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Abstract. Prescribed fires are controlled burns of vegetation that fol-
low a burn plan to reduce fuel build-up and mitigate unanticipated wild-
fire impacts. To understand the risks associated to a prescribed burn,
modern fire simulation tools can be used to simulate the progression of
a prescribed fire as a function of burn conditions that include ignition
patterns, wind conditions, fuel moisture and terrain information. Al-
though fire simulation tools help characterize fire behavior, the unknown
non-linear interactions between burn conditions requires the need to run
multiple fire simulations (ensembles) to formulate an allowable range on
burn conditions for a burn plan. Processing the ensembles is often a
labor intensive process run by user-domain experts that interpret the
simulation results and carefully label the safety of the prescribed fire.
The contribution of this paper is an algorithm of ensemble based learn-
ing that automates the safety labeling of ensembles created by a modern
fire simulation tool. The automated safety labeling in this algorithm is
done by first extracting important prescribed fire performance metrics
from the ensembles and learn the allowable range of these metrics from
a subset of manually labeled ensembles via a gradient free optimization.
Subsequently, remaining ensembles can be labeled automatically based
on the learned threshold values. The process of learning and automatic
safety labeling is illustrated on 900 ensembles created by QUIC-Fire of
a prescribed fire in the Yosemite, CA region. The results show a per-
formance of over 80% matching of learned automated safety labels in
comparison to manually generated safety labels created by fire domain
experts.
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1 Introduction

As the extent of landscapes burned by wildfires continuously grow, it is impor-
tant to take advantage of prescribed fires to manage the risk of uncontrollable
wildfires. A prescribed fire is a controlled burn of vegetation and ignited inten-
tionally to meet fuel and vegetation management objectives, such as reducing
hazardous fuels, sustain the natural landscapes, and avoid extreme wildfires.
Compared to a wildfire that is unplanned, prescribed fire can be controlled by
reducing the risk of a fire escape.

There are many positive effects of a prescribed fire on soil, vegetation, or even
some cultural artifacts, and periodic fire plays an important role in the balance of
many ecosystems [1–3,12,14]. Therefore, prescribed fire can be used as a tool to
manage the forest area in various ecological aspects, such as preventing invasive
vegetation and facilitating the recovery of specific species [6]. However, people
are averse to the risk of a prescribed fire due to the lack of scientific knowledge
about the benefit of a prescribed fire in an ecosystem management [13].

Environmental or burn conditions that include the landscape, terrain, fuel
moisture, wind speed, wind direction and ignition pattern are important factors
for the progression of the fire. Extensive modeling efforts have been documented
that help with the prediction of the fire spread as a function of the burn condi-
tions [4, 5, 8, 9, 11, 16]. With the advance of the science and technology, various
software tools have been developed to numerically simulate the progression of a
prescribed fire. QUIC-Fire [10] is a three-dimensional fire simulation tool that
provides dynamic fuel consumption over time.

Although the progression of the consumed fuel can be simulated by QUIC-
Fire, the trade-off between controlled fuel consumption and the safety of the
prescribed burn must be taken into account when deciding on the allowable
burn conditions. In practice, the unknown non-linear interactions between burn
conditions requires the need to run multiple QUIC-Fire simulations (ensembles).
The ensembles can be labeled as safe, marginal and unsafe by fire domain ex-
perts manually to formulate an allowable range on burn conditions. The manual
labeling process is labor intensive and time consuming, and a fast and accurate
automatic labeling algorithm that incorporates and learns the expertise of a fire
domain expert is desirable.

The contribution of this paper is an algorithm of ensemble based learning
that automates the safety labeling of ensembles created by a modern fire sim-
ulation tool. The automated safety labeling in this algorithm is done by first
extracting important prescribed fire performance metrics from the ensembles
based on a desired burn boundary within a burn plan. Any fire escapes out-
side the desired burn boundary is characterized as a slop-over and performance
metrics identify the size, spacing and the number of slop-overs. Subsequently,
manually labeled ensembles are used to learn the allowable range of the slop-
over metrics to distinguish between safe, marginal and unsafe fire conditions.
With some integer-valued metrics, the learning is formulated via an gradient-
free optimization based on a genetic algorithm [7] that has the capability to deal
with integer-valued functions.
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The optimized (learned) allowable range of the slop-over metrics and the en-
vironmental conditions such as wind speed and fuel moisture are configured as
parameters in the automatic labeling. The numerical values of these parameters
are used in the automatic labeling algorithm. The optimization ensures an opti-
mized prediction accuracy of the automatic safety labeling of the ensembles. In
order to authenticate the performance of the automatic labeling, the use cases of
900 ensembles of a prescribed fire in the Yosemite, CA area are utilized. Learning
and matching 100% of the manually assigned safety labels of a subset with 48
out of the 900 ensembles, the automatic labeling is used to provide safety labels
for the remaining ensembles. With a success rate above 80%, the proposed au-
tomatic labeling algorithm works efficiently and accurately, and can be used as
a tool to design the burn plan of the prescribed fire.

