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Abstract. In this paper, we introduce a new approach to multivariate
forecasting cryptocurrency prices using a hybrid contextual model com-
bining exponential smoothing (ES) and recurrent neural network (RNN).
The model consists of two tracks: the context track and the main track.
The context track provides additional information to the main track,
extracted from representative series. This information as well as infor-
mation extracted from exogenous variables is dynamically adjusted to
the individual series forecasted by the main track. The RNN stacked ar-
chitecture with hierarchical dilations, incorporating recently developed
attentive dilated recurrent cells, allows the model to capture short and
long-term dependencies across time series and dynamically weight input
information. The model generates both point daily forecasts and predic-
tive intervals for one-day, one-week and four-week horizons. We apply
our model to forecast prices of 15 cryptocurrencies based on 17 input
variables and compare its performance with that of comparative models,
including both statistical and ML ones.

Keywords: Hybrid forecasting models · Recurrent neural networks ·
Cryptocurrency price forecasting.

1 Introduction

Forecasting cryptocurrency prices is a very difficult task due to several reasons.
Firstly, the cryptocurrency market is highly volatile and unstable, with prices
fluctuating rapidly and unpredictably [1]. This is because the market is not reg-
ulated, and there is no central authority that controls the supply and demand of
cryptocurrencies. Unlike traditional assets such as stocks, cryptocurrencies lack
a fundamental value. This means that their value is not directly linked to any un-
derlying assets or earnings. Instead, their value is primarily determined by mar-
ket demand and supply dynamics, making their price highly volatile and subject
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to sudden fluctuations. Secondly, cryptocurrencies are relatively new, and there
is a lack of historical data, making it difficult to identify trends and patterns.
Thirdly, the market is influenced by various factors [2, 3], including government
regulations (related to the legality of cryptocurrencies, taxation policies, and
anti-money laundering laws), global economic conditions, and the emergence of
new cryptocurrencies, which can make it challenging to predict price movements
accurately. Moreover, market sentiment and speculation can have a significant
impact on cryptocurrency prices. Cryptocurrencies are still a relatively new and
emerging asset class, and as such, they are more susceptible to hype, media
coverage, and market sentiment. This can cause price bubbles and crashes, mak-
ing it challenging to forecast their prices accurately. Finally, the cryptocurrency
market operates 24/7, and there is no closing or opening bell, which means that
prices can change at any time, making it challenging to keep up with the latest
developments and adjust forecasts accordingly.

To capture the influence of external factors on the cryptocurrency price, the
forecasting models use different inputs, which can be categorized as follows [3–9]:

1. Economic indicators. Cryptocurrency prices may be influenced by macroe-
conomic indicators such as GDP, inflation, and interest rates.

2. Trading volume. The volume of cryptocurrency trades can indicate market
demand, which can affect price movements.

3. Technical indicators. Technical analysis tools such as moving averages, Bollinger
bands, and RSI can help identify trends and patterns in price movements.

4. News sentiment. The sentiment analysis of news articles and social media
posts related to cryptocurrencies can provide insight into the market’s mood
and direction.

5. Network activity. The activity on the blockchain network, such as the number
of transactions and the hash rate, can reflect the popularity and adoption of
a particular cryptocurrency.

6. Regulatory developments. Government regulations and policies related to
cryptocurrencies can significantly impact their prices.

Multivariate forecasting models used for cryptocurrency prices can be cat-
egorized into three groups: classical statistical or econometrics models, compu-
tational intelligence or machine learning (ML) models, and hybrid models [10].
One popular representative of the classical statistical models is the Vector Au-
toregression (VAR) model [11, 12]. This model uses a system of equations to
estimate the relationship between multiple variables and can capture the dy-
namic interdependence between them. However, it assumes linear relationships
between variables, which may not always hold in the highly complex and non-
linear cryptocurrency market. Therefore, it may not be suitable for accurately
predicting cryptocurrency prices in all scenarios.

ML models have several advantages over classical statistical models in fore-
casting cryptocurrency prices. One advantage is their ability to capture nonlin-
ear relationships between variables. Additionally, ML models can handle large
amounts of data, can effectively extract relevant features from it, and are often
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better than statistical models at identifying patterns and trends. They can also
adapt to new information and adjust their forecasts accordingly. However, ML
can be more computationally intensive and requires more data preprocessing
compared to statistical models. Also, as a general rule, they require more data.

