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Abstract. Out-of-distribution (OoD) detection is one of the challenges
for deep networks used for image recognition. Although recent works have
proposed several state-of-the-art methods of OoD detection, no clear rec-
ommendation exists as to which of the methods is inherently best. Our
studies and recent results suggest that there is no universally best OoD
detector, as performance depends on the in-distribution (ID) and OoD
benchmark datasets. This leaves ML practitioners with an unsolvable
problem - which OoD methods should be used in real-life applications
where limited knowledge is available on the structure of ID and OoD
data. To address this problem, we propose a novel, ensemble-based OoD
detector that combines outlierness scores from different categories: pre-
diction score-based, (Mahalanobis) distance-based, and density-based.
We showed that our method consistently outperforms individual SoTA
algorithms in the task of (i) the detection of OoD samples and (ii) the
detection of adversarial examples generated by a variety of attacks (in-
cluding CW, DeepFool, FGSM, OnePixel, etc.). Adversarial attacks com-
monly rely on the specific technique of CNN feature extraction (GAP –
global average pooling). We found that detecting adversarial examples
as OoD significantly improves if we also ensemble over different feature
extraction methods(such as GAP, cross-dimensional weighting (CroW),
and layer-concatenated GAP). Our method can be readily applied with
popular DNN architectures and does not require additional representa-
tion retraining for OoD detection.1

Keywords: Out-of-distribution detection · adversarial attack · CNN

1 Introduction

Applying deep neural networks in safety-critical systems requires that the mod-
els reliably recognize out-of-distribution (OoD) examples. Although many state-
of-the-art methods of OoD detection have been proposed in recent works, no
consensus has been worked out as to which of the methods is inherently best.

1 All results are fully reproducible, the source code is available at https://github.

com/twalkowiak/WNN-OOD
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The methods differ in how the ’outlierness’ of the samples is obtained and can
be categorized as: classifier prediction score-based [8, 10, 16], distance-based [14,
21], or density-based [3]. A recent comprehensive study [28] suggests that there is
no universally best OoD detector, as performance depends on the in-distribution
(ID) and OoD benchmark data sets. Our studies summarized in Table 1 con-
firm this observation. We compare the performance of the methods: distance-
based (Mahalanobis), prediction score-based (MSP), and density-based (LOF)
and conclude that each of the methods outperforms other methods on some
benchmarks. This poses an unsolvable problem - which OoD detection methods
should we implement in a real-life deployment under limited knowledge of the
structure of ID and OoD. We show that we can avoid this decision by using
an ensemble of OoD detectors from different categories (prediction score-based,
distance-based, and density-based) - as this combined OoD detector consistently
outperforms popular detectors. We also find that ensembling over different rep-
resentations (feature extraction procedures) can further improve OoD detection.
We considered the following feature extractors: global average pooling (GAP),
cross-dimensional weighting (CroW), layer-concatenated GAP (lcGAP), Global
Maximum Pooling (GMP), and Selective Convolutional Descriptor Aggregation
(SCDA).

Our contributions are the following. (i) We proposed an ensemble approach
to OoD detection by (a) combining prediction score-based, distance-based, and
density-based OoD detectors and (b) by combining OoD scores obtained un-
der different feature extraction methods (GAP, CroW, lcGAP, GMP, SCDA).
(ii) We showed on a comprehensive set of ID and OoD benchmarks that this ap-
proach consistently improves OoD detection compared with the individual SoTA
algorithm. This holds for different DNN models (VGG16, ResNet, WideResNet,
DenseNet, ShuffleNetV2, and MobileNetV2). (iii) We also showed that the pro-
posed method detects adversarial examples generated by a wide range of adver-
sarial attacks as OoD. (iv) We performed a sensitivity analysis of the ensemble
method to quantify the contribution of the individual ensemble members to the
performance of the proposed OoD detector.

2 Related work

OoD detection based on standard representations. Many OoD methods
rely on representations trained to discriminate between classes given in the train-
ing data set. These methods differ in the technique used to estimate outlierness
scores to detect OoD examples. Popular methods include: the OpenMax score
proposed by [2], the MSP (maximum softmax probability) score [8], the ODIN
score [16], generalized ODIN [10], the Mahalanobis distance-based score [14],
or density-related scores such as kNN-based [26], or LOF-based [3, 30]. These
methods allow for post hoc detection of OoD inputs without requiring dedicated
training of DNNs for OoD detection. Our proposed method belongs to this line
of research.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_41

https://dx.doi.org/10.1007/978-3-031-35995-8_41
https://dx.doi.org/10.1007/978-3-031-35995-8_41


Combining Outlierness Scores and Feature Extraction Techniques for... 3

Table 1. Comparison of different OoD detection methods for CIFAR-10 as ID. There
is no one universal OoD method for all benchmarks. A different strategy is better for
different CNN models and pairs of ID and OoD. The tested OoD methods operate
according to different principles: distance-based (Mahalanobis), prediction score-based
(MSP), and density-based (LOF). Our results are in line with recent works[28]. This
poses an unsolvable problem: which OoD detection method we should implement in a
real-life deployment with limited knowledge of ID and OoD.