2 QUIC-Fire Output Data

With the information of the surface moisture, fuel type, wind conditions, and
ignition pattern, QUIC-Fire [10] can simulate the spread of the prescribed fire.
The typical output produced by QUIC-Fire at each simulation step is the fuel
consumption as depicted in Figure 1.
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Fig. 1: Output (fuel consumption) of QUIC-Fire. The green line represents the
desired boundary and the red line represents the allowable boundary. The yellow
area is the burn area (fuel consumed) with y = 1 and the dark blue area is the
unburned area (fuel not consumed) with y = 0.

Similar to [15], the burn area is represented by the yellow area with y = 1,
and the unburned area is represented by dark blue area with y = 0. The value
of each pixel can be expressed as

yi,j = f([i, j], b) =

{
0, if b < 0.001

1, if b ≥ 0.001
(1)
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where [i, j] describes the position of the target pixel in the image, b is the absolute
difference value between the fuel densities before the prescribed fire starts and
after the prescribed fire ends, and y is the value of pixel at [i, j] and used to
distinguish between the burn area and unburned area.

In Figure 1, the provided desired boundary is drawn by a green line, which
defines the area inside the desired boundary that is expected to burn, and the
allowable boundary is drawn by red line, which separates buffer area and non-
allowable burn area where fire is definitely considered to be unsafe. The allowable
boundary is determined by the size of the fuel domain used for the simulation
in QUIC-Fire. Without loss of generality, whether a fire escapes outside the
allowable boundary can be distinguished by checking whether there is a pixel
with y = 1 outside the closed polygon representing the allowable boundary. On
account of the fact that the shape of the fire is arbitrary, deciding the fire safety
by only depending on predetermined boundaries is not enough.

The yellow area outside the desired boundary in Figure 1 is regarded as the
slop-over, and the number of the disconnected yellow area outside the desired
boundary is regarded as the number of slop-overs. Hence, the simulation shown
as Figure 1 includes three slop-overs. With the definitions of desired boundary
and allowable boundary, slop-over plays an important role in evaluating the
safety of the prescribed fire. If the slop-over has the potential to spread outside
the allowable boundary, and is hard to control, the corresponding prescribed fire
can be unsafe. For identification of the fire safety for each simulation (ensemble),
three levels are used: safe, marginal and unsafe.

3 Feature Definitions

Following the summary of the nomenclature given in Table 1, a short expla-
nation is given for the inputs and parameters used in the automatic labeling
of ensembles. After collecting the manual labels provided by fire domain ex-
perts, the number of the slop-over ks, the total area of the slop-over As, and
the distance between each slop-over ls, can be used to evaluate the safety of the
prescribed fire. The total area of the slop-over directly reflects the result of a
simulated prescribed fire. Hence, it is an important factor in measuring the fire
safety. Limited by the number of firefighters, large number of slop-over or large
distance between slop-overs can both result in an uncontrollable prescribed fire.

To quantitatively measure these three terms, some parameters are created
in the automatic labeling algorithm. Amax and Amar represent the maximum
and marginally allowable total area of slop-over, kmax denotes the maximum
allowable number of slop-over, and lmax and lmar indicate the maximum and
marginally allowable distance between each slop-over. In addition to simply ex-
ploiting the information of slop-over, the complex environmental conditions are
also taken into consideration.