Some examples of ML models for forecasting cryptocurrency prices are as
follows. A model proposed in [13] utilizes on-chain data as inputs, which are
unique records listed on the blockchain that are inherent in cryptocurrencies. To
ensure stable prediction performance in unseen price ranges, the model employs
change point detection to segment the time series data. The model consists of
multiple long short-term memory (LSTM) modules for on-chain variable groups
and the attention mechanism. The research described in [14] uses a multivariate
prediction approach and compare different types of recurrent neural networks
(LSTM, Bi-LSTM, and GRU). Seven input variables are considered: date, open,
high, low, close, adjusted close, and volume. Paper [15] aims to develop a predic-
tion algorithm for Bitcoin prices using random forest regression and LSTM. The
study also seeks to identify the variables that have an impact on Bitcoin prices.
The analysis utilizes 47 explanatory variables, which are categorized into eight
groups, including Bitcoin price variables, technical features of Bitcoin, other
cryptocurrencies, commodities, market index, foreign exchange, public atten-
tion, and dummy variables of the week. In [16], a set of high-dimension features
including property and network, trading and market, attention and gold spot
price was used for Bitcoin daily price prediction. The authors compared statisti-
cal models such as logistic regression and linear discriminant analysis with ML
models including random forest, XGBoost, support vector machine and LSTM.
A comprehensive comparison of statistical and ML models for cryptocurrency
price prediction can be found in [10].

Our study introduces a hybrid model that merges statistical and ML meth-
ods, specifically exponential smoothing (ES) and recurrent neural networks (RNNs).
This model, referred to as cES-adRNN, consists of two tracks designed to incor-
porate context information, effectively handle time series of exogenous variables
and enhance the accuracy of forecasting. The proposed model offers several ad-
vantages over existing ML models:

– Unlike traditional ML models that often require data preprocessing to sim-
plify the forecasting problem, our model can handle raw time series data
without any preprocessing. It has built-in mechanisms for preprocessing time
series dynamically on-the-fly.

– While classical ML models require additional procedures to select relevant
input information, our recurrent cells have an internal attention mechanism
that dynamically weighs inputs, making the model more efficient.

– Unlike non-recurrent ML models, RNN, which is a component of our model
can model temporal relationships in sequential data. We apply dilated re-
current cells, which are fed by both recent and delayed states, to capture
short-term, long-term, and seasonal dynamics. Moreover, our hierarchical
RNN architecture extends the receptive fields in subsequent layers, enabling
better modeling of long-term and seasonal relationships.
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– Most forecasting ML models produce only point forecasts. Our model is able
to generate both point forecasts and predictive intervals in the same time.

– While most forecasting ML models learn on a single time series, our model
can learn from multiple similar series, leading to better generalization.

The main contributions of this study lie in the following three aspects:

1. We extend our cES-adRNN model proposed in [17] by introducing exogenous
variables. This enables the model to predict time series based not only on
the past values of the series (univariate case) but also on other, parallel time
series which are correlated with the predicted series.

2. We modify cES-adRNN by introducing additional per-series parameters al-
lowing to capture individual properties of the series of exogenous variables.

3. To validate the efficacy of our proposed approach, we conduct extensive
experiments on 15 cryptocurrency datasets comprising 17 variables. Our
experimental results show the high performance of the modified cES-adRNN
model and its potential to forecast cryptocurrency prices more accurately
than comparative models including both statistical and ML models.

The remainder of this paper is organized as follows. In Section 2, we present
the data and define a forecasting problem. Section 3 presents the proposed fore-
casting model. Section 4 reports our experimental results. Finally, we conclude
this work in Section 5.

2 Data and Forecasting Problem

The real-world data was collected from BRC Blockchain Research Center (http
s://blockchain-research-center.com; accessible for BRC members). The
dataset BitInfoCharts provides a wide range of tools for accessing information
on the cryptocurrency sphere. It includes market, blockchain operation, and
social media data for 16 cryptocurrencies: BTC, ETH, DOGE, ETC, XRP, LTC,
BCH, ZEC, BSV, DASH, XMR, BTG, RDD, VTC, BLK, FTC. In this study,
we omitted RDD from this list due to the short period of data (from 13 January
2021).

The dataset includes 19 variables (time series) for each cryptocurrency:

– active_addresses_per_day
– avg_block_size_per_day
– avg_block_time_per_day
– avg_fee_to_reward
– avg_hashrate_per_day
– avg_mining_difficulty_per_day
– avg_price_per_day
– avg_transaction_fee_per_day
– avg_transaction_value_per_day
– google_trends

– market_capitalization
– med_transaction_fee_per_day
– med_transaction_value_per_day
– mining_profitability
– num_transactions_per_day
– num_tweets_per_day
– num_unique_addresses_per_day
– sent_coins
– top_100_to_all_coins
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The data availability and quality differ from coin to coin, due to the issue
time, crypto design, and the third party vendors. Due to incompleteness or poor
quality, we excluded two variables, google_trends and num_tweets_per_day.

