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Abstract. The successful application of computational models presup-
poses access to accurate, relevant, and representative datasets. The growth
of public data, and the increasing practice of data sharing and reuse, em-
phasises the importance of data provenance and increases the need for
modellers to understand how data processing decisions might impact
model output. One key step in the data processing pipeline is that of
data integration and entity resolution, where entities are matched across
disparate datasets. In this paper, we present a new formulation of data in-
tegration in complex networks that incorporates integration uncertainty.
We define an approach for understanding how different data integration
setups can impact the results of network diffusion models under this
uncertainty, allowing one to systematically characterise potential model
outputs in order to create an output distribution that provides a more
comprehensive picture.

Keywords: Complex networks · Data integration · Entity resolution ·
Network diffusion models.

1 Introduction

Since all computational models offer simplified views of reality, there inevitably
arises uncertainty in the results that they produce [37]. This uncertainty can be
either epistemic, driven by lack of knowledge of the system, or aleatory, driven by
the inherent randomness in the system of study. Understanding and quantifying
epistemic uncertainty has been a significant field of research in computational
modelling [14, 36]. While this uncertainty can be caused by many factors, the
majority of the current literature has addressed parameter [35], structural [32],
measurement [9], and interpolation [19] uncertainty.

The growth of public data, and the increasing practice of data sharing and
reusing data from multiple sources, highlight the need for modellers to under-
stand how data processing decisions can impact model uncertainty. These data
processing pipelines are complex due to both the number of data sources but also
due to the large space of possible choices in algorithms and decisions that need
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to be made [8]. While the importance of data quality in computational models
is well-understood [17, 31], to date there has been only limited investigation into
quantifying the effects that data handling decisions can have on computational
models.

This paper thus presents a deeper investigation into this problem focused on
data integration. Specifically, it defines a formalism for systematically assessing
these effects for diffusion models on complex networks, and we validate this
approach with an experiment on a benchmark dataset. In the next section, we
review the related work more deeply and more fully articulate the problem.

2 Background and Related Work

One of the key areas in data handling is data integration, the combining of
multiple distinct datasets from different sources into a single, unified view [10].
A critical aspect of data integration is entity resolution, in which real-world
entities imperfectly recorded in datasets are identified and consolidated. Entity
resolution is a well-studied problem [13, 4], and has been tackled from both a
theoretical [11] and practical [18] standpoint.

Since its inception, the entity resolution problem has been defined as an
optimisation issue [11], where a single, ‘best’ resolved set of entities is identified
and used for creating the unified dataset. In this case, ’best’ usually means the
resolved entity set that most closely resembles the unobserved reality (according
to some arbitrary measure) that generated the unresolved data. Even with more
advanced techniques like deep learning and parallelisation being employed, the
problem is still seen as one of optimising to a single entity set [8, 22]. Only
recently has the entity resolution problem begun to be considered based on
downstream intent for the resolved data [12].

However, in almost all cases there is a level of uncertainty in the entity
resolution problem. While a solution may be found that is indeed optimal based
on the specific optimisation problem definition, there is no guarantee that this
definition serves as a perfect base to recreate the true unobserved reality. In
fact, usually insufficient data have been collected to identify perfectly this true
reality. Hence, different optimisation problem definitions can produce different
sets of entities, and it can be challenging to decide which to use to resolve a
dataset. This is often not accounted for in the literature, where instead only a
single optimisation problem and subsequent resolved dataset are considered.

One case where this can cause problems is in the modelling of diffusion pro-
cesses on complex networks. Many diffusion models are known to exhibit critical
threshold/phase transition behaviour [23, 29], where small changes in model pa-
rameters or network topology can have a drastic effect on model output. These
models have application in a wide range of important societal problems, e.g., epi-
demic spreading [15], opinion dynamics [1], and polarisation [30]. When data are
used to create complex networks, the set of entities used can create sufficiently
large changes in network topology to cross over threshold levels for diffusion
models [28].
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This sensitivity has already been demonstrated with different data integra-
tion setups, which includes the entity resolution step [28]. But, as of yet, there is
no formal framework for describing the levels of uncertainty in different data in-
tegration setups and their effect on diffusion models. With the, often observed,
critical threshold behaviour of these diffusion models, it is also important to
characterise model behaviour in ‘low probability’ data integration setups, as
the resolved graph may exhibit drastically different topology and thus diffusion
model output. When considering aggregate measures, there is a need to capture
a distribution of model outputs over different data integration setups, rather
than a single, best setup.

