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Abstract. Early exit, as an effective method to accelerate pre-trained language
models, has recently attracted much attention in the field of natural language
processing. However, existing early exit methods are only suitable for low accel-
eration ratios due to two reasons: (1) The shallow classifiers in the model lack
semantic information. (2) Exit decisions in the intermediate layers are unreliable.
To address the above issues, we propose a Contrastive self-distillation BERT
with kernel alignment-based inference (CsdBERT), which aims to let shallow
classifiers learn deep semantic knowledge to make comprehensive predictions.
Specifically, we classify the early exit classifiers into teachers and students based
on classification loss to distinguish the representation ability of the classifiers.
Firstly, we present a contrastive learning approach between teacher and student
classifiers to maintain the consistency of class similarity between them. Then,
we introduce a self-distillation strategy between these two kinds of classifiers to
solidify learned knowledge and accumulate new knowledge. Finally, we design a
kernel alignment-based exit mechanism to identify samples of different difficulty
for accelerating BERT inference. Experimental results on the GLUE and ELUE
benchmarks show that CsdBERT not only achieves state-of-the-art performance,
but also maintains 95% performance at 4× speed.

Keywords: Early exit · Contrastive learning · Self-distillation · Centered kernel
alignment

1 Introduction

Pre-trained language models (PLMs) have become the most promising models in the
field of natural language processing (NLP), such as BERT [1], GPT [2], XLNet [3],
RoBERTa [4], ALBERT [5], etc., which bring significant improvements to NLP tasks.
Despite the great success of PLMs, they incur computational consumption, which leads
to very slow inference and high latency. To cope with these issues, static model com-
pression techniques are used to accelerate PLMs inference, such as knowledge distilla-
tion [6], quantization [7], and pruning [8], etc. However, this class of static compression
methods aims to obtain a compact model, resulting in a dramatic performance degra-
dation. Conversely, dynamic early exit [9] has proven to be an effective way to reduce
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Fig. 1. On the left is an example of a multi-exit BERT, and on the right are the two mainstream
exit mechanisms (where c1 to c12 denote early exit classifiers and Ei denotes exit at some layer
i).

computation and latency. The main idea of dynamic early exit models [9–13] is to
add additional classifiers to the different layers of PLMs. Dynamic early exit PLMs
mainly involve training these classifiers in the fine-tuning stage, thus exiting early in
the inference stage. Hence, it is important to design an effective exit mechanism for the
inference stage.

Existing exit methods can be categorized into entropy-based and patience-based
methods, as shown in Fig. 1. The entropy-based methods [10,11,13,14] aim to compute
the entropy of the predicted probability distribution as an estimate of the confidence of
exiting classifiers. These methods are overconfident in some classifiers, making them
unreliable indicators of confidence, and the ability of the low layers may not match their
high confidence scores. The patience-based methods [9, 12, 15] rely on the cross-layer
consistency prediction to make an exit decision. Unfortunately, these methods using the
patience index only provide very limited acceleration ratios and cannot be applied to
complex real-world scenarios.

To solve the above problems, we propose CsdBERT: a Contrastive self-distillation
BERT with kernel alignment-based inference to reduce computational cost and in-
ference latency. Our CsdBERT contains a contrastive learning approach and a self-
distillation strategy in the fine-tuning phase, and a kernel alignment-based exit deci-
sion in the inference phase. Specifically, we first rank the early exit classifiers by clas-
sification loss, which can effectively distinguish strong teacher classifiers from weak
student classifiers. For the contrastive learning approach, teachers and students are ob-
tained from the encoder outputs of the early exit classifiers, and the ensemble teacher
is obtained by averaging multiple teachers to allow the student classifiers to learn the
contrastive training signal of the ensemble teacher at the encoder level. For the self-
distillation strategy, the teachers composed of soft-labels become an expert teacher
through the weight of difficulty perception, so that students can learn the rich knowledge
of the expert teacher and reduce forgetting. Finally, we design a kernel alignment-based
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exit mechanism to calibrate the predictions of the model based on the instance difficulty,
which satisfies the requirements of acceleration ratios in different scenarios.

Extensive experiments are carried out on the GLUE and ELUE benchmarks, and
the results show that our proposed method not only outperforms the state-of-the-art
methods, but also achieves the highest acceleration ratio.

2 Related Work

Large-scale pre-trained language models based on the Transformer architecture show
excellent performance in the field of NLP. However, such models have a large number
of parameters, resulting in large memory requirements and computational consumption
during inference. To deal with this problem, studies [16–21] on improving the efficiency
of over-parameterized models has gradually emerged.

