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Abstract. Missing data can be described by the absence of values in a
dataset, which can be a critical issue in domains such as healthcare. A
common solution for this problem is imputation, where the missing values
are replaced by estimations. Most imputation methods are suitable for
the Missing Completely At Random (MCAR) and Missing At Random
(MAR) mechanisms but produce biased results for Missing Not At Ran-
dom (MNAR) values. An effective approach to mitigate this bias effect is
to use the delta-adjustment method. This method assumes the imputa-
tion is performed for the MAR mechanism and adjusts the imputed val-
ues to become valid under MNAR assumptions by applying a correction
factor. Such adjustment is usually defined manually by a domain expert,
which often makes this method unfeasible. In this work, we propose an
automatic procedure to find an approximate delta adjustment value for
every feature of the dataset, which we call Automatic Delta-Adjustment
Method. The proposed procedure is validated in an experimental setup
comprising 10 datasets of the healthcare domain injected with MNAR
values. The results from seven state-of-the-art imputation methods are
compared with and without the adjustment, and applying the correction
provides a significantly lower imputation error for all methods.

Keywords: Missing Data · Imputation · Delta-Adjustment · Missing
Not At Random.

1 Introduction

Missing data is a common problem in real-world data. It can be described by
the absence of values in one or more features of a dataset. However, the missing
values can assume different characteristics that are directly related with the
missingness causes. There are three different mechanisms that categorize these
causes [19, 6]:
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– Missing Completely At Random (MCAR), which describes missing values
that are the result of a purely random event, meaning the missingness causes
are unrelated to any data. An example would be if someone randomly misses
a question in a form;

– Missing At Random (MAR), which states that the missing values are related
to part of the observed data (e.g., a specific range of a feature). For example,
in a medical report, female people would have the results for prostate-related
exams missing;

– Missing Not At Random (MNAR), which refers to missing values that are
related to themselves or to other unobserved data, and, therefore, the miss-
ingness causes are unknown. For example, in a life insurance questionnaire,
people that smoke a lot may not want to disclose how many cigarettes they
smoke per day.

The existence of missing values impacts negatively any task performed with
the data, such as predictive and statistical inference. Therefore, this issue is
usually handled in a pre-processing stage to avoid being propagated. The most
common approach to address missing data is imputation, which provides plausi-
ble estimates to replace the missing values. Such estimations can be performed
through simple statistical strategies or even complex machine learning models
[11]. However, in general terms, the imputation approaches tend to only be suit-
able for the MCAR and MAR mechanisms. Since the models base their estima-
tions on the available data, the imputation tends to be biased when performed
under MNAR assumptions because the existent data is not enough to properly
model its missingness causes [10]. Nevertheless, there are a few approaches to
reduce this bias, one being the delta-adjustment method [20]. Assuming that
the imputation is performed with a model designed for the MAR mechanism,
the missing values are likely to be either underestimated or overestimated. In
other words, they are probably shifted towards a lower or higher domain. The
delta-adjustment method provides a simple and transparent solution to correct
this shift: add or multiply the imputed values by a correction factor. However,
this factor must be manually defined by domain experts, which makes the delta-
adjustment method often unfeasible to be applied considering the complexity
and cost of consulting these experts. Moreover, the lack of scientific rigor in this
process may also compromise the generalization of the results.

In this work we introduce an automatic procedure to estimate the approxi-
mate delta adjustment values for every feature of the dataset, which we call Auto-
matic Delta-Adjustment Method (ADAM). The procedure explores the distance
between the biased imputation and other estimations that are sampled from
Gaussian distributions with extreme means that stretch the range of considered
values. We conducted an experimental setup with seven state-of-the-art imputa-
tion methods, comprising 10 datasets of the healthcare domain that were injected
with missing values under MNAR. We compared the results of the imputation
with and without the adjustments provided by ADAM trough the Mean Abso-
lute Error (MAE), and validated the results trough the Wilcoxon signed-rank
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test with a significance level of 5%. The use of ADAM’s adjustment provided
significant improvements for all imputation methods and missing rates.

The remainder of the paper is organized in the following way: Section 2
presents the related work regarding how to address the MNAR mechanism; Sec-
tion 3 describes in detail the proposed ADAM method; Section 4 presents the
design of the experimental setup; Section 5 displays the analysis of the obtained
results; and Section 6 states the final conclusions and future directions.