Hence, we argue for a need for a data integration landscape in complex net-
work analysis. Rather than performing a single data integration, multiple differ-
ent setups should be defined, tested, and weighted based on confidence in their
accuracy using flexible entity resolution approaches. Diffusion models can be
tested on the resultant resolved networks and their associated weighting, giving
a distribution of model outputs that captures the uncertainty arising from the
imperfect data.

3 Data Integration Landscapes

We now define formally the data integration process such that multiple possible
integrations are possible, which together create a data integration landscape.

There exists a true graph/complex network, GT , which is made up of a set
of true vertices, VT , and edges, ET , where the vertices represent different real-
world entities and the edges relationships between these entities. Given a network
model, M , whose behaviour on GT one wishes to understand, a landscape of
potential integrated graphs is created on which to estimate M ’s behaviour on
GT .

Assume that GT is not perfectly observable; instead, there is a set of observed
graphs, G1, G2, ..., Gn, each of which offer some imperfect or incomplete view of
GT . Let the union of all observed graphs be

G :=

n⋃
i=1

Gi. (1)

Let V (G) be the set of vertices of some graph G. We define N := |V (G)|.

3.1 Entity Resolution

Two vertices v and w are considered equal (v = w) if they correspond to the
same real-world entity. We assume the following:

1. ∀v ∈ VT ,∃w ∈ V (G) s.t. v = w

2. ∀w ∈ V (G),∃!v ∈ VT s.t. v = w
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i.e. every vertex in the true graph is present in at least one of the observed graphs,
and every vertex in the observed graphs corresponds to exactly one vertex in the
true graph.

Consider a partitioning of the vertices in G, {P1, P2, ..., Pk}. Each Pi is a
subset of vertices from V (G), with Pi ∩ Pj = ∅ for i ̸= j and

⋃k
i=1 Pi = V (G).

We call such a partitioning a state-of-the-world, which we generally denote with
S. A state-of-the-world describes a potential reality where all vertices in the
same partition are equal i.e. they represent the same real-world entity. For an
assumed state-of-the-world, each v ∈ VT corresponds to exactly one partition.
We note that there exists exactly one true state-of-the-world, ST , which perfectly
captures the real-world equality relationships between vertices in VT and V (G).

The number of potential states-of-the-world is equal to the total number of
ways of partitioning the vertices in G. With |V (G)| = N , this is BN , the N th

Bell number:

BN =

N∑
k=0

{
N

k

}
, (2)

where
{
N
k

}
is the Stirling number of the second kind given by{

N

k

}
=

1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)N . (3)

We now assume that we have some (partial) information/data about the
observed vertices, which we call vertex attributes. This could include things like
names, geographical location, email addresses, etc. This information allows us to
identify different potential states-of-the-world as more or less likely. For example,
a state-of-the-world where all vertices in a partition have the same last name
might be more likely than one with different last names in a given partition.
Indeed, based on one’s understanding of the vertices’ attributes, one may decide
that a large number of the potential states-of-the-world are impossible.

Let S = {S1, S2, ..., Sm} be the set of all potential states-of-the-world that
are not impossible. Let P(Si = ST ) be the probability that Si is the true state-
of-the-world. We then have:

1. P(Si = ST ∩ Sj = ST ) = 0 for i ̸= j
2.

∑m
i=1 P(Si = ST ) = 1

The defining of probabilities of states-of-the-world is use-case specific. With
perfectly detailed data, free of errors and fully documented, it may be possible
to assign a probability of 1 to a specific state-of-the-world. With no data, all
states may be considered equally likely. Reality will likely fall between these two
extremes, and there is unlikely to be a perfect or consistent approach to assigning
probabilities for all domains.