Model OoD AUROC DATACC TNR at TPR 95%
Mahalanobis/MSP/LOF

ResNet
SVHN 92.6/92.2/95.8 85.2/87.2/89.4 61.1/43.6/79.5
CIFAR-100 82.0/87.2/82.5 74.6/80.8/75.4 29.3/34.6/35.5

WideResNet
SVHN 97.8/93.0/95.3 92.9/88.2/90.2 88.0/60.0/69.7
CIFAR-100 90.3/86.8/89.0 83.2/81.6/81.9 50.4/44.9/50.8

MobileNetV2
SVHN 85.4/86.3/76.1 80.6/81.7/69.8 20.6/31.4/20.9
CIFAR-100 86.9/82.3/85.0 80.4/78.1/77.3 36.9/33.0/40.9

Table 2. Comparison of different feature extraction detection methods using Maha-
lanobis and LOF as OoD methods and CIFAR-10 as ID. We propose to use different
feature extraction techniques in OoD detection problems. It may significantly improve
achieved results compared to the default GAP. Various approaches focused on differ-
ent components (e.g., on edges, patterns, or whole objects), so different features can
effectively separate data for other pairs of ID and OoD. So, as with choosing an OoD
method, there is no universal feature extraction strategy.

Model OoD Method AUROC DATACC TNR at TPR 95%
CroW/GAP/lcGAP

ResNet

SVHN
Mah 94.0/92.6/94.6 86.4/85.2/87.8 67.7/61.1/70.5
LOF 96.5/95.8/96.5 90.3/89.4/90.3 83.0/79.5/81.0

CIFAR-100
Mah 83.2/82.0/80.5 75.8/74.6/73.0 32.1/29.3/28.8
LOF 83.1/82.5/83.4 75.9/75.4/75.7 37.1/35.5/37.5

WideResNet

SVHN
Mah 98.0/97.8/97.0 93.1/92.9/91.1 88.8/88.0/85.3
LOF 95.4/95.3/98.2 90.3/90.2/93.7 70.9/69.7/90.0

CIFAR-100
Mah 90.5/90.3/84.8 83.5/83.2/77.3 51.5/50.4/40.3
LOF 89.0/89.0/89.4 81.8/81.9/82.2 51.5/50.8/52.9

MobileNetV2

SVHN
Mah 84.9/85.4/86.2 80.2/80.6/81.6 19.5/20.6/20.9
LOF 76.6/76.1/92.7 70.0/69.8/87.6 20.9/20.9/44.6

CIFAR-100
Mah 86.9/86.9/87.0 80.3/80.4/80.5 37.2/36.9/37.0
LOF 85.0/85.0/86.8 77.3/77.3/79.2 40.4/40.9/43.8
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OoD detection for classification with additional training. The meth-
ods in this group include outlier-exposed techniques, for example, [9], where
models are trained to produce uniformly distributed predictions for the OoD
data available during training. [5] propose to train with outliers synthesized in
the feature space (rather than the image). Another line of methods attempts to
improve representations for OoD detection using contrastive learning and self-
supervised techniques [27, 32, 23]. These methods learn representations in which
transformed (augmented) versions of an image are pulled closer to each other
while pushing other images further away. This modified feature space often leads
to better OoD detection.

3 Method

3.1 Different categories of OoD detection methods

Here we briefly present the OoD detectors used in the proposed ensemble proce-
dure: predictive score-based (MSP), distance-based (Mahalanobis), and density-
based (LOF).

Maximum Softmax Prediction (MSP) [8] quantifies outlierness based on the
prediction score from the neural network. More specifically, the confidence score
for OoD detection is based on the maximum output of the softmax layer of the
DNN.

OoD detection based on the Mahalanobis distance is based on the esti-
mation of the multivariate Gaussian (MVN) distribution as a model of the
class-conditional posterior distribution. Given the ID training dataset Xc ⊂
Rd for class c ∈ C = {1, 2, . . . ,m}, we estimate the MVN model for class
N (µc, Σc) with the mean vector µc and the covariance matrix Σc estimated
from Xc (some methods estimate Σc from

⋃
c∈C Xc, see, e.g., [14]). The con-

fidence score for the detection of OoD of a test sample u is then obtained as
the shortest negative Mahalanobis distance for all known classes: csMah(u) =

−minc

√
(u− µc)⊤Σ

−1
c (u− µc).