2 Related Work

Any imputation method will likely produce biased results for the MNAR mech-
anism since the missing values depend on unknown data. Incidentally, most
features suffering from MNAR values have their distribution shifted when only
the available data is considered. This shift will be propagated to the imputation
model, which leads to the biased estimations. The impact of such bias can be
measured by performing sensitivity analysis, where the parameters of the impu-
tation models are varied in order to understand the magnitude of the bias and
if the estimations can be admitted as valid [2]. Such strategy is not a solution
for the problem, but allows for a more informed decision about whether the im-
putation models are usable or not. Nevertheless, performing a correct sensitivity
analysis often requires previous knowledge about the features’ distribution and
domain, information that is usually obtained from domain experts. Consulting
such experts is a complex and expensive task, which leads to this type of study
often being unfeasible.

For these reasons, the more common way to address MNAR is to use impu-
tation methods suitable for MCAR and MAR, and apply procedures that make
the estimations more resilient to the MNAR assumptions. A common strategy
for this purpose is multiple imputation, where the missing values are imputed
multiple times while varying specific parameters (usually in an automated way)
to mitigate the uncertainty. The multiple estimations are then analyzed and ag-
gregated into a final result. A state-of-the-art method which is based on this
strategy is the Multiple Imputation by Chained Equations (MICE) [26]. An-
other useful approach to achieve estimations valid under MNAR is the delta-
adjustment method. As previously described, this method provides a simple and
understandable way to correct the distribution shift, which is to add or mul-
tiply the imputed values by a correction factor [20]. This approach, although
very effective, relies once again on domain experts since they need to define the
correction factors manually for each feature. Consequently, the method is often
unfeasible to be used for the same reasons reported for the sensitivity analysis.
More recently, neural network-based models have also been successfully used
to perform imputation under MNAR, in particular denoising and variational
autoencoders [16]. Such models are very resilient to noise and can accommo-
date the MNAR characteristics better than other imputation methods [7, 8, 15].
Nevertheless, there are imputation models designed for MCAR and MAR that
are also often included in experimental baselines of MNAR studies, particularly
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the k-Nearest Neighbors (kNN), matrix completion methods, and the common
mean/mode imputation [3, 17]. However, such methods tend to produce poor
results considering the existent bias.

Focusing on the delta-adjustment method, the following works address im-
putation under MNAR assumptions using it. Carreras et al. [5] conducted a
sensitivity analysis study to understand the impact of assuming and treating
missing data as MAR or MNAR in end-of-life care studies. The MICE method
was used for both mechanisms, but for MNAR it was integrated with the delta-
adjustment method. Four different adjustment values were considered, which
were defined as the equispaced values between zero and half of the interquar-
tile range of the features. The experiments were conducted with data from the
ACTION study, a randomized controlled trial testing advance care planning in
patients with advanced lung or colorectal cancer. The authors concluded that
the imputation assuming MAR reflected that the missing values were related to
poorer health conditions. These correlations changed when the MNAR mecha-
nism was assumed, which shows that the obtained conclusions are sensible to
the violation of the MAR assumptions.

Leacy et al. [9] performed a similar sensitivity analysis study to understand
how the departure from MAR to MNAR influenced the tasks of estimating the
prevalence of a partially observed outcome and performing parametric causal me-
diation analyses with a partially observed mediator. The study used data from a
tuberculosis (TB) and human immunodeficiency virus (HIV) prevalence survey
that was conducted as part of the Zambia–South Africa TB and AIDS Reduction
Study, between 2006 and 2010. The shift from MAR to MNAR was once again
performed with the delta-adjustment method integrated in a multiple imputation
procedure. Three adjustment values were manually chosen based on the experts
opinion and on data from 3 consecutive annual rounds of HIV counseling and
testing in the Karonga District of Malawi (2007 to 2010). Each of these values
represented different magnitudes of departure from the MAR assumptions. The
authors concluded that the estimation of the overall HIV prevalence was consid-
erably different when assuming the MAR or MNAR mechanisms, particularly
for strong departures between them.