3.2 Graph Resolution

We now introduce (graph) resolution functions, which complete the data integra-
tion process started by entity resolution and, in conjunction with the associated
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probabilities, define a data integration landscape. Resolution functions are func-
tions on G×S that return a single, resolved graph. For resolution function R and
state-of-the-world S = {P1, P2, ..., Pk}, R(G, S) returns a graph with k vertices,
each of which correspond to a different partition in S.

The purpose of resolution functions is, under an assumed state-of-the-world,
to recreate the unobserved GT from the observed G. The partitions in the state-
of-the-world, S, dictate the vertices in R(G, S); the resolution function R deter-
mines which of these vertices are connected and what their resolved attributes
are.

As a simple example, suppose we have two partitions, Pi and Pj , in our
assumed state-of-the-world. These will then correspond to two vertices in our
resolved graph. One way our resolution function could determine whether to
connect these two vertices would be to consider the connectedness of the vertices
in Pi and Pj in G: if over 50% of the vertices in Pi have an edge to a vertex in
Pj , connect the vertices in the resolved graph, for example. The attributes of the
vertices in the resolved graph could be decided using means of the attributes of
the vertices in Pi and Pj , as one possible approach.

The graphs created using a resolution function, in conjunction with the prob-
abilities of the states-of-the-world that generate them, allow one to identify a
distribution of potential true graphs. Let the set of graphs generated through
resolution function R and states-of-the-world S be GR,S . Then for G ∈ GR,S :

P(G = GT ) =
∑

S∈S:R(G,S)=G

P(S = ST ), (4)

where it is assumed that, given the true state-of-the-world, a resolution func-
tion returns GT (section 3.3 offers more details). In most cases, only one state-
of-the-world will generate a given resolved graph, but this is not strict.

Using this distribution of potential true graphs, one can better understand
the potential behaviour of the network model, M , on GT . For some model metric,
X:

P(X = x) =
∑

G∈GR,S

P(X = x|G = GT )P(G = GT ). (5)

The P(X = x|G = GT ) values can be estimated using various model analysis
techniques, such as Monte Carlo simulation, and the approach will likely be
model- (and possibly graph-) specific.

The approach described in equation 5 can be extended to calculate various
other values of interest, such as the risk of exceeding a certain threshold:

P(X > t) =
∑

G∈GR,S

P(X > t|G = GT )P(G = GT ), (6)

or identifying in which states-of-the-world risk is high:

{S : P(X > t|R(G, S) = GT ) > r}. (7)
Again, many of these intermediate values/probabilities will need to be esti-

mated, but there exists a wealth of research into such topics [25, 3].
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3.3 Multiple Resolution Functions

We can extend the formulation above to include the scenario where there is
a set of potential resolution functions, R = {R1, R2, ..., Rk}. Furthermore, we
introduce a series of simplifying assumptions that lead to a straightforward prob-
ability assignment.

A resolution function is called true if it perfectly maps the true state-of-the-
world to GT i.e. R(G, ST ) = GT . Note that there is more than one possible true
resolution function.

The resolution functions in R may or may not be true. This set of potential
resolution functions and the potential states-of-the-world define a set of possible
resolved graphs.

GR,S = {R(G, S) : R ∈ R ∧ S ∈ S}. (8)

As before, we would like to assign a probability to each of these potential
resolved graphs being equal to the true graph. For G ∈ GR,S :

P(G = GT ) =
∑
S∈S

P(G = GT |S = ST )P(S = ST ), (9)

since the events S = ST are mutually exclusive and exhaustive. If we assume
that the resolution functions in R are deterministic, we have:∑

S∈S
P(G = GT |S = ST )P(S = ST ) =∑

S∈S:∃R∈R s.t. R(G,S)=G

P(G = GT |S = ST )P(S = ST )+

∑
S∈S:∄R∈R s.t. R(G,S)=G

P(G = GT |S = ST )P(S = ST ), (10)

as then each state-of-the-world will map to exactly one resolved graph with each
potential resolution function.

We now introduce an assumption in order to simplify equation 10: exactly
one resolution function in R is true.