The Local Outlier Factor (LOF) [3] obtains OoD scores based on nonpara-
metric estimates of density. More specifically, it calculates the local reachability
density LRDk(u,X) of a sample u with respect to the known dataset X. LRD is
the ratio of an average reachability distance between a given point, its k neigh-
bors, and their neighbors. K-neighbors (Nk(u,X)) includes a set of points that
lie in the circle of radius k-distance, where k-distance is the distance between
the point, and it is the farthest kth nearest neighbor (||Nk(u,X)|| >= k). The
confidence score for the detection of OoD is then the inverse of LOF defined in

[3], i.e. csLOF (u,X) = −
∑

x∈Nk(u,Xi)
LRDk(x,X)

||Nk(u,X)||LRDk(u,X) .

3.2 Feature extraction

The standard method for CNN feature extraction is Global Average Pooling
(GAP), proposed by [17]. This approach is widely used in networks designed for
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image classification since it is robust to spatial translations of the input data.
However, many works, especially on image retrieval, propose different feature
extraction strategies, focusing on local (object details) or global (whole object)
descriptions and low-level (e.g., shapes, textures) or high-level (whole image
meaning) features. Different feature extractors focus on specific image compo-
nents, so various features may prove helpful for other pairs of ID and OoD
datasets to detect OoD samples effectively.

Therefore, we also propose to analyze other feature extraction methods for
OoD detection problems, such as CroW[12], GAP, lcGAP (our, inspired by [15]),
GMP, and SCDA[31]. Most methods work based on the selected convolutional
layer (usually the last) T with shape (w, h, c), where w refers to the width, h
to height, and c to channels. A feature vector V (with length c) is calculated as
follows.

For GAP as 1
wh

∑w
i=0

∑h
j=0 Ti,j,k and maxw,h

i,j Ti,j,k for GMP (Global Maxi-
mum Pooling) for each channel k independently.

For CroW (cross-dimensional weighting), T is first weighted channel-wise by
weight vectors βk and then location-wise by a weight matrix α, that is, we define
weighted T as T ′

i,j,k = αijβkTi,j,k. Next, sum-pooled is performed to aggregate
T ′ features.

SCDA (Selective Convolutional Descriptor Aggregation) is based on an acti-
vation feature map. First, the aggregation map Ai,j is obtained as

∑c
k=1 Ti,j,k.

For the aggregation map A, there are w, h summed activation responses cor-
responding to positions w, h. Next, the mask map M of the same size as A is
obtained as Mw,h

i,j = 1 if Ai,j > ā; 0 otherwise, where ā is the mean value of all
positions in A. The final feature vector is selected based on the largest connected
component of the mask map M . The layer-concatenated GAP (lcGAP) method
(our original proposition) uses concatenated features from different convolutional
layers after each block using GAP.

These methods have different characteristics; most are global descriptions
with high-level features. The GAP method is more robust to scale changes be-
cause the GMP response of the feature map does not change rapidly with scale
change. CroW uses a weighting and aggregation scheme to transform convolu-
tional image features into compact global image features. SCDA focuses on local
descriptions. lcGAP considers low-level features.

We show that the feature extraction strategy can affect the defense against
adversarial attacks. These attacks aim to cheat the CNN classifier that commonly
relies on GAP features. Different feature extraction methods can make features
more resilient and less vulnerable to attacks. See Section 4.2 for more information
on attacks.

3.3 Proposed ensemble OoD detector

The results in Tables 1 and 2 suggest no best method among feature extractors
and OoD detectors exists. Therefore, we consider combining confidence scores
from all available sources using an MLP regressor. The idea of using an OoD
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Algorithm 1: WNN ensemble OoD detector. WNN.fit method trains
the detector, WNN.score computes the confidence score for OoD de-
tection based on the ensemble of OoD detection and feature extraction
methods. See Section 3.3 for further details.
Inputs : data IN train, data IN test, data OOD
Outputs: final confidence scores
WNN - ensemble OoD detector

scores = []
foreach feature method in [feature extraction methods] do

features IN train = feature method.extract from(data IN train)
features IN test = feature method.extract from(data IN test)
features OOD = feature method.extract(data OOD)
foreach ood method in [OoD detection methods] do

ood method.fit(features IN train)
score IN test = ood method.score and norm(features IN test)
score OOD = ood method.score and norm(features OOD)
scores.append([score IN test, score OOD])

calibration scores, test scores = split data(scores)
WNN = new MLP Model()
WNN.fit(calibration scores)
final confidence scores = WNN.score(test scores)

ensemble was inspired by [14] (although they used linear regression) and, in
general, by the well-known concept of stack generalization ensemble [29].

The pseudocode of the proposed ensemble OoD detector is shown in the
Algorithm 1.