Rezvan et al. [18] also conducted a sensitivity analysis study where the miss-
ing values imputed under MAR with multiple imputation were shift to MNAR
with the delta-adjustment method. The data used in the experiments was from
the Longitudinal Study of Australian Children, and the goal was to estimate
the association between exposure to maternal emotional distress at the age of
four/five years and total difficulties at the age of eight/nine years. The adjust-
ment values were defined with the help of domain experts through an elicitation
process that allows for the formulation of the expert’s feedback into a proba-
bility distribution. The authors concluded that there are significant increases in
the magnitude of the association between maternal distress and total difficulties
when the MNAR assumptions are assumed with a large departure from MAR.

Tan et al. [23] proposed a review study about the use of controlled multiple
imputation in randomized controlled trials where missing data exists. The anal-
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ysis considered the trials in phases II, III and IV published in The Lancet and
New England Journal of Medicine between January 2014 and December 2019,
covering primary and sensitivity analysis studies. The findings show that 56%
of the controlled multiple imputation was performed with the delta-adjustment
method. Nevertheless, most of the works report the used delta values but do not
provide justifications to why the experts decided towards those values.

In conclusion, the delta-adjustment method has been widely used to shift
missing values under MAR assumptions to the MNAR mechanism, reducing
greatly the departure between the two. Its use has been particularly relevant in
the healthcare domain, where the MNAR mechanism appears abundantly. How-
ever, the definition of the delta values is always performed by domain experts,
which is the problem that we are addressing here. To the best of our knowledge,
the automatic estimation of the approximate delta values is being introduced for
the first time in our work.

3 Automatic Delta-Adjustment Method

In this work an automatic procedure that is capable of estimating approximate
delta adjustment values is proposed. Considering the MNAR characteristics, it
is impossible to find an optimal delta value since it would depend on the missing
values themselves. Therefore, we rely on statistics to find an approximate value
that will bring the estimates made under MAR assumptions valid under MNAR.
We called our approach Automatic Delta-Adjustment Method (ADAM).

ADAM’s goal is to find a factor comprised within [0, 1] for each feature of
the dataset. This factor will be multiplied by the imputed values in order to
adjust them. The proposed procedure to estimate the factor for a specific feature
Xi is presented in Algorithm 1. The procedure assumes that the missing values
correspond to the smaller values of the feature (the opposite scenario is addressed
later), and comprises these main steps:

1. The mean of the available values within the first quartile is calculated (µQ1).
This value is representative of the lower tail of the feature, and it is used
instead of the minimum because it better represents the group of smaller val-
ues and it is resilient to extreme factors. Additionally, the standard deviation
of all the available values in the feature is also calculated (σall);

2. The missing values are imputed three independent times by sampling from
a Gaussian distribution where the standard deviation is one and the mean
varies µQ1 minus σall according to the empirical rule: µQ1−σall, µQ1−2σall,
and µQ1 − 3σall. Such variation is used to define a reasonable range for the
missing values, since the imputed values with MAR models are likely to
be shifted towards a higher domain. Moreover, when later calculating the
adjustment factor, these three imputations are weighted so that the more
extreme values (i.e., further away from µQ1) have a decreased impact on the
calculation.
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Algorithm 1 Pseudocode for the ADAM procedure. The missing values are on
the lower tail of the feature Xi. The algorithm receives as input the feature data
containing missing values (Xi_missing) and already imputed (Xi_imputed),
and it returns the adjusted data for the feature (Xi_adjusted).
Input: Xi_missing, Xi_imputed
Output: Xi_adjusted
1: µQ1 = mean(Q1 values from Xi_missing)
2: σall = standard_deviation(Xi_missing)
3: for each j in {1, 2, 3} do
4: gaussian_imputedj = missing data ∼ N (µQ1 − j ∗ σall, 1)
5: end for
6: scalar0 = PCA (1 comp.) applied to Xi_imputed
7: for each j in {1, 2, 3} do
8: scalarj = PCA (1 comp.) applied to gaussian_imputedj
9: distj = euclidean_distance(scalar0, scalarj)
10: end for
11: Normalize distj ,∀j ∈ {1, 2, 3} so that