If it is possible for none of the resolution functions to be true, then there
is a non-zero probability of GT /∈ GR,S . In this case, we cannot say anything
about network model behaviour on GT . Thus, we assume at least one resolution
function is true.

If two or more resolution functions are true, then the true state-of-the-world
will map to the same graph with these true resolution functions. Thus, the
likelihood of resolution functions being true becomes a joint likelihood with the
potential states-of-the-world being true. While this can be handled, it does not
offer any simplification to our formula. Hence, we assume exactly one resolution
function in R to be true.

In light of this, we impose a further restriction: no state-of-the-world can map
to the same graph with different resolution functions. If a state-of-the-world maps
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to the same graph with two resolution functions, either the state-of-the-world
is not true or neither of the resolution functions are true. Both of these disrupt
our probability assignment and calculation, so we prefer to avoid them. This
restriction is not too prohibitive; it mainly requires that the resolution functions
in R are sufficiently different.

Equation (10) can now be simplified to be summed over pairs of states-of-
the-world and resolution functions in the first sum,∑

S∈S
P(G = GT |S = ST )P(S = ST ) =∑

S∈S,R∈R:R(G,S)=G

P(G = GT |S = ST )P(S = ST )+

∑
S∈S:∄R∈R s.t. R(G,S)=G

P(G = GT |S = ST )P(S = ST ). (11)

Note that, for terms in the final sum in equation 11, P(G = GT |S = ST ) = 0.
Given that S is the true state-of-the-world and there is a true resolution function
in R, one of the graphs S maps to must be the true graph. However, the sum is
over the states-of-the-world which do not map to G. Hence, G ̸= GT .

Furthermore, one can replace G in the first sum with the appropriate state-
of-the-world and resolution function.

∑
S∈S

P(G = GT |S = ST )P(S = ST ) =∑
S∈S,R∈R:R(G,S)=G

P(R(G, S) = GT |S = ST )P(S = ST ) =

∑
S∈S,R∈R:R(G,S)=G

P(R(G, ST ) = GT )P(S = ST ), (12)

where in the last line we have used the condition S = ST to make a substitution.
This formulation now has the product of two probabilities: the first is the prob-
ability that the resolution function maps the true state-of-the-world to the true
graph (i.e. the probability that the resolution function is true); the second is the
probability that the state-of-the-world is equal to the true state-of-the-world.
Hence,

P(G = GT ) =
∑

S∈S,R∈R:R(G,S)=G

P(R is true)P(S = ST ). (13)

Using this equation, the probabilities of resolved graphs being equal to the true
graph can be assigned by independently assigning probabilities to the different
states-of-the-world being equal to the true state-of-the-world and to the resolu-
tion functions being true.

A given network model can then be analysed on these graphs in the same
way as detailed in the previous subsection.
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4 Probability Assignment

The key challenge to applying the data integration landscape formulation out-
lined above is the assignment of probabilities to states-of-the-world, which we
discuss in detail in this section. How this challenge is addressed practically will
depend on the level of uncertainty in the data. At one extreme where there
is zero uncertainty, a probability of 1 is assigned to one state-of-the-world. In
the other extreme of maximum uncertainty, equal probability is assigned to all
states-of-the-world.

The certainty in the data, and thus assignment of probabilities to states-of-
the-world, should be dependent on the similarity between vertex attributes, and
the distribution thereof. The quantification of similarity between entities is a
well-studied field in data science [8, 13, 4], and most entity resolution approaches
rely on this quantification in some way. Even highly sophisticated, state-of-the-
art approaches are typically represented with a final result indicating pairwise
similarities between entities [8]. With this in mind, we use pairwise similarities,
or, equivalently, distances between vertices to measure uncertainty in the data
and thus assign probabilities.

Consider a scenario in which vertices can be divided into two groups, where
all vertices in a group are highly similar to each other, and all vertices between
groups are highly dissimilar. A state-of-the-world that partitions the vertices
into these two groups should have a high probability. We would thus consider
this data to have low uncertainty – we can easily identify a unique or small
set of reasonable states-of-the-world based on the similarities between vertices.
As the distinction between similar and dissimilar vertices becomes less clear, it
becomes more difficult to narrow down the set of states-of-the-world that should
be considered, and thus our uncertainty grows.

