-
ments in handling challenging conditions, such as low light, moving objects and
dynamic scenes. We will also investigate how to make algorithms better by using
machine learning to track the location and orientation of an AR device in the
actual world. The program can recognize features in real-world surroundings and
follow their movement to estimate the position and orientation of the device by
training machine learning on an extensive data collection of images. Addition-
ally, we will apply SLAM methods to reduce the latency caused by occlusions,
where real-world objects obscure virtual objects. SLAM techniques can help to
ensure that virtual items are perfectly aligned with the actual world, even when
the user moves and the environment changes, by updating the device’s position
and orientation continually.
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