For additional flexibility, the parameters α and β are utilized as the constant
amplification coefficients to enlarge the potential risk of the slop-over. As a
prescribed fire can be more dangerous when the wind speed is higher, the surface
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Table 1: Nomenclature of inputs and parameters for automatic labeling

Inputs:
As total area of slop-overs
ks number of slop-overs
ls distance between each slop-over
ws wind speed
ss surface moisture

Parameters:
Amax maximum allowed total area of slop-overs
Amar marginally allowed total area of slop-overs
kmax maximum allowed number of slop-overs

α expansion coefficient
β expansion coefficient

lmax maximum allowed distance between each slop-over
lmar marginally allowed distance between each slop-over
wt threshold value of wind speed
st threshold value of surface moisture
kt1 the first threshold value of number of slop-over
kt2 the second threshold value of number of slop-over

moisture is lower, and the number of the slop-over is larger, four threshold values
are created to better distinguish the effect of the total area of slop-over and the
distance between each slop-over in different situations. The parameters kt1 and
kt2 are established as the number of the slop-over when the risk level of prescribed
fire varies significantly, while st and wt are the threshold values for the surface
moisture and wind speed respectively. If wind speed is larger than wt, or surface
moisture is smaller than st, more caution is required to decide the risk level of the
prescribed fire. With these parameters, an automatic safety labeling algorithm
can be formulated.

4 Automatic Labeling Algorithm

4.1 Postprocessing of QUIC-Fire Output

To calculate the previously mentioned As, ks and ls for each ensemble of pre-
scribed burn, the slop-overs should be characterized by removing the burn area
inside the desired boundary as shown in Figure 2. Following the definition of y
in (1), all slop-overs have y = 1 as shown in Figure 2(a).

To further distinguish the slop-overs, different non-zero values for y are as-
signed to different slop-overs. For the numerical implementation, label function
in the package of scikit-image [17] in Python is a good tool to achieve this goal.
It first detects the slop-overs according to the connectivity, and then assigns
different values of y to different slop-overs. From Figure 2(b) it can be observed
that three slop-overs are plotted by different colors, where yellow, magenta, and
cyan correspond to y = 1, y = 2, and y = 3 respectively.
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Afterwards, the number of the slop-over can be determined by the number of
different non-zero values of y, and the area of each slop-over can be calculated by
summing up the number of pixels with corresponding y. Finally, the distances
between the centers of the smallest vertically oriented rectangles that separately
contain each slop-over serves as the distances between each slop-over.
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(a) Plot of slop-overs with same y.
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(b) Plot of slop-overs with different y.

Fig. 2: Extracted slop-overs.

4.2 Process of Automatic Labeling

Since a distance between slop-overs exists only when there are more than one
slop-over, the number and the total area of the slop-over are more important
and are utilized first for labeling the fire safety. Due to the limited resource of
the fire fighting, it is impossible to control the slop-overs of one prescribed fire
simultaneously if multiple slop-overs are far away from each other. Therefore,
the distance between slop-overs should also be measured.

Additionally, wind speed and surface moisture around the prescribed fire also
affect the fire spread. Even a small slop-over can grow out of control in a short
time when the wind speed is large and the surface moisture is low. To account for
these situations, two expansion coefficients α and β are applied on the total area
of the slop-overs to reflect the emphasis on the effect of the extreme environment.
For each ensemble, with computed metrics As, ks and ls, and provided data of
ws and ss, the automatic process can be described as follows.

At first, the prescribed fire ensemble is assumed to be safe. Any prescribed
fire ensemble with the total area As > Amax, or number of slop-overs ks > kmax

is labeled to be unsafe. When the wind speed ws > wt, the surface moisture
ss < st, and the number of the slop-over kt1 < ks ≤ kmax, the prescribed fire
is more likely to be unsafe. For that purpose, αAs is compared to Amax. If
αAs > Amax, the prescribed fire ensemble is regarded as an unsafe fire.

To evaluate the safety of a prescribed fire ensemble by the distance between
slop-overs, a prescribed fire ensemble with the number of the slop-over kt2 < ks ≤
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kmax, and the maximum distance between each slop-over max(ls) > lmax is clas-
sified as unsafe. If a prescribed fire is not unsafe, then it will be checked whether
it is marginal. The process of judging whether a prescribed fire is marginal is
similar, and another expansion coefficient β is set up to put more cautions in
the judgement when the environment is more suitable for the spread of the pre-
scribed fire. The automatic labeling algorithm is summarized in Algorithm 1.