Given the training data, we extract CNN features using all the methods
discussed in Section 3.2. We then build OoD detectors for each OoD type (see
Section 3.1) and each feature extractor. This results in a set of 15 different OoD
detectors. The idea of the proposed method is to combine the confidence scores
returned by these OoD detectors into the final ensemble-based score.

The confidence score ranges for each OoD method are very different. Ma-
halanobis gives values below 0 (lower limits depend on the data), MSP values
range from 0 to 1 (inclusive), whereas LOF shows values below or equal to -1.
Therefore, we scale confidence scores to the range 0-1 using the estimated cu-
mulative density on the validation set of inliers (estimation is done using step
functions).

Next, we train the MLP that combines the weighted confidence scores from
individual OoD detectors. Similarly to [14, 33], we use a calibration set consisting
of images from in- and out-of-distribution datasets. We use a fully connected NN
consisting of one hidden layer (100 neurons) and a single output. We use ReLU
activations for the hidden layer and linear activation in the final layer. We employ
Adam optimizer during backpropagation. The output of this network serves as

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_41

https://dx.doi.org/10.1007/978-3-031-35995-8_41
https://dx.doi.org/10.1007/978-3-031-35995-8_41


Combining Outlierness Scores and Feature Extraction Techniques for... 7

the final confidence score. The method is named WNN from the weighted neural
network.

4 Experiments and Results

4.1 OoD Detection Problem

We run OoD detection problems using widely used benchmark datasets and
CNNs models such as VGG16 [24], ResNet [7], WideResNet, DenseNet [11],
ShuffleNetV2 [18] and MobileNetV2 [22]. All models were trained on CIFAR-10.
To evaluate the OoD methods, we used CIFAR-10 as ID data and CIFAR-100 or
SVHN as OoD data. We kept a 1:1 proportion of known and unknown samples
(10,000:10,000). We used the standard metrics in the results: Area Under Re-
ceiver Operating Characteristic curve (AUROC), detection accuracy (DTACC)
that defines the ratio of correct classification, and True Negative Rate at 95%
True Positive Rate (TNR at TPR 95%). The higher the values of all metrics, the
better the detection of OoD. As the measures are strongly correlated, for some
results, we present only AUROC. All our tests can be replicated using the stan-
dard workstations for deep learning; we used Nvidia GeForce GTX 1080/2080
Ti.

No one universal OoD method In the first experiment, we show that there
is no universally best OoD method for all benchmarks. In Table 1, we compare
the OoD methods described in Section 3.2 and show that for different pairs of
IN and OoD datasets, different OoD detectors are the best.

For example, for WideResNet, the parametric Mahalanobis method is the
best for all benchmarks. For ResNet, depending on the OoD data and chosen
metrics, the best performance is achieved for the density-based LOF or the
logits-based MSP. These results are consistent with the recent literature [28].

No one universal feature extraction technique We propose using different
feature extraction strategies (see Section 3.2) in the OoD detection problem
rather than relying on a single method. In Table 2, we show that for different
pairs of IN and OoD samples, different strategies work better, as different image
features are needed to separate these image categories. For example, WideResNet
using LOF and SVHN performed best for lcGAP for AUROC (2.9 p.p. better
than GAP), and ResNet using Mahalanobis and CIFAR-100 performed best for
CroW for AUROC (1.2 p.p. better than GAP).

Proposed method results In Table 3, we report the performance of WNN -
our ensemble method introduced in Section 3.3. We compare our method with in-
dividual OoD detectors used in the ensemble (LOF, Mahalanobis, MSP) and with
two popular SoTA OoD detectors: KNN [26] (a density-based non-parametric
method), and UF [14] (Mahalanobis distance-based, with a common covariance
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matrix and feature ensemble from different layers of a CNN). Since the WNN
results depend on the distribution of the validation data (20% random samples
from the original data were used to build the WNN) and the MLP training
process, we repeated the experiments ten times and showed the mean and std
results. Due to a random split on validation and test data, the results for all
other methods (including those not requiring validation) are also presented as
mean and standard deviation. The proposed WNN method gives the best results
for most benchmarks. To verify the claim that adding other feature extraction
strategies than GAP improves OoD detection, we also considered the results for
WNNGAP , the proposed ensemble that works only on GAP features. We find
that WNN consistently outperforms WNNGAP , which is often the second best.

Experiments on other OoD detection benchmark datasets We also ver-
ified the performance of the proposed method on other OoD datasets (i.e.,
Tiny ImageNet, ImageNet-O, and Textures) and also used CIFAR-100 as in-
distribution (with SVHN and CIFAR-10 as OoD).2 We found the same con-
clusions as reported in the previous section. The results on CIFAR-100 as in-
distribution show that WNN outperforms the MSP, Mahalanobis, LOF, and
kNN outlier detectors in all test cases (by ca. 4 pp over the second best). Taking
different OoD detectors and different feature generators into an ensemble leads
to a significant improvement over individual non-ensemble OoD detectors. Thus,
the practitioner using the proposed WNN is freed from the need to select the
best / most appropriate OoD detector for a given study (which is difficult to do
in practice).