Hence, the overall level of uncertainty in the data can be broadly captured
in the distribution of pairwise similarities/distances. In data with low uncer-
tainty, we can easily distinguish between vertices that are equal and vertices
that are unequal: the distances between equal vertices will be significantly lower
than the distances between unequal vertices. In data with high uncertainty, we
cannot easily make this distinction: the distances between equal vertices will be
more similar to the distances between unequal vertices, making them harder to
distinguish.

Figure 1 shows illustrative distance distributions for different levels of
certainty in the data. Figure 1a shows low uncertainty data. In this case, the
distances between matched/equal vertices (blue) are exclusively smaller than
the distances between unmatched/unequal vertices (orange). This clear distinc-
tion means that testing multiple entity resolutions will not be useful, since the
likelihood of one state-of-the-world will be significantly higher than all others.

Figure 1b shows distance distributions for data with moderate uncertainty.
In such cases, there is generally a clear distinction in the distances between
matched and unmatched vertices, but there is also a sizeable overlap. Working
in this region of overlap will allow us to capture the various different possibilities,
and we will have clearly defined low and high probability states-of-the-world.
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Finally, Figure 1c shows distances in a high uncertainty dataset where there
is significant overlap in the distances seen between matched and unmatched ver-
tices. In this scenario, the application of a data integration landscape will be
useful, but it will be more difficult to distinguish between high and low prob-
ability states-of-the-world, and there is a high chance of matching unmatched
vertices and not matching matched vertices.
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(a) Low uncertainty
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(b) Moderate uncertainty
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(c) High uncertainty

Fig. 1: Illustrative distribution of distances in: (a) low uncertainty data where
matched distances are much lower than unmatched distances; (b) moderate un-
certainty data where there is some overlap in the matched and unmatched dis-
tances; (c) high uncertainty data where there is close to no distinction between
distances.

In all of the illustrative examples above, we distinguish between the distance
distributions of the matched and unmatched vertices. In practice, this distinction
will not be possible, and only the joint distance distribution is seen. However,
the level of distinction in multiple peaks in our joint distribution will indicate
the level of uncertainty in the data. Another factor to consider is the number
of matched versus unmatched vertices. Consider a dataset with 1000 total ver-
tices, of which 750 are original and 250 are duplicates (where each duplicate
corresponds to a different original vertex). In such a scenario, there will be 250
distances relating to matched vertices and 499250 unmatched distances. Hence,
the peak in matched distances will be orders of magnitude lower than the peak
of unmatched vertices, and thus more difficult to distinguish in the joint dis-
tance distribution. The joint distribution of distances indicates what possible
states-of-the-world should be considered.

5 Experiment

In order to validate the data integration landscape formulation, we offer an
instantiation of a landscape using standard entity resolution approaches, and
apply it to a benchmark dataset with a standard network diffusion model [27].
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5.1 Instantiation

Instantiating a data integration landscape as defined in section 3 requires choice
of both resolution function(s) and assignment of probabilities to the states-of-
the-world. For this paper, we focus primarily on the probability assignment, and
use an agglomerative clustering approach for entity resolution. We use a single
graph resolution function. We provide a fully automated, naive approach for
selecting states-of-the-world and assigning them probabilities.

Agglomerative Clustering Approach As network models can be sensitive
to changes in graph topology, it is important to select states-of-the-world with
varying numbers of partitions and thus significantly different resolved graphs, in
order to create a full, robust picture.

For the entity resolution step of instantiating the data integration landscape,
our approach to initially identify states-of-the-world is based on classical hi-
erarchical clustering [26]. Hierarchical clustering iteratively combines or splits
clusters (equivalent to partitions) in a dataset based on some measure of dis-
tance/dissimilarity, and similar approaches have been previously applied for en-
tity resolution on graphs [5].