Algorithm 1 Automatic Labeling Algorithm
Inputs: As, ks, ls, ws, ss
Parameters: Amax, Amar, kmax, α, β, lmax, lmar, wt, st, kt1 , kt2
Output: Label of the simulated prescribed fire
1: Assume the prescribed fire is safe at the beginning.
2: if the prescribed fire move outside the allowable boundary then
3: the prescribed fire is unsafe
4: else if As > Amax then
5: the prescribed fire is unsafe
6: else if ks > kmax then
7: the prescribed fire is unsafe
8: else if kt1 < ks ≤ kmax and ws > wt and ss < st and αAs > Amax then
9: the prescribed fire is unsafe

10: else if kt2 < ks ≤ kmax and max(ls) > lmax then
11: the prescribed fire is unsafe
12: else if As > Amar then
13: the prescribed fire is marginal
14: else if kt1 < ks ≤ kmax and ws > wt and ss < st and βAs > Amar then
15: the prescribed fire is marginal
16: else if kt2 < ks ≤ kmax and max(ls) > lmar then
17: the prescribed fire is marginal
18: end if

5 Optimization

It is clear that the accuracy of the automatic labeling is dependent on the nu-
merical values of the parameters listed in Table 1. The numerical values of the
parameters can be optimized by using safety labels created by fire domain ex-
perts. The formal problem of learning the numerical parameters on the basis of
manually labeled fire safety data can be stated as the optimization

min
u

N∑
i=1

di
ui

qi
− c(u),

subject to: pi ≤ ui ≤ qi for i = 1, 2, . . . , N
Amar ≤ Amax, lmar ≤ lmax, kt1 , kt2 ≤ kmax

c(u), Amar, Amax, kt1 , kt2 , kmax, wt ∈ Z

(2)
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where u = [α, β,Amar, Amax, kmax, kt1 , kt2 , lmar, lmax, st, wt], N is the number
of parameter, and di is the weighting coefficient with

∑N
i=1 di = 1. ui represents

the ith parameter in u, and pi and qi are the lower bound and upper bound of
the ith parameter respectively. The value of pi and qi can be obtained from the
burn plan that includes the information of the fuel domain, the wind conditions
and the surface moisture for the simulated prescribed fire.

In (2), c(u) denotes the number of safety match between the automatic labels
created by Algorithm 1 and the manual labels created by a fire domain expert,
where u represents the parameters. With ui ≤ qi from Equation 2 and

∑N
i=1 di =

1, it can be verified that
N∑
i=1

di
ui

qi
≤

N∑
i=1

di = 1 (3)

since c(u) is the number of matches between the automatic labeling and manual
labeling, any change in c(u) when u varies is greater than or equal to one.

With (3), an inequality can be derived for the change in c(u), denoted by
∆c(u), when varying u. The value of ∆c(u) is bounded by

N∑
i=1

di
ui

qi
≤ 1 ≤ ∆c(u) (4)

and therefore the optimization will first focus on increasing the number of
matches between the automatic labels and manual labels, and then decrease
the numerical value of the parameters. As a result, the parameters obtained by
the optimization will achieve the goal of gaining the maximum match number
with the necessary minimum values of the parameters, representing the allowable
range on the slop-over metrics.

Because c(u) is an integer-valued function, and there is no analytic expression
of c(u), a gradient-free optimization method that can also deal with the integer-
valued function should be applied. The genetic algorithm is an explicit and
effective solution to this problem. The genetic algorithm will repeatedly modify
the population of individual solution. Three steps are included in the genetic
algorithm. At first, a random initial population is created. Then, a sequence
of new populations are created iteratively based on the previous populations
by scoring the fitness of each member of the population, selecting pairs of the
members relied on the fitness, and generating the new population by applying
crossover and mutation. The last step is to stop the algorithm when the change
in value of the fitness function for the best member is less than a tolerance value,
or after a predetermined maximum number of iteration. The procedure of the
genetic algorithm is summarized in Algorithm 2.