4.2 Attacks

We used our method as a defensive approach against adversarial attacks. The
goal is to use adversarial examples as OoD samples similar to [14]. These attacks
modify the input image by adding unique noise, making the network fooled.
Noise usually does not change the human classification assessment. Although
there are numerous dedicated defense methods[34], our approach allows for initial
protection against many kinds of adversarial attacks.

We tested various adversarial attack methods: CW, DeepFool, FGSM, One-
Pixel, PGD, and Square. One of the fundamental methods is FGSM[6] (Fast
Gradient Sign Method), where a small perturbation is added to maximize the
loss function. The PGD[19] (Projected Gradient Descent) is an extension of the
FGSM by repeating the addition of those perturbations multiple times. The
Deep Fool[20] method is another iterative approach. This method calculates the
distributions based on the willingness to move the input across the decision
boundaries with minimal changes. The first-order approximation of Taylor’s ex-
pansion is used on a linear model to find these distributions.

CW[4] focused on solving the optimization problem of finding the minimized
distance between two images (standard and attacked) so that the classification

2 The detailed results are available https://github.com/twalkowiak/WNN-OOD
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Table 3. OoD detection results for CIFAR-10 (as inliers) versus SVHN/CIFAR-100
(as outliers). Mahalanobis, MSP[8] and LOF[3] are working on features extracted from
the last layer of CNN using the classic GAP method. WNN (our method) combines
15 OoD detectors (obtained by three OoD methods and five feature extractors: GAP,
CroW, lcGAP, SCDA, and GMP). WNNGAP represents the combination limited to
GAP-based features only (i.e., it is a limited version of WNN). We can see that adding
information from additional feature extractors increases the OoD detection. The results
show the mean and std values of the metrics achieved.

Method AUROC DATACC TNR AUROC DATACC TNR
SVHN CIFAR-100

V
G
G
1
6

Mah 90.0±0.09 84.5±0.13 37.8±0.35 87.4±0.08 80.6±0.16 39.5±0.39
MSP 89.5±0.08 85.1±0.08 30.1±0.38 86.4±0.10 80.1±0.09 32.5±0.48
LOF 87.2±0.12 80.3±0.10 37.7±0.88 83.6±0.13 76.8±0.12 36.2±0.76
WNNGAP 90.4±0.11 85.5±0.08 34.4±0.82 87.6±0.13 80.6±0.16 37.8±0.84
WNN(our) 97.5±0.10 92.2±0.18 86.2±0.92 88.3±0.13 81.2±0.09 41.3±1.18
KNN 91.3±0.15 86.4±0.13 39.3±0.88 87.5±0.15 80.5±0.16 38.4±0.35
UF 98.9±0.10 95.2±0.19 95.2±0.35 86.8±0.70 79.6±0.87 44.3±1.02

R
es
N
et

Mah 92.7±0.06 85.3±0.04 61.3±0.32 82.1±0.09 74.7±0.10 29.3±0.39
MSP 92.3±0.10 87.2±0.10 44.0±0.63 87.2±0.07 80.8±0.11 34.6±0.59
LOF 95.8±0.05 89.4±0.10 79.8±0.41 82.6±0.12 75.5±0.11 36.5±0.88
WNNGAP 96.3±0.07 90.5±0.11 79.8±0.48 88.3±0.16 81.1±0.13 40.6±1.06
WNN(our) 99.3±0.03 95.8±0.10 96.2±0.12 89.3±0.14 82.0±0.25 45.1±0.75
KNN 96.4±0.05 90.4±0.10 78.9±0.52 87.5±0.08 80.2±0.09 41.5±0.52
UF 97.6±0.31 92.4±0.46 88.5±1.61 75.7±0.49 68.9±0.41 22.6±0.93

W
id
eR

es
N
et

Mah 97.9±0.03 93.0±0.07 88.0±0.30 90.3±0.11 83.1±0.12 50.6±0.56
MSP 93.0±0.12 88.2±0.13 59.6±0.56 86.8±0.12 81.6±0.12 45.1±0.65
LOF 95.3±0.05 90.2±0.07 70.0±0.53 89.0±0.12 82.0±0.13 50.9±0.80
WNNGAP 97.4±0.10 92.7±0.13 85.4±1.26 90.4±0.11 83.4±0.17 51.6±0.55
WNN(our) 99.2±0.02 95.4±0.11 95.8±0.23 91.1±0.08 83.9±0.14 53.9±0.62
KNN 96.9±0.06 91.8±0.12 80.0±0.51 90.9±0.10 83.8±0.10 52.7±0.49
UF 97.4±0.18 92.3±0.42 89.4±1.06 67.9±1.82 63.1±1.48 17.5±0.48