Let v1, v2, ..., vN be the vertices in G. We define d(vi, vj) as the distance
between vertex i and vertex j based on their attributes. This distance can be
defined using various classic entity resolution approaches, such as string sim-
ilarity, numerical difference, etc. Furthermore, we define the distance between
two clusters, Ci and Cj , as D(Ci, Cj). This distance can also be determined in
numerous ways, such as complete-linkage clustering.

Using these definitions of vertex and cluster distances, we create entity clus-
terings using an agglomerative approach. The initial clustering has N clusters,
each equal to a vertex in G. This defines the first state-of-the-world, SN :=
{{v1}, {v2}, {v3}, ..., {vN}}. States-of-the-world are then defined recursively as
per algorithm 1. Following this algorithm and labelling convention, we have a
set of states-of-the-world, SN , SN−1, ..., S1, where each state Si has i partitions.

Algorithm 1 Agglomerative Clustering

1. Let the current clustering be Si := {C1, C2, ..., Ci}
2. Find the closest clusters Cx, Cy = argminCx,Cy∈Si

D(Cx, Cy) where we order the
clusters such that x < y

3. Define the next clustering Si−1 := {C1, C2, ..., Cx−1, Cx+1, ..., Cy−1, Cy+1, ..., Ci, Cx∪
Cy}

This set of states-of-the-world contains all states to which we assign a non-
zero probability. For consistency, we assign probabilities proportionally to the
distance metrics d and D used in selecting the states-of-the-world. This probabil-
ity aims to capture how ’good’ a particular clustering is i.e. how small distances
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are within clusters, and how large they are between clusters. We calculate the
mean silhouette score of each state-of-the-world, where we reuse the pairwise
distances calculated previously. This score is a measure of the quality of a clus-
tering [34]. These mean silhouette scores are then scaled to create a probability
mass function over the states-of-the-world.

The resolution function used is as follows: for two partitions P1 and P2 in
a given state-of-the-world, the vertices in the resolved graph corresponding to
these two partitions will be connected if at least one vertex in P1 is connected to
at least one vertex in P2 in the union graph. Vertex attributes are not relevant
to the downstream model, and are thus not resolved.

5.2 Dataset

We apply the above instantiation to a semi-synthetic dataset. The tabular data
used is the FEBRL dataset [6], which contains 1000 records. Each record includes
information like given name, surname, address, and more. There are 500 error-
free records and 500 duplicate records, which contain errors based on real world
studies [7]. We drop all rows with missing values, leaving 723 records. We do
not explicitly identify the number of duplicate points. We create a Barabási-
Albert graph [2] with 723 vertices. Vertices are created with 40 links to existing
vertices. Each of the records is assigned to a vertex in the graph, thus creating
the dataset.

We define vertex and cluster distances as follows: for two vertices, vi and vj ,
we calculate the commonly-used Levenstein string edit distance [20, 18] between
their given names, surnames, and street address – d(vi, vj) is then equal to the
average of these three string distances. We define the distance between two clus-
ters, Ci and Cj , using complete-linkage i.e. D(Ci, Cj) = maxv∈Ci,w∈Cj d(v, w).
Using complete-linkage means that we do not need to perform new cluster dis-
tance calculations over iterations; instead, we repeatedly reuse the distances
between vertices, selecting the maximum between-vertex distances.

As the mean silhouette scores show inconsistent behaviour with very large or
small numbers of clusters, we select only the states-of-the-world with between
100 and 700 partitions to assign a non-zero probability to. The mean silhouette
scores for these states are scaled so that they sum to 1, giving our assigned
probabilities.

5.3 Model

We run a Susceptible-Infected-Recovered (SIR) model on the resolved graphs
[15]. This model simulates a spreading process through a population, where
spreading is done over edges in the graph. Using an infection rate of 0.005, a
recovery rate of 0.2, and an initial population infection size of 0.05, we run 1000
simulations of a spread on each resolved graph [16].

The model metric we use is the fraction of the population that becomes
infected after convergence. We compare the behaviour of the model and this
metric on the different resolved graphs, and contrast this with the behaviour
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on the most likely graph (the graph with the highest mean silhouette score).
We denote this most likely graph by GL. We thus can contrast the expected
behaviour of the model when taking the different potential states-of-the-world
into account, and the behaviour when only using the ’best’ or most likely state.