∑3

1
distj = 1

12: factori = ( 3dist3 + 2dist2 + dist1 ) / 6
13: Xi_adjusted = Xi_imputed− factori ∗Xi_imputed
14: return Xi_adjusted

3. The Principal Component Analysis (PCA)5 method is used to condense the
data from the features into a single representative numeric value. This trans-
formation is applied individually to the dataset imputed with the MAR
model and the datasets imputed in the previous step, which leads to four
different scalars by feature. To achieve these results the datasets must be
transposed before the transformation since we are condensing the data from
the features and not the features themselves. The obtained values for each
feature are then used to estimate how far away are the imputations from
the previous step when compared to the original imputation with the MAR
model. For this purpose, we calculate the euclidean distance between the
value representing the imputation with the MAR model and each one of the
remaining scalars;

4. To calculate the factor, the distances from the previous step are normalized
so that their sum is equal to one (which is necessary to achieve a factor within
[0, 1]), and a weighted mean is calculated so that the imputations performed
according to the empirical rule have an impact in the factor proportional to
their means.

After performing the previous step, we have an independent factor (factori)
within [0, 1] for each feature (Xi) of the dataset. To adjust the values imputed

5 PCA is a feature extraction technique often used for dimensionality reduction. It
computes the principal components of the data and returns the first n, which is a
user-defined parameter [1].
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with the MAR model, the following equation is applied to each of the D features:

Xi = Xi − factori ∗Xi,∀i ∈ {1, ..., D} (1)

As previously stated, the described procedure assumes that the missing val-
ues are the smaller values of the feature. However, the opposite scenario where
the missing data corresponds to the larger values is also valid. To address this
scenario, the procedure suffers two specific changes:

– In step 1), the last quartile is instead calculated (µQ4) since it now represents
the higher tail of the feature.

– In step 2), the mean is varied on the opposite direction (µQ4+σall, µQ4+2σall,
and µQ4+3σall), since the imputed values with MAR models are now shifted
towards a lower domain.

Finally, the adjustment operation also changes since the imputed values are now
being shifted upwards:

Xi = Xi + factori ∗Xi,∀i ∈ {1, ..., D} (2)

The identification of the feature’s missing tail (i.e., if the missing values cor-
respond to the smaller or larger values of the feature) should be made manually
through exploratory data analysis or even by using domain knowledge.

4 Experimental Setup

To evaluate if ADAM is effective in adjusting the imputed values, an experiment
was conducted to compare the imputation results before and after applying it.
The experimental setup comprised the following seven state-of-the-art imputa-
tion methods:

– Mean imputation, where the mean of the available values of each feature are
used to impute;

– Multiple Imputation by Chained Equations (MICE), which is a multiple
imputation-based approach where several Bayesian ridge regressions are fit-
ted in a round-robin procedure with 100 iterations. Each regression defines
as the dependent variable one of the features containing missing values, and
uses the remaining as the independent variables [4];

– k-Nearest Neighbors (kNN) imputation with k = 5, which selects the k
nearest neighbors of the instance being imputed by calculating the Euclidean
distance between the available values, and uses the mean of these k neighbors
to impute the features with missing data [21];

– SoftImpute, which is a matrix completion iterative method based on nuclear-
norm regularization, that estimates the missing values through soft-threshold
singular value decomposition [12]. A maximum of 100 iterations was consid-
ered;
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– Denoising Autoencoder (DAE), which is an autoencoder trained with data
containing additional noise, which in this context is the existence of missing
values. Incidentally, an autoencoder is a special type of neural network that
tries to reproduce the input data at the output layer, usually by learning
a compressed representation of that data [25, 16]. The architecture of the
networks was defined with the following hyperparameters: a single hidden
layer with a number units equal to half of the input dimension; ReLU as the
activation function; batches of 64 instances; a maximum of 200 epochs; Adam
as the optimization algorithm; Mean Squared Error as the loss function; a
learning rate of 0.001; a dropout layer with a rate of 25% for regularization;
early stop if the validation loss has no improvements over 100 epochs; a
reduction of the learning rate by 80% if there are no improvements over 100
epochs; and Sigmoid as the activation function for the output layer, so that
the data is normalized within [0, 1];

– Variational Autoencoder (VAE), which is a generative variant of the au-
toenconder that learns the multidimensional parameters of a Gaussian dis-
tribution (i.e., mean and standard deviation), and by sampling from these is
able to generate new data with similar characteristics [13, 15, 16]. The archi-
tecture of the networks was defined with the same hyperparameters as the
DAE, adding the two layers needed to represent the Gaussian parameters.