D
en

se
N
et

Mah 99.0±0.03 95.1±0.06 94.7±0.17 91.1±0.09 84.3±0.11 57.6±0.43
MSP 82.5±0.16 79.4±0.13 46.1±0.63 88.5±0.12 82.7±0.12 47.7±1.19
LOF 97.7±0.03 93.0±0.08 86.3±0.19 89.8±0.10 83.1±0.15 54.5±0.49
WNNGAP 98.8±0.05 94.8±0.09 93.7±0.26 91.4±0.08 84.6±0.07 56.6±0.57
WNN(our) 99.2±0.03 95.8±0.05 96.5±0.09 92.0±0.13 85.1±0.11 59.7±0.78
KNN 98.4±0.04 94.0±0.09 90.8±0.36 90.9±0.07 84.3±0.07 55.5±0.67
UF 99.3±0.12 96.2±0.40 97.0±0.67 81.2±1.96 74.8±1.65 38.6±2.88

S
h
u
ffl
eN

et
V
2 Mah 93.3±0.11 88.2±0.13 52.2±1.02 87.2±0.08 80.4±0.11 37.7±0.40

MSP 90.4±0.12 85.8±0.14 41.5±1.17 82.0±0.10 78.3±0.09 29.6±0.73
LOF 89.9±0.12 83.5±0.16 39.3±0.69 84.7±0.13 77.6±0.12 36.4±0.26
WNNGAP 93.3±0.15 88.1±0.15 52.9±1.19 87.2±0.07 80.3±0.09 37.8±0.44
WNN(our) 97.2±0.07 91.0±0.16 82.2±0.66 87.6±0.13 80.7±0.17 39.0±0.87
KNN 94.5±0.06 89.2±0.08 60.9±0.60 87.5±0.09 80.5±0.13 38.6±0.45
UF 98.0±0.09 93.3±0.14 90.0±0.69 86.8±0.28 79.2±0.19 39.7±1.33

M
o
b
il
eN

et
V
2 Mah 85.4±0.11 80.6±0.08 20.7±0.30 87.0±0.11 80.4±0.14 37.2±0.53

MSP 86.3±0.12 81.7±0.12 31.6±0.57 82.2±0.12 78.1±0.13 33.1±0.50
LOF 76.0±0.15 69.8±0.14 20.8±0.30 85.0±0.12 77.3±0.15 41.1±0.60
WNNGAP 89.0±0.16 83.4±0.09 36.9±1.93 87.1±0.09 80.3±0.11 39.1±0.61
WNN(our) 97.6±0.11 92.0±0.16 86.1±0.93 87.9±0.11 80.9±0.13 42.5±0.71
KNN 86.7±0.11 81.5±0.11 24.9±0.42 87.5±0.10 80.5±0.13 39.3±0.52
UF 98.2±0.14 93.3±0.31 91.0±0.67 85.6±0.26 78.6±0.20 35.8±3.20
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result will differ for both examples. The problem is not trivial due to the highly
non-linear nature of deep models, so the authors propose defining the objective
function instead, which is much more likely to optimize using popular optimizers.
Square[1] is based on a randomized search scheme in which we select localized
square-shaped updates at random positions. The OnePixel[25] is highly interest-
ing due to the change of only one pixel to fool the network. It uses a differential
evolution algorithm to find which pixel should be changed. Candidate solutions
contain information with x,y coordinates, and RGB values. During each epoch,
the population is randomly modified by a minor factor, and the algorithm works
until one of the candidates is an adversarial attack.

In our experiments, we generated 1000 examples for each attack method using
the TorchAttacks[13] library. We treated the attacks as OoD data by sampling
the same number of images for the test-known subset. Similarly to previous
experiments, we used 20% random samples to build the WNN and the regressor
in UF. We repeated the experiments ten times (with different test image subsets),
presenting the results as mean and standard deviation. We kept high confidence
in attack examples, usually ensuring that the closed-set classifier’s output would
be above 95% certainty for the wrong class.

We have shown the results of our experiments in Table 4. Although we present
results for the ResNet model, the results and conclusions obtained for other mod-
els are consistent. Popular methods like Mahalanobis, MSP, and LOF are not
suitable for defense against adversarial attacks. UF works well only for FGSM
and PGD, which are the same family of attacks. KNN works only for PGD in
practice. Our method is the best approach for all tested attacks, significantly out-
performing other methods like CW (7.2 p.p. better than second-best), OnePixel
(6.6 p.p. better), or DeepFool (4.1 p.p. better). See that our proposed method
is very stable.