We can calculate the expected proportion of the population becoming in-
fected across all graphs by:

E[X] =
∑
G∈G

E[X|G = GT ]P[G = GT ], (14)

where X is the random variable representing the proportion of the population
infected, G is the set of resolved graphs, and P[G = GT ] is the mean scaled
silhouette score associated with resolved graph G. E[X|G = GT ] is estimated
by taking the sample mean of the proportion of the population infected over
the 1000 simulations on resolved graph G. Note that E[X|G = GT ] is a random
variable over the events G = GT .

5.4 Results

Applying equation 14 gives an expected population infected of 0.850. When
comparing to the most likely graph, E[X|GL = GT ] = 0.847. Hence, the overall
expected behaviour of the model on the most likely graph does not drastically
differ from the expected behaviour across all resolved graphs.

We now consider the distribution of E[X|G = GT ] over the different graphs.
As the events G = GT are discrete, we illustrate the cumulative distribution
function of E[X|G = GT ]. Figure 2 shows this cumulative distribution. For some
value x, the cumulative probability is calculated as

∑
G:E[X|G=GT ]≤x P[G = GT ].

Also plotted are quantiles and the expectation of X on GL. The solid line
shows E[X|GL = GT ], while the dashed lines show values a and b with P[X <
a|GL = GT ] = 0.025 and P[X > b|GL = GT ] = 0.025, with a < b (the 2.5th and
97.5th percentiles). These two values a and b are also estimated based on the
simulations run on graph GL.

From Figure 2, we draw the following conclusions. Despite the fact that
E[X] ≈ E[X|GL = GT ], these values are only at the 40th percentile of E[X|G =
GT ] i.e. with probability 0.6, E[X|G = GT ] > E[X|GL = GT ].

Given GL = GT , we have that P[X > 0.89] ≈ 0.025. However, P[E[X|G =
GT ] > 0.89] = 0.2. In other words, there are states-of-the-world with a joint
probability of 0.2 in which the expected proportion of the population infected
exceeds the 97.5th percentile of the distribution of the population infected on
the most likely graph. Likewise, there are states with a joint probability of ap-
proximately 0.175 in which the expected value is below the 2.5th percentile of
the distribution on the most likely graph. So there is a total probability of 0.375
that the expected infection rate lies within the extreme 5% of the distribution
on the most likely graph.

These extreme differences can be practically significant. A difference in ex-
pected population infected of 5% can mean the difference between hospitals
being able to handle patients, or an idea driving a change in law.
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Fig. 2: Cumulative probability of fraction of population infected over different
resolved graphs (blue curve); mean and percentiles of fraction of population
infected for most likely state-of-the-world (yellow lines).

6 Conclusions

The ability to combine multiple datasets provides unique possibilities for com-
putational science [33, 21]; however, when doing so it becomes important to con-
sider how these combinations can impact downstream results. Traditional data
integration focuses on providing one single, best resolved dataset. However, for
computational models, this potentially misses a range of (sometimes extreme)
model behaviour that is crucial for drawing well-rounded and considered conclu-
sions.

With this in mind, we have proposed data integration landscapes, a formu-
lation for describing a set of data integrations and their likelihood on complex
networks. Furthermore, we offer a simple, but effective, practical approach for
instantiating such a landscape. Experimentally, we show the extra information in
diffusion model output that can be gained through implementing said approach.

There are a number of potential avenues for furthering this methodology. In
our experiment, we only considered the case of one resolution function. In some
cases this may not be sufficient. For example, one of the roles of the resolution
function is link prediction, which is a difficult task [24]. Thus, it is likely that
using different resolution functions could be crucially important for creating data
integration landscapes in different, more complex use cases.
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There is also room for more complex approaches to the state-of-the-world
probability assignment. Our working example employed simple string distance
metrics and complete linkage to define partition goodness. More powerful ap-
proaches like supervised learning and latent-representation can also be applied,
as long as the likelihood assignment can function as a probability.

Finally, while we have focused primarily on diffusion models on complex
networks, this formulation could possibly be extended and applied to different
data-dependent computational models.
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