Static Compression. Knowledge distillation [22], as a model compression tech-
nique, compacts the model structure to a smaller model, and keeps static for all in-
stances in the inference process. In the pre-training stage, [16] reduces the size of the
BERT model by knowledge distillation, which makes the training cost of the model
less and the inference time shorter. [17] proposes deep self-attention distillation, and
student models are trained by deep imitation of self-attention module, which shows that
using the knowledge of the last Transformer layer can alleviate the difficulties of layer
mapping between teacher and student models. [18] proposes progressive module re-
placing, which provides a new perspective for model compression without additional
loss functions. [23] demonstrates that the teacher network can learn to better transfer
knowledge to the student network by distilling the feedback on the student network’s
performance in a meta-learning framework. However, these static compression methods
have to distill the model from scratch to meet different speedup requirements and treat
instances requiring different computational costs indiscriminately.

Dynamic Early Exit. To meet different speedup constraints, instance adaptation
methods [14,24] have been proposed to adjust the number of executed layers for differ-
ent instances. Among them, dynamic early exit is an efficient way to adaptively speed
up inference, which is first used in computer vision tasks [25–27]. [28] makes full use
of the idea of early exit, and proposes calibrated confidence scores to make early exit
decisions, which are applied to NLP tasks to show the effectiveness of the method. [10]
proposes a two-stage training method. In the first stage, the classifier of the last Trans-
former layer is fine-tuned; In the second stage, the parameters fine-tuned in the first
stage are frozen, and then the remaining eleven classifiers are updated. To make predic-
tions with fewer Transformer layers, [9] proposes a joint training method to train each
early exit classifier, and make the model stop inference dynamically through cross-layer
consistent prediction. In addition to the joint training and two-stage training methods,
[29] proposes an alternating training method, which combines the advantages of the
first two training methods and extends the idea of early exit to regression tasks. [11]
proposes a speed-adjustable BERT model, which improves the inference time of NLP
model through sample-wise adaptation and self-distillation mechanism. [30] analyzes
the working mechanism of dynamic early exit and shows that dynamic selection of ap-
propriately sized models in a cascading manner can provide a comprehensive represen-
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tation for prediction. To improve the performance of early exit classifiers, [15] reveals
that each early exit classifier can learn from each other, and improves the optimization
results through a cross-level optimization algorithm. [12] uses mutual learning and gra-
dient alignment for knowledge distillation, which shows that deep classifiers can also
learn from shallow classifiers, and the conflict between cross-entropy loss and distilla-
tion loss can be eliminated by gradient alignment. [14] proposes a unified horizontal
and vertical multi-perspective early exit framework to achieve a trade-off between ef-
ficiency and performance. However, most of the research on this subject has not fully
exploited semantic information of high-layer classifiers, and the judgment of exit deci-
sions is not accurate enough.

3 Method

Our CsdBERT aims at learning deep semantic knowledge to realize efficient inference.
The main framework of CsdBERT is shown in Fig. 2. Firstly, we train early exit clas-
sifiers by classification loss, and then we present a contrastive learning design and
elaborate a self-distillation strategy. Finally, we design a kernel alignment-based exit
mechanism.
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Fig. 2. The framework of our proposed CsdBERT. There are three main loss functions in the fine-
tuning stage: classification loss LCE , contrastive loss LSCL, and distillation loss LKD . Centered
kernel alignment is used as a similarity index to measure the output of the encoder in the exit layer,
and the prediction can be accurately output in advance by counting.

3.1 Early Exit

The base version of the BERT model typically contains twelve layers of transformers.
The input sample is first tokenized as a sequence of subwords, i.e., X = [x1, x2, ..., xK ],
with the corresponding ground truth label y, where K is the length of the sequence.
Firstly, a special token [CLS] is added to the head of the sequence so that each layer’s
corresponding hidden state h

(l)
[CLS] is encoded through a multilayer encoding process
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that includes all representative information about all tokens. For each layer, the encod-
ing process is defined as follows:[

h
(l)
[CLS], h

(l)
1 , . . . , h

(l)
N

]
= f

(l)
θ

([
h
(l−1)
[CLS], h

(l−1)
1 , . . . , h

(l−1)
N

]
; θ
)
, (1)

where f
(l)
θ is the Transformer encoder at the lth layer of the θ parameterization. h(l)

[CLS]

is considered to be the features that train the early exit classifier c(l).
The predicted probability distribution ŷ(l) of the early exit classifier for the ground-

truth label is computed as follows:

c(l) = tanh
(
W (l)

c h
(l)
[CLS] + b(l)c

)
, (2)

ŷ(l)c = softmax
(
c(l)

)
, (3)

where tanh is the activation function, W (l)
c is the weight, and b

(l)
c is the bias. The loss

function for the target task is a categorical cross-entropy, which is defined as

L(l)
CE = −

L∑
l=1

I(y) ◦ log
(
ŷ(l)c

)
, (4)

where y and ŷ
(l)
c denote the ground truth and probability distribution of the lth layer.