Our goal is to predict prices of cryptocurrencies (avg_price_per_day) based
on historical values of all variables. Thus, we predict a sequence of cryptocurrency
prices of length h, {zτ}M+h

τ=M+1, given past observations of prices, {zτ}Mτ=1, and
N exogenous variables, {piτ}Mτ=1, i = 1, .., N , where h is the forecast horizon and
M is the time series length (training part). In Fig. 4 the forecasted time series
of cryptocurrency prices are shown.

Fig. 1. Prices of cryptocurrencies.

We consider three forecast horizons: 1, 7 and 28 days ahead. For each horizon,
a separate model is constructed. We define one-year test period from 1 June
2021 to 31 May 2022. Moving in the test period by one day, the model generates
forecasts for the next h days, using past data for training.

3 Model

The model is a modified version of contextually enhanced ES-dRNN with dy-
namic attention (cES-adRNN) proposed in [17]. It combines exponential smooth-
ing (ES) and recurrent neural network (RNN). The model is composed of two
simultaneously trained tracks: context track and main track. The main track
learns to generate point forecasts for horizon h and also predictive intervals.
The context track learns to generate additional inputs for the main track based
on representative time series. The block diagram of the model is shown in Fig.
2.

The model is trained in cross-learning mode (on all cryptocurrency data).
Some components of the model are able to capture properties of individual time
series, while others learn shared features of all series. Thus the data is exploited
hierarchically, utilizing both local and global components to extract and synthe-
size information at both the individual series and collective dataset levels.
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Postprocessing
Exponential

smoothing
Preprocessing adRNN

Exponential

smoothing
Preprocessing adRNN

Main track

Context track

Fig. 2. Block diagram of the forecasting model.

3.1 Main Track

Inputs to the main track are price time series (Z) and exogenous time series (P ).

Exponential Smoothing Component (ES) smooths price time series. It has
a basic form given by the formula:

lt,τ = αtzτ + (1− αt)lt,τ−1 (1)

where lt,τ is a level component, and αt ∈ [0, 1] is a smoothing coefficient, both
for recursive step t.

A dynamic variant of ES is utilized, wherein the smoothing coefficient is not
constant, unlike in the standard version, but instead changes dynamically at
each step t to adapt to the current time series properties, as proposed in [18].
The adaptation of the smoothing coefficient is performed using correction ∆αt,
which is learned by RNN, as follows [18]:

αt+1 = σ(Iα+∆αt) (2)

where Iα represents the starting value of α, and the sigmoid function σ is em-
ployed to ensure that the coefficient remain within the range from 0 to 1.

Preprocessing Component prepares input and output data for RNN training.
Input data includes preprocessed sequences of the price and exogenous variables
time series, i.e. sequences covered by the sliding input window of length n, ∆in

t ,
while output data includes preprocessed sequences of the price series covered by
the sliding output window of length h, ∆out

t (see Fig. 3).
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active_addresses_per_day

top_100_to_all_coins

avg_price_per_day

...

Output window     

      of length h

Input window     

     of length n

Fig. 3. Sliding windows for generating training data.

To normalize both input and output price sequences, level component (1)
extracted by ES is used. Input sequences are preprocessed as follows:

xin
τ = log

zτ

l̂t
(3)

where τ ∈ ∆in
t , and l̂t is the level component predicted by ES for the last point

in ∆in
t in step t.

The use of the log function for squashing in (3) is aimed at preventing outliers
from interfering with the learning process.

The output sequences are normalized as follows:

xout
τ =

zτ

l̂t
(4)

where τ ∈ ∆out
t .

The preprocessed input and output sequences are represented by vectors:
xin
t = [xin

τ ]τ∈∆in
t

∈ Rn and xout
t = [xout

τ ]τ∈∆out
t

∈ Rh, respectively. It should
be noted that the input and output patterns have a dynamic nature and are
modified in each training epoch due to the adaptation of the level component.
This can be viewed as the learning of the optimal representation for RNN.

The input sequences of the i-th exogenous variable are normalized as follows:

xpi
τ = log10

(
piτ
p̄i

+ 1

)
(5)

where τ ∈ ∆in
t , and p̄i is the average value of the i-th exogenous variable in the

training period.
The regressors take broad range of positive numbers and zero. Therefore the

ratio pi
τ

p̄i can be very small and occasionally zero. For this reason we add 1 in
the formula above. The preprocessed input sequences of exogenous variables are
represented by vectors xpi

t = [xpi
τ ]τ∈∆in

t
∈ Rn, i = 1, ..., N .