6 Numerical results

6.1 Ensemble Based Learning

For illustration of the ensemble based learning for automated safety labeling,
two fire domain experts work together to manually label the fire safety of 900
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Algorithm 2 Genetic Algorithm
Input: Population size m, maximum number of iterations tmax, and stopping criterion
ϵ
Output: Global optimal solution, uopt

1: Create the initial m members uj(j = 1, 2, . . . ,m) of population, and let t = 0.
2: Scoring the fitness value of each member, and find the member with best fitness

value f(t).
3: select pairs of members from previous population based on fitness value.
4: Apply crossover and mutation to generate the new population.
5: t = t+ 1.
6: Stop when t = tmax or f(t)−f(t−1) < ϵ; Otherwise, go back to step 2 to repeatedly

modify the population.

ensembles of a prescribed fire in the Yosemite, CA region. QUIC-Fire simulations
for the 900 ensembles are created by varying ignition patterns, wind speed, wind
direction and fuel moisture for each of the ensembles.

To ensure the validity of the manual labels used for learning, 48 out of the
900 ensembles are labeled by two fire domain experts separately and carefully.
Some typical cases in these 48 ensembles with same manual labels are shown
as Figure 3. In Figures 3(a), 3(b), 3(c) and 3(d), the total area of the slop-
overs are small enough and there is a certain distance between the slop-overs
and the allowable boundary. Hence, they are labeled as safe prescribed fires.
It can be noticed that the sizes of the slop-overs in Figures 3(e) and 3(f) are
relatively large, and the top parts of the slop-overs are fairly close to the allowable
boundary. Therefore, the safeties of these two prescribed fire are labeled to be
marginal. For Figure 3(g), the prescribed fire crosses the allowable boundary,
and for Figure 3(h), the total area of the slop-overs is larger than Amax despite
that the fire does not escape outside the allowable boundary. As a result, both
of them are considered to be unsafe. At last, the slop-overs in Figure 3(i) are
large and cross the allowable boundary. Therefore, these slop-overs obviously
constitute unsafe prescribed fire conditions.

The ensemble based learning only uses the 48 out of the 900 ensembles,
whereas the remaining 852 labels will be labeled automatically based on the
optimized parameter values of Table 1 obtained by the learning. For cross vali-
dation of the accuracy of learning and labeling, both the 48 ensembles used for
learning and the 852 ensembles not used for learning but used for labeling only
are compared.

From this cross validation, a 100% accuracy has been achieved for both sets
(48 ensembles) of the manual labels created by two fire domain experts respec-
tively. As expected, the optimized parameters for each fire domain expert are
slightly different, as each fire domain expert will interpret and label the ensem-
bles slightly differently. As such, the rules used by the two fire domain experts
are not completely the same, but either of them can be captured by the learning
algorithm. The parameters, u1 and u2, optimized by the two sets of manual
labels are summarized in Table 2.
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(a) safe
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(b) safe
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(c) safe
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(d) safe
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(e) marginal
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(f) marginal
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(g) unsafe
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(h) unsafe
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(i) unsafe

Fig. 3: Typical cases in the training data set.

By inspecting the numerical values of the parameters in Table 2, it can be
observed that fire domain expert, from whom u1 is learned, is more cautious
than the fire domain expert, from whom u2 is learned, because u1 has smaller
values for Amar and Amax. Furthermore, α in u1 is larger than one, and β in u1

is close to one. This means u1 is more focused on identifying unsafe prescribed
fire conditions. In addition, u1 takes advantage of the distance between each
slop-over to judge the risk level of the prescribed fire. In comparison, u2 has a
higher tolerance for the threat of a prescribed fire, and u2 has higher probability
to assess the risk level of prescribed fire as marginal instead of unsafe with α
close to one and β larger than one. Since both lmar and lmax in u2 are close to
zero, it can be assumed that the distance between each slop-over is not utilized,
which is also supported by kt2 = kmax.

6.2 Automated Safety Labeling

Due to the large workload for a single fire domain expert to label the remaining
852 ensembles, the 852 manual labels are created together by the two fire domain
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Table 2: Parameters, u1 and u2, optimized by the two sets of 48 manual labels
respectively.

Amar Amax α β wt st lmar lmax kt1 kt2 kmax

u1 8280 10655 1.31 1.01 0 0.2001 133.31 263.72 1 2 3
u2 9723 17719 1.04 1.37 3 0.3501 1.06 1.96 0 3 3

experts, effectively mixing their fire safety labeling expertise in the remaining
data set of ensembles. To cross validate the performance of the automatic label-
ing, manual labels of the 852 ensembles, not used for learning, are compared to
the labels created by Algorithm 1 with the parameters values u1 and u2 listed
in Table 2 separately.