I(y) represents a one-hot vector with the yth component being one. ◦ denotes the
element-wise multiplication operation.

3.2 Classification Loss

To train early exit classifiers of BERT, additional classifiers are added. For each classi-
fier c(l) (l = [1, 2, ..., L]), its cross-entropy loss LCE

l is first calculated. Then, we use
the summed loss to facilitate the joint training of these classifiers:

LCE =

L∑
l=1

LCE
l , (5)

where L is the number of early exit classifiers.
Based on the cross-entropy loss, we sort the encoder outputs corresponding to all

classifiers, and select M students to be the set S (where S = [S1, S2, ..., SM ]) with
larger losses and the remaining ones as teachers T (encoder). The ensemble teacher Tens

is obtained by averaging over multiple teachers.

3.3 Contrastive Loss

To alleviate the inherent semantic bias of the student classifiers in the training process,
we introduce self-supervised contrastive loss [31], which explores the merit of the en-
semble teacher classifier. The contrastive learning between the student classifiers and
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the ensemble teacher classifier can effectively improve the ability of shallow classifiers
to extract semantic information. Our goal is to encourage the same samples to be pulled
closer and the other samples be pushed away between the ensemble teacher and the
student classifiers. The specific form is as follows:

l
(xi,xj)
SCL =

esim(Tens(xi),Sm(xj))/τ∑2Q
k=1,k ̸=i e

sim(Tens(xi),Sm(xk))/τ
, (6)

where the sample xi is from the ensemble teacher classifier Tens and the sample xj is
from the student classifier Sm (m = [1, 2, ...,M ], where M is the number of students).
Q is the batch size. For the ensemble teacher Tens and student Sm, the similarity be-
tween them is computed, where sim(., .) is the cosine similarity (the dot product of
the input samples). τ denotes the contrastive temperature [32]. As suggested by [31],
we also use the normalised softmax in Eq. (6), instead of using the cosine similarity
measure directly. The contrastive loss takes the form of

L(m)
SCL = − 1

Q

Q∑
j=1

log l
(xi,xj)
SCL , (7)

where the contrastive loss is defined as the arithmetic mean of the cross-entropy of the
normalised similarity l

(xi,xj)
SCL . Then, the final contrastive loss is

LSCL =

∑M
m=1 m · L(m)

SCL∑M
m=1 m

. (8)

3.4 Distillation Loss

Apart from maintaining the consistency of class similarities, distilling semantic knowl-
edge from the teacher classifiers is also essential to alleviate the catastrophic forget-
ting. To this end, we divide soft-labels logits of classifiers into students S and teachers
T (logits) (where S = [S1, S2, ..., SM ], T (logits) = [T

(logits)
1 , T

(logits)
2 , ..., T

(logits)
N ],

M is the total number of students and N is the total number of teachers). Firstly, we
design the difficulty function:

Dif (n) =

∑Y
i=1 p

n
t (i) log p

n
t (i)

log 1
Y

, (9)

where Y is the number of labeled classes, n = [1, 2, ..., N ]. pnt (i) is the distribution of
output probability of the teacher classifier. Then, we multiply the corresponding teacher
by Dif (n) as a weight to become an expert teacher Texp:

Texp =

N∑
n=1

Dif (n) · T (logits)
n , (10)

The distillation is performed as

LKD =

M∑
m=1

LKD
Sm→Texp

, (11)
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where LKD is the distillation loss [11]. Sm denotes the student (m = [1, 2, ...,M ]).
Since the model structure of the expert teacher Texp and the student Sm is the same,
self-distillation is carried out between them.

3.5 Total Loss

In the fine-tuning stage, we train early exit classifiers by the above three losses. The
total loss function of CsdBERT is summarized as

LTotal = LCE + αLSCL + βLKD, (12)

where α and β are hyper-parameters to balance the effect between contrastive loss and
distillation loss.