– Generative Adversarial Imputation Nets (GAIN), which is a direct appli-
cation of the well-known generative adversarial networks to the problem of
missing data [28]. The generator network performs the imputation, while
the discriminator tries to distinguish between original and imputed data.
The networks were parametrized with the hyperparameters reported by the
authors of the method.

The architecture and hyperparameters used for the seven imputation methods
were defined through a grid search procedure. This is a common strategy that
aims to obtain optimal hyperparameters that conform to common use cases.
Regarding the implementation of these algorithms, the autoencoders were im-
plemented with the Keras library, the SoftImpute was coded from scratch, the
GAIN code was obtained from the original authors6, and the remaining methods
were directly used from the Scikit-learn library. Furthermore, the implementa-
tion of ADAM is available on GitHub7.

The experiment considered 10 public datasets from the healthcare domain,
covering clinical research based on routinely collected data for different patholo-
gies. This domain was chosen since it frequently suffers from missing data under
the MNAR mechanism [14]. All datasets are available at the UC Irvine reposi-
tory8, and they cover different ranges of instances and features, as Table 1 shows.

In order to have a controlled experiment, the datasets were all complete
(i.e., without missing data) and the missing values were artificially generated
6 https://github.com/jsyoon0823/GAIN
7 https://github.com/ricardodcpereira/ADAM
8 https://archive.ics.uci.edu/ml
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Table 1. Datasets used in the experimental setup.

Dataset # Instances
# Features

Continuous Categorical

wisconsin 569 31 0

ctg 2126 21 2

pima 768 9 0

liver 583 10 1

diabetic-retinopathy 1151 16 4

parkinsons 195 23 0

bc-coimbra 116 10 0

thoracic-surgery 470 14 3

spine 310 13 0

mammographic-masses 830 2 4

according to the MNAR mechanism. The used strategy removed the smaller
values [24] or larger values [27] of the orderable features upon a certain missing
rate (which excludes nominal categorical features since they are non-orderable).
Such strategy was applied in a multivariate fashion where the missing rate is
defined for the entire dataset and several features are injected with missing
values simultaneously [22]. Consequently, each feature has a different number of
missing values, which grouped together sum up to the desired global missing rate.
The imputation is performed for all features at once, and the results are assessed
through the Mean Absolute Error (MAE) calculated between the ground truth
(i.e., original data) and the imputed values.

All datasets were normalized within [0, 1] and split into train and test sets
with 70% and 30% of the instances, respectively. The normalizer uses the mini-
mum and maximum values from the train set and it is then applied to both sets.
This strategy keeps the test data isolated from the training data, preventing bias
in the test set. However, when dealing with high missing rates (usually above
50%), it is possible for the test set to contain unseen values, which makes its nor-
malization boundaries go slightly beyond the aimed [0, 1] domain. For the neural
network-based methods, 20% of the train set was used for validation. The non-
orderable features (e.g., categorical nominal) were transformed through one-hot
encoding (i.e., dummy coding). The missing values were injected independently
in each of the described sets in order to ensure that all of them had equal missing
rates and MNAR assumptions. Five different missing rates were considered (5%,
10%, 20%, 40%, and 60%) in order to cover different levels of missingness. For
the neural network-based methods the missing values were pre-imputed with the
mean imputation.
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To mitigate bias and stochastic behaviors the experiment was executed 30
independent times, with the data being randomly split into the train and test sets
in each run. The results here presented are the mean of these 30 runs. Each run
was executed in a computer with the following specifications: Windows 11, CPU
AMD Ryzen 5600X, 16GB RAM, and GPU NVIDIA GeForce GTX 1060 6GB.
The time complexity of applying ADAM for each of the imputation methods
was not directly measured, but the impact was not significant.

5 Results

The obtained results for the adjustment of imputed values provided by ADAM
are presented in Tables 2 and 3. For Table 2 the left tail was missing (i.e., smaller
values of the features), and for Table 3 the right tail was removed (i.e., larger
values of the features).