The match accuracy between the manual labels and the automatic labels
created using u1 is 76.76%; the match accuracy between the manual labels and
the automatic labels created using u2 is 76.88%; the match accuracy between
the manual labels and the automatic labels created using either u1 or u2 is
80.52%. As a consequence, more than 80% manual labels can be captured by the
automatic labeling using either u1 or u2.

6.3 Re-evaluation of Manual Labeling

To investigate the inconsistency between manual and automatic labeling, 12
ensembles (Figure 4) are chosen as canonical cases from the 852 ensembles, in
which the manual labels are different from the automatic labels created using
either u1 or u2. Without loss of generality and with the purpose of reducing
the workload, only one fire expert, by whose manual labels u1 was optimized,
relabeled these 12 ensembles and 10 revised manual labels were the same as the
automatic labels created by Algorithm 1 with u1.

In Figures 4(a) and 4(b), the total area of the slop-overs is small enough.
Therefore, both of them should be regarded as safe prescribed fires. In addition,
Figure 4(b) is similar to Figure 3(c), which further confirms that the fire shown in
Figure 4(b) is safe. For Figures 4(c) and 4(d), since the slop-overs are larger and
hard to control, they should be unsafe. For Figures 4(e) to 4(i), the prescribed
fires cross the allowable boundary in different locations and are unsafe. It is
worthwhile to note that the re-evaluation helped to further improve the number
of match between manually and automatically created labels by correcting the
previous manually applied safety labels.

Since there is no ensemble with four or more slop-overs included in the 48
ensembles used for learning and more slop-overs will lead to more dangerous
fire conditions, kmax is optimized as 3, and all the prescribed fires with four
or more slop-overs will be considered as unsafe fires in the automatic labeling.
For Figures 4(j) and 4(k), both of them have four slop-overs and the difference
between them is that all four slop-overs in Figure 4(j) stay together while one
slop-over is far away from the other three slop-overs in Figure 4(k), which further

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_45

https://dx.doi.org/10.1007/978-3-031-35995-8_45
https://dx.doi.org/10.1007/978-3-031-35995-8_45


12 Tan, de Callafon, Nguyen & Altıntaş

increase the difficulty in controlling the prescribed fire. Hence, the prescribed
fires shown by Figure 4(j) and Figure 4(k) are considered to be marginal and
unsafe respectively by the fire expert.

6.4 Further Improvements

To further improve the automatic labeling, a user-defined marginally allowed
number of slop-overs kmar and a user-defined maximum allowed number of slop-
overs kmax can be imported into Algorithm 1. Expanding the training data to
include more scenarios can also improve the performance of automatic labeling
at the price of having to provide more manually labeled ensembles.

To make sure the user-defined kmar and kmax will not change during the
optimization process, two more linear equality constraints on kmar and kmax

can be added to (2). At last, for Figure 4(l), even the fire domain expert cannot
give an exact answer based on the current data. It means more information, like
topography, vegetation, and contingency resources are needed.

In summary, the automatic labeling, Algorithm 1, has a good ability to create
the label for the safety of the prescribed fire. Since the label is created by mea-
suring the number of slop-overs, the total area of the slop-over, and the distance
between each slop-over, the automatic labeling can not only create the label but
also give a feedback about which rule is used to create the label so that people
can get access to the interpretation of the automatic labeling.

7 Conclusions

This paper introduces an automatic labeling algorithm to establish the safety
label for each ensemble of a simulated prescribed fire. The automatic labeling is
based on prescribed fire safety metrics that include the number of slop-overs, the
total surface area of slop-overs, and the distance between slop-overs. In addition
to the safety label, the automatic labeling algorithm can provide an explanation
why a prescribed fire is considered to be safe, marginal, or unsafe. Necessary
parameters are optimized in the automatic labeling algorithm via a genetic al-
gorithm to assist in determining the label of each ensemble of the simulated
prescribed fire. A numerical validation based on 900 ensembles with manually
generated safety labels of a prescribed fire in the Yosemite, CA area showed a
100% match of safety labels for the training data (48 out of 900 ensembles) and
a larger than 80% match on the cross validation of safety labels not used in the
training data (852 out of 900 ensembles).