3.6 Centered Kernel Alignment

To achieve a high acceleration ratio, we use an early exit based on centered kernel
alignment (CKA) [33] in the inference stage. We first employ the encoder output Ei of
each exit layer as input. Then, we use CKA as the similarity index. The similarity of
the encoder outputs is computed two-by-two in turn, which is denoted as

CKA(Ei, Ei+1) =
HSIC(Ei, Ei+1)√

HSIC(Ei, Ei)HSIC(Ei+1, Ei+1)
, (13)

where E = [E1, E2, ..., EL], L is the number of early exit classifiers. HSIC is

HSIC(Ei, Ei+1) =
1

(n− 1)2
tr(EiHEi+1H), (14)

where H denotes the centering matrix, Hn = In − 1
n11

T. n is the size of the Ei row
vector. We count once when Similarity(i+ 1) minus Similarity(i) is less than θ (
Similarity(i) = CKA(Ei, Ei+1)), corresponding to an inference threshold of 1. We
count twice, then inference threshold is 2, and so on.

4 Experiments

Datasets. We conduct experiments on the GLUE [34] and ELUE [35] benchmarks, as
shown in Table 1 and Table 2, respectively. On the GLUE benchmark, we test on Rec-
ognizing Textual Entailment (RTE), Question Natural Language Inference (QNLI), and
Multi-Genre Natural Language Inference Matched (MNLI) for the Natural Language
Inference (NLI) task; Quora Question Pairs (QQP) for Paraphrase Similarity Matching.
On the ELUE benchmark, we test on Microsoft Research Paraphrase Matching (MRPC)
for Paraphrase Similarity Matching; Stanford Sentiment Treebank (SST-2) and IMDb
for Sentiment Classification; SciTail and SNLI for the NLI task.

Baselines. We compare our method with two types of baselines: (1) Compressed
models. We choose BERT-6L, BERT-of-Theseus [18], LayerDrop [36], DistilBERT [16],

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_39

https://dx.doi.org/10.1007/978-3-031-35995-8_39
https://dx.doi.org/10.1007/978-3-031-35995-8_39


8 Y. Xu et al.

Table 1. The GLUE benchmark.

Tasks Datasets #Train #Dev #Test

Natural Language Inference RTE 2,490 277 3,000
Natural Language Inference QNLI 104,743 5,463 5,463
Paraphrase Similarity Matching QQP 363,849 40,430 390,965
Natural Language Inference MNLI 392,702 9,815 9,796

Table 2. The ELUE benchmark.

Tasks Datasets #Train #Dev #Test

Paraphrase Similarity Matching MRPC 3,668 408 1,725
Sentiment Classification SST-2 8,544 1,101 2,208
Sentiment Classification IMDb 20,000 5,000 25,000
Natural Language Inference SciTail 23,596 1,304 2,126
Natural Language Inference SNLI 549,367 9,842 9,824

and BERT-PKD [37] as baselines. (2) Early exit models. We choose state-of-the-
art early exit models, including PABEE [9], DeeBERT [10], FastBERT [11], GAML-
BERT [12], and CascadeBERT [30].

Evaluation Metrics. For QQP and MRPC, we report the unweighted average of
accuracy and F1 score. For the other datasets, we simply adopt accuracy as the metric.
We use the above metrics to evaluate our CsdBERT and baselines in all experiments,
and the detailed information of metrics are shown in the literature [34, 35].

Table 3. Results(%) on the GLUE benchmark.

Models #Param Speed-up RTE QNLI QQP MNLI Average

BERT-base 109M 1.00× 67.1 86.8 88.7 83.5 81.5

BERT-6L 66M 1.96× 60.3 80.2 84.8 77.1 75.6
BERT-of-Theseus 66M 1.96× 63.6 82.4 86.5 80.7 78.3
LayerDrop 66M 1.96× 62.8 81.7 86.2 80.1 77.7
DistilBERT 66M 1.96× 63.1 82.2 86.4 79.8 77.9
BERT-PKD 66M 1.96× 63.4 82.5 86.8 80.6 78.3
CascadeBERT 66M 1.96× 64.6 89.4 71.2 83.0 77.1
GAML-BERT 109M 1.96× 66.8 85.1 89.1 83.2 81.1
PABEE 109M 1.89× 64.5 83.1 87.5 81.5 79.2
DeeBERT 109M 1.88× 63.9 82.5 87.3 81.2 78.7
FastBERT 109M 1.93× 64.9 83.6 88.1 82.1 79.7

CsdBERT(Ours) 109M 1.96× 73.3 92.1 90.0 85.3 85.2

Implementation Details. Following [35], the batch size is set to 32 and the learning
rate is set to 2e-5. The contrastive temperature τ is set to 0.5 and θ is set to 0.06. We
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fine-tune 5 epochs using Adam optimizer, and take the distillation temperature to be 4.
Furthermore, we set α equal to 0.01 and β equal to 1. The implementation of CsdBERT
is based on the HuggingFace Transformers Library [38].