The adversarial attack aims to fool CNN’s classifier part based on the GAP
features. Using different feature extraction strategies should improve results
in defense against adversarial examples. We can compare the two methods
WNNGAP and WNN (proposed), where the first uses only GAP features, and
the second uses all five feature extraction techniques. We can see that for all
attacks, adding new features improves results, with significant improvement for
some attacks, like FGSM (16.7 p.p. better than with only GAP), OnePixel (6.7
p.p. better), or CW (6.1 p.p. better).

4.3 Sensitivity Analysis

The proposed WNN method combines different sources of information (different
feature extractors and Ood detectors). The question of how these sources affect
the final detection performance arises. Comparing the results labeled WNNGAP

(WNN only on GAP features) with results labeled WNN (all feature extractors)
shown in Tables 3 and 4, we conclude that extending the feature extractors be-
yond GAP increases OoD performance. The impact of the OoD methods used
in the ensemble is shown in Table 5. It clearly shows that more methods (Ma-
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Table 4. Comparison of AUROC (%) for ResNet trained on CIFAR-10 and different
types of attacks: CW[4], DeepFool[20], FGSM[6], OnePixel[25], PGD[19], Square[1].
Our method is the best approach for all tested attacks, outperforming others. Moreover,
we showed that extending the WNN by other feature extraction techniques than GAP
methods significantly improves the ability of defenses.

Attack Mah MSP LOF WNNGAP WNN UF KNN

CW 65.1±0.83 80.8±1.10 63.5±1.44 81.9±1.68 88.0±3.68 59.8±2.03 70.3±0.96
DeepFool 63.6±0.92 79.8±0.88 60.2±1.10 79.6±0.82 83.9±2.89 52.7±2.36 67.3±0.61
FGSM 73.4±0.80 68.7±1.50 70.7±1.00 76.3±1.17 93.0±0.47 92.2±0.44 71.7±1.23
OnePixel 61.2±1.48 75.5±1.63 55.4±1.16 75.4±1.21 82.1±2.43 53.9±1.42 65.2±1.04
PGD 86.2±0.53 0.8±0.05 98.2±0.12 99.3±0.13 99.7±0.08 97.1±0.21 96.7±0.20
Square 78.7±1.08 80.2±0.92 76.7±0.64 87.1±1.40 90.2±1.67 75.1±1.54 80.2±0.86

halanobis, MSP, and LOF) are better (than only Mahalanobis or Mahalanobis
and MSP).

We also checked the effect of the size of the validation set on the WNN
results. To test this, we analyzed the proportions of the original test data used
for validation in the CIFAR10 vs. CIFAR-100 detection task for Wide Resnet.
We show the results in Fig. 1, along with the performance of UF (as another
ensemble technique). The validation size affects the performance (AUROC), but
WNN still performs better than the MSP method for a small number, such as
20 outlier images (a factor of 0.002) used to build the ensemble. WNN gives
significantly lower confidence intervals, even though it uses a larger ensemble
model (i.e., MLP regressor) than UF (linear regressor). It is caused by the fact

0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.4

0.6

0.8

rate of validation data (log scale)

A
U
R
O
C

WNN

UF

Fig. 1. Effect of validation size on OoD detection for WNN and UF methods. The
experiments were performed on Wide ResNet with CIFAR-100 used as outliers. The
ratio ranges from 0.002 to 0.5 of the original inliers and outliers images (10,000 in each
set). The experiments (splitting the dataset and tuning the ensemble parameters) were
repeated 50 times, so the results were random. The solid line shows the mean value of
AUROC, whereas the dashed line shows three times the std.
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that UF uses both ensemble and the input pre-processing[16] magnitude meta-
parameter set up in the validation set. Moreover, the effective data size used to
set up the regressor is reduced by half.

4.4 Limitations

We see three limitations of the proposed method: the need for validation samples
to tune the ensemble model, the difficulty in choosing the final methods used in
the WNN, and the required calculation of many OoD confidence scores, some of
which can be computationally heavy.

The first limitation is typical for a large group of OoD methods (such as [14,
16, 9]). The problem is that, in most practical scenarios, either OoD samples are
unavailable or cover a small fraction of the OoD sample space. The results in Fig.
1 suggest that WNN performance decreases when the amount of OoD available
for training decreases, but for just 20 OoD images, the WNN performance is still
better than the baseline (MSP). Furthermore, the ability of validation set-based
techniques to detect OoD decreases when the OoD samples are from a different
OoD domain from the one used to tune the hyperparameters.