8 Acknowledgement

We thank Matthew Snider and J. Kevin Hiers for providing the manual safety
labels of the fire simulations.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_45

https://dx.doi.org/10.1007/978-3-031-35995-8_45
https://dx.doi.org/10.1007/978-3-031-35995-8_45


Ensemble Based Learning for Automated Safety Labeling of Prescribed Fires 13

References

1. Abrams, M.D.: Fire and the development of oak forests. BioScience 42(5), 346–353
(1992)

2. Agee, J.K.: Fire ecology of Pacific Northwest forests. Island press (1996)
3. Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X.: Effects of prescribed fires on soil

properties: A review. Science of the Total Environment 613, 944–957 (2018)
4. Banerjee, T., Heilman, W., Goodrick, S., Hiers, J.K., Linn, R.: Effects of canopy

midstory management and fuel moisture on wildfire behavior. Scientific reports
10(1), 1–14 (2020)

5. Cheney, N., Gould, J., Catchpole, W.: The influence of fuel, weather and fire shape
variables on fire-spread in grasslands. International Journal of Wildland Fire 3(1),
31–44 (1993)

6. Francos, M., Úbeda, X.: Prescribed fire management. Current Opinion in Environ-
mental Science & Health 21, 100250 (2021)

7. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimedia Tools and Applications 80(5), 8091–8126 (2021)

8. Kerby, J.D., Fuhlendorf, S.D., Engle, D.M.: Landscape heterogeneity and fire be-
havior: scale-dependent feedback between fire and grazing processes. Landscape
Ecology 22(4), 507–516 (2007)

9. Linn, R.R., Cunningham, P.: Numerical simulations of grass fires using a coupled
atmosphere–fire model: basic fire behavior and dependence on wind speed. Journal
of Geophysical Research: Atmospheres 110(D13) (2005)

10. Linn, R.R., Goodrick, S.L., Brambilla, S., Brown, M.J., Middleton, R.S., O’Brien,
J.J., Hiers, J.K.: QUIC-fire: A fast-running simulation tool for prescribed fire plan-
ning. Environmental Modelling & Software 125, 104616 (2020)

11. Moinuddin, K., Khan, N., Sutherland, D.: Numerical study on effect of relative
humidity (and fuel moisture) on modes of grassfire propagation. Fire Safety Journal
125, 103422 (2021)

12. Pausas, J.G., Keeley, J.E.: A burning story: the role of fire in the history of life.
BioScience 59(7), 593–601 (2009)

13. Ryan, K.C., Knapp, E.E., Varner, J.M.: Prescribed fire in north american forests
and woodlands: history, current practice, and challenges. Frontiers in Ecology and
the Environment 11(s1), e15–e24 (2013)

14. Scharenbroch, B., Nix, B., Jacobs, K., Bowles, M.: Two decades of low-severity
prescribed fire increases soil nutrient availability in a midwestern, usa oak (quercus)
forest. Geoderma 183, 80–91 (2012)

15. Tan, L., de Callafon, R.A., Altıntaş, I.: Characterizing wildfire perimeter polygons
from quic-fire. In: International Conference on Computational Science. pp. 611–
622. Springer (2022)

16. Tan, L., de Callafon, R.A., Block, J., Crawl, D., Çağlar, T., Altıntaş, I.: Estimation
of wildfire wind conditions via perimeter and surface area optimization. Journal of
Computational Science 61, 101633 (2022)

17. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D.,
Yager, N., Gouillart, E., Yu, T.: scikit-image: image processing in python. PeerJ
2, e453 (2014)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_45

https://dx.doi.org/10.1007/978-3-031-35995-8_45
https://dx.doi.org/10.1007/978-3-031-35995-8_45


14 Tan, de Callafon, Nguyen & Altıntaş

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(a)
PML: unsafe
AL: safe
RML: safe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(b)
PML: unsafe
AL: safe
RML: safe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(c)
PML: safe
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(d)
PML: safe
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(e)
PML: safe
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(f)
PML: safe
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(g)
PML: safe
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(h)
PML: safe
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(i)
PML: marginal
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(j)
PML: safe
AL: unsafe
RML: marginal

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(k)
PML: marginal
AL: unsafe
RML: unsafe

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

(l)
PML: unsafe
AL: safe
RML: marginal

Fig. 4: Canonical mismatch cases. PML stands for previous manual label, AL
stands for automatic label by applying u1, and RML stands for revised manual
label.
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