Table 4. Results(%) on the ELUE benchmark.

Models #Param Speed-up MRPC SST-2 IMDb SciTail SNLI Average

ElasticBERT-base 109M 1.00× 87.9 88.6 93.9 93.8 91.3 91.1

ElasticBERT-entropy 109M 1.88× 87.5 88.3 88.2 94.5 90.0 89.7
ElasticBERT-patience 109M 1.89× 86.7 88.7 88.0 93.9 90.1 89.5

CsdBERT(Ours) 109M 1.96× 91.8 93.1 88.7 95.9 91.0 92.1

4.1 Experimental Results on GLUE and ELUE

Comparison with State-of-the-Art Methods. To verify the effectiveness of CsdBERT,
we first evaluate CsdBERT and our baselines on the GLUE benchmark with BERT as
the backbone model. From Table 3, we can see that CsdBERT outperforms the state-of-
the-art methods with the same speedup ratio. For instance, the accuracy of our method
on RTE is 73.3%, which improves 6.5% compared with the best result of GAML-BERT.
This is because our method not only enhances the ability of classifiers to recognize se-
mantic knowledge, but also determines the difficulty of different samples to exit pre-
cisely in advance.

Further Comparison. In order to further explore the efficiency of our method,
we conduct experiments on the ELUE benchmark with ElasticBERT [35] as the back-
bone model. From Table 4, we can see that CsdBERT outperforms comparative models.
The reason is that we alleviate semantic bias between the strong classifier (the ensem-
ble teacher classifier made by combining multiple teachers) and the weak classifiers
(student classifiers) by contrastive learning. Then, through self-distillation, our weak
classifiers can learn rich semantic knowledge from the strong classifier.

Table 5. Ablation study of CsdBERT.

Models RTE MRPC SST-2

CsdBERT 73.3 91.8 93.1

w/o LSCL 70.4 90.3 87.4
w/o LKD 69.7 90.0 88.3
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4.2 Ablation Study

We conduct ablation study to validate the effectiveness of the essential components of
CsdBERT, and the results are shown in Table 5.

(1) w/o LSCL. The accuracy corresponding to all the three tasks shows a relatively
large decrease in the absence of contrastive loss. This is because contrastive loss ensures
the student classifiers to get rich contrastive training signals from the ensemble teacher
classifier.

(2) w/o LKD. If distillation loss is removed, the performance of classifiers in each
layer is degraded. This indicates that the student classifiers can learn new knowledge of
the expert teacher classifier.

4.3 Parameter Analysis

Total Number of Teachers N . As shown in Fig. 3 (a), the total number of teachers
has a different impact on performance. In order to select the optimal number of teach-
ers, we conducted experiments on MRPC at 2× speed. We analyse the effect of N by
varying its value from 3 to 8. With the increase of teachers, the score first increases and
then declines dramatically. As the score is highest when N = 6, we use N = 6 in all
experiments reported.

3 4 5 6 7 8
Total number of teachers

0.882

0.884

0.886

0.888

0.89

0.892

0.894

S
co

re

MRPC

2x

(a) Multi-teacher selection
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(b) Different acceleration ratios

Fig. 3. Teacher selection and acceleration ratio. For the MRPC task, Score is the average of accu-
racy and F1 score. For the QNLI task, Score represents accuracy.

Inference Threshold R. On QNLI, we show the speedup ratios corresponding to
different values of inference thresholds. Concretely, compared to BERT’s accuracy
on QNLI, CsdBERT still maintains 95% performance at 4× speed. As illustrated in
Fig. 3 (b), when R is 1, the speedup ratio is the highest.

5 Conclusion

In this paper, we propose CsdBERT for accelerating BERT inference. We first keep
the consistency of class similarity between strong ensemble teacher and weak student

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_39

https://dx.doi.org/10.1007/978-3-031-35995-8_39
https://dx.doi.org/10.1007/978-3-031-35995-8_39


A CsdBERT with Kernel Alignment-Based Inference 11

classifiers via contrastive learning. Then, our student classifiers learn richer knowledge
of the expert teacher via self-distillation. Finally, our designed kernel alignment-based
mechanism can reflect the real difficulty of each instance and output more reliable pre-
dictions. Experimental results on the GLUE and ELUE benchmarks show that Csd-
BERT outperforms the state-of-the-art methods, and maintains 95% performance at 4×
speed. In the future, we will explore CsdBERT deployed to complex real-world scenar-
ios.
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