In an overall analysis, all methods achieved smaller imputation errors after
the imputed values were adjusted through ADAM. This behavior is consistent for
all missing rates and for both MNAR strategies with the smaller and larger values
being removed, with the global error improvement being 11%. The enhancement
also appears to be stable among the different levels of missingness, peaking at
18% for the 5% missing rate, which shows ADAM’s resilience to variations on
this factor.

To understand if the obtained results were statistically significant we applied
the Wilcoxon signed-rank test with a significance level of 5%. This test was
chosen because the normality assumptions were not met, and we have paired
MAE values for each imputation method (before and after applying ADAM).
The test was applied independently for each missing rate, and the one-sided
alternative was used since we were only interested in evaluating if the MAE values
after applying ADAM are significantly lower. The obtained p-values showed that
the results are statistically significant with p < 0.001 for all settings, which
corroborates the good performance obtained by ADAM.

6 Conclusions

In this work we proposed a procedure called Automatic Delta-Adjustment Method
(ADAM) to automatically estimate the delta-adjustment values. We compared
the results obtained by seven state-of-the-art imputation methods with and with-
out the adjustments provided by ADAM. The experimental setup comprised 10
datasets from the healthcare context that were injected with missing values under
MNAR in a multivariate fashion. We concluded that the adjustment performed
by ADAM led to error improvements in all imputations methods and missing
rates, achieving a global enhancement of 11%.

Motivated by the results achieved with ADAM, future work will be focused on
integrating it with an auxiliary procedure to automatically identify the features’
missing tails. A possible direction is to model this task as a binary classification
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Table 2. Mean Absolute Error results of the imputation methods with and without the
adjustment provided by ADAM. The left tail of the features was missing (i.e., smaller
values).

Imp. ADAM
Missing Rate

5% 10% 20% 40% 60%

AE
No 0.236 ± 0.09 0.238 ± 0.09 0.256 ± 0.10 0.322 ± 0.15 0.515 ± 0.34

Yes 0.192 ± 0.07 0.195 ± 0.06 0.212 ± 0.07 0.274 ± 0.12 0.464 ± 0.31

GAIN
No 0.254 ± 0.08 0.252 ± 0.08 0.266 ± 0.10 0.324 ± 0.15 0.519 ± 0.34

Yes 0.206 ± 0.06 0.208 ± 0.06 0.220 ± 0.07 0.277 ± 0.12 0.469 ± 0.31

MICE
No 0.184 ± 0.09 0.186 ± 0.09 0.204 ± 0.10 0.280 ± 0.14 0.475 ± 0.34

Yes 0.154 ± 0.07 0.157 ± 0.07 0.174 ± 0.07 0.245 ± 0.12 0.436 ± 0.31

Mean
No 0.269 ± 0.08 0.264 ± 0.08 0.278 ± 0.09 0.334 ± 0.14 0.523 ± 0.33

Yes 0.217 ± 0.05 0.216 ± 0.06 0.229 ± 0.07 0.284 ± 0.11 0.472 ± 0.30

SoftImp
No 0.178 ± 0.07 0.184 ± 0.07 0.197 ± 0.08 0.255 ± 0.11 0.429 ± 0.29

Yes 0.152 ± 0.06 0.160 ± 0.06 0.174 ± 0.06 0.233 ± 0.10 0.412 ± 0.28

VAE
No 0.285 ± 0.11 0.279 ± 0.10 0.294 ± 0.12 0.348 ± 0.16 0.533 ± 0.35

Yes 0.227 ± 0.07 0.224 ± 0.07 0.238 ± 0.08 0.292 ± 0.12 0.477 ± 0.32

kNN
No 0.185 ± 0.09 0.194 ± 0.09 0.219 ± 0.10 0.292 ± 0.14 0.487 ± 0.34

Yes 0.153 ± 0.07 0.162 ± 0.07 0.184 ± 0.07 0.254 ± 0.11 0.446 ± 0.31

problem and use machine learning to solve it. Furthermore, we want to incor-
porate information from other datasets in the adjustments calculations, so that
external data can be used to help reduce bias in MNAR settings. Finally, we also
want to compare ADAM results to imputed data that was manually adjusted by
domain experts.
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