Our WNN method uses OoD detectors obtained by three OoD detection
(LOF, Mahalanobis, and MSP) and five feature extraction (CroW, GAP, GMP,

Table 5. The impact of the number of OoD methods used in an ensemble. Results
present AUCROC for an ensemble over the feature extraction methods and just the
Mahalanobis method (WNNMah), Mahalanobis plus MSP (WNNMahMSP ), and all
methods (proposed WNN). A steady increase in performance could be observed by
adding more OoD methods. The last column shows the best results for other (non-
WNN) methods, i.e., the best among Mahalanobis, MSP, LOF, UF, and KNN. We
notice that WNN without LOF (the method with large computational complexity is
only slightly worse than the proposed WNN.

Model OoD WNNMah WNNMahMSP WNN other best

VGG16
SVHN 90.1±0.16 90.6±0.22 97.5±0.10 98.9±0.10 (UF)
CIFAR-100 87.4±0.07 87.7±0.13 88.4±0.12 87.5±0.15 (KNN)

ResNet
SVHN 98.9±0.05 99.2±0.03 99.2±0.02 97.6±0.31 (UF)
CIFAR-100 85.7±0.13 89.2±0.15 89.4±0.11 87.5±0.08 (KNN)

WideResNet
SVHN 99.2±0.03 99.2±0.03 99.2±0.01 97.9±0.03 (Mah)
CIFAR-100 90.9±0.11 91.0±0.10 91.1±0.12 90.9±0.10 (KNN)

DenseNet
SVHN 99.1±0.05 99.2±0.04 99.2±0.03 99.3±0.12 (UF)
CIFAR-100 91.4±0.06 91.8±0.09 92.0±0.10 91.1±0.09 (Mah)

ShuffleNetV2
SVHN 96.8±0.07 96.8±0.11 97.2±0.11 98.0±0.09 (UF)
CIFAR-100 87.3±0.12 87.2±0.10 87.6±0.09 87.5±0.09 (KNN)

MobileNetV2
SVHN 93.6±0.11 94.0±0.08 97.6±0.08 98.2±0.14 (UF)
CIFAR-100 87.1±0.13 87.2±0.09 87.8±0.13 87.5±0.10 (KNN)
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lcGAP, and SCDA) methods. We chose the above methods because of the differ-
entiated nature of the operating principle (see details in Sections 3.1 and 3.2).
However, the proposed solution can be used as a framework, combining confi-
dence scores from any OoD detectors. Finding the optimal set of OoD methods
for WNN can be a limitation due to the number of methods available in the
literature. We suggest using the most diversified OoD detection methods.

The last limitation is the required calculation of many OoD confidence scores.
Some of them might be computationally heavy. For instance, in our proposed
set of methods WNN uses, LOF is computationally intensive compared to Ma-
halanobis or MSP due to the required calculation of the nearest-neighbor as-
pects. For data of dimensions d and train size N , the LOF model’s complexity
is O(d ∗N2), and OoD detection is O(d ∗N). However, it can be speed up (for a
certain distance metric) by using the k-d tree (as implemented in scikit-learn )
or R*-tree (as implemented in the ELKI framework ), giving O(d ∗NlogN) for
model building and O(d ∗ logN) for detection. If the reduced time complexity
is unacceptable, one can build the WNN only on Mahalanobis and MSP. The
results presented in Table 5 (column WNNMahMSP ) show that this solution is
slightly worse than the proposed WNN but still better than other OoD detectors
tested.

5 Conclusion

In this work, we proposed an ensemble procedure for OoD detection that com-
bines OoD detectors based on prediction scores (MSP), distance-based (Maha-
lanobis), and density-based (LOF). Using several benchmarks, we showed that
this procedure outperforms each OoD algorithm used in the ensemble. These
results are consistent for different DNN architectures.

We also showed that for OoD detection, different feature extraction strategies
are worth considering, as this allows us to broaden the representation of objects.
Different DNN feature extraction strategies focus on local (object details) or
global (whole object) characteristics and either low-level (e.g., shapes, textures)
or high-level (entire image meaning) features. We showed that the ensemble OoD
detector that combines different feature extractors (we used GAP, CroW, lcGAP,
GMP, and SCDA) leads to further improvement in OoD detection. We also
found that the proposed method is efficient in recognizing adversarial examples.
Moreover, our method more reliably identifies adversarial examples as OoD than
individual SoTA OoD detectors for a wide range of adversarial attacks.

Finally, our method can be used as a generic framework that combines dif-
ferent outlierness scores (ensemble over OoD detectors of different natures) and
different representations (ensemble over feature extractors). The essential contri-
bution is (a) to show that OoD detection in DNNs consistently improves if based
on ensembled information and (b) to propose the practical technique to ensemble
over OoD detectors and feature extractors. Incorporating other OoD detectors
and feature extractors into our framework may lead to further improvement -
we leave this as future work.
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Our method can facilitate the application of state-of-the-art, pre-trained
DNN models to real-world, safety-critical image and text recognition systems
where efficient OoD detection is mandatory.
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