To construct input patterns for RNN, vectors xin
t and xpi

t , i = 1, ..., N are
concatenated and extended by two components: a local level of the price series,
log10(l̂t), and a modulated context vector produced by the context track, r′t:

xin′

t = [xin
t , xp1

t , ..., xpN

t , log10(l̂t), r′t] (6)
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Recurrent Neural Network is trained on training samples (xin′

t ,xout
t ) gen-

erated continuously by shifting sliding windows ∆in
t and ∆in

t by one day. RNN
produces four components: point forecast vector, x̂RNN

t , two quantile vectors
defining a predictive interval (PI), x̂RNN

t and ˆ̄xRNN
t , and correction for the

smoothing coefficient, ∆αt.
RNN architecture is depicted in Fig. 4. Initially, to reduce the dimensional-

ity of the exogenous data, each n-dimensional vector xpi

t is embedded into d-
dimensional space (d < n) by a linear layer. Note that the embedding is trained
as part of the model itself.

After embedding, the exogenous vectors are concatenated and modulated by
per-series parameters collected in modulation vectors p(j) ∈ RdN , j = 1, ..., J ,
where J is the size of the main batch. Modulation vectors initialized as ones are
used to element-wise multiply the exogenous vector:

xp′(j)
t = xp(j)

t ⊗ p(j) (7)

Modulation vectors p(j) are updated along with other learnable parameters of
the model using the same optimization algorithm (stochastic gradient descent),
with the the ultimate objective of minimizing the loss function.

...

Linear layer

d = 4

Linear layer

...

d = 2

Main track:

Context track:

Linear layer

adRNNCell

dRNNCell

concatenation

Fig. 4. Architecture of adRNN (elements in red do not exist in the context track).
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RNN utilizes two types of recurrent cells [18]: the dRNNCell, a dilated cell
that is fed by both recent and delayed states, and the adRNNCell, a dilated cell
with an attention mechanism. The latter combines two dRNNCells, with the
first producing an attention vector which components are treated as weights for
the inputs to the second, generating an output vector from which the forecast is
constructed. Hence, the components of the input vector xin′

t can be strengthened
or weakened by the attention vector depending on their predictive power. Note
that the attention vector has a dynamic nature, as it is adapted to the current
inputs at time t (see [18] for details).

RNN is composed of two recurrent layers: first one contains adRNNCell di-
lated 2, while the second one contains dRNNCell dilated 4. The number of layers
and dilations were determined through experimentation and may not be the best
choice for other forecasting tasks. By stacking multiple layers with hierarchical
dilations, more abstract features can be extracted in successive layers and a
larger receptive field can be obtained, making it easier to learn the long-term
dependencies of different scales. To facilitate the gradient optimization of the
model, ResNet-style shortcuts are used between layers. It’s worth noting that
the input vector xin′

t is not only inputted into the first layer, but also into the
second one by extending the output vector from the first layer.

Postprocessing Component converts outputs of RNN, i.e. point forecasts
and PIs, into real values as follows:

ẑτ = exp
(
x̂RNN
τ

)
l̂t, ẑτ = exp

(
x̂RNN
τ

)
l̂t, ẑτ = exp

(
x̂
RNN

τ

)
l̂t (8)

where τ ∈ ∆out
t , ẑτ and ẑτ are the lower and upper bounds of PI at time τ .

Loss Function enables the model to learn both point forecasts and PIs. It is
defined as follows [19]:

L = ρ(x, x̂q∗) + γ(ρ(x, x̂q) + ρ(x, x̂q)) (9)

where ρ(x, x̂q) = (x − x̂q)(q − 1(x<x̂q)) is a pinball loss, q ∈ (0, 1) is a quantile
order, x is an actual value, x̂q is a forecasted value of q-th quantile of x, q∗ = 0.5
corresponds to the median, q ∈ (0, q∗) and q ∈ (q∗, 1) correspond to the lower
and upper bound of PI, respectively, and γ ≥ 0 is a control parameter.

The loss function (9) enables both point forecasts and PIs to be optimized
at the same time. The weight of each component can be adjusted by γ. The
pinball loss has the advantage of reducing forecast bias by penalizing positive
and negative deviations differently. This can be done by adjusting q∗ to be less
than or greater than 0.5. Similarly the bias in PI can be reduced. This concept
is further explained in [20,21].
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3.2 Context Track

A context track generates a dynamic context vector, which is based on the
history of a representative group of series. This vector is adjusted to the series
being forecasted and added as supplementary input to the main track RNN.
This extends the per-series input data with information from the context series,
thereby enhancing the accuracy of individual series forecasts.

The context track is trained on the selected price time series (Zc) and associ-
ated exogenous time series (Pc). In this study, Bitcoin price series along with its
corresponding exogenous data are selected as the context series. This is because
Bitcoin is the most popular, widely accepted and has the longest historical data
among all cryptocurrencies.

The context track components are: ES, preprocessing, adRNN and modula-
tion (see Fig. 2). ES is the same as for the main track. Preprocessing component
normalizes time series sequences in the same way as its main track counterpart.
It uses equations (3), (4) and (5) for this. Then, it constructs the input pattern
for RNN, which has the form of (6) excluding modulated context vector r′t.

Context adRNN has the same architecture as the main adRNN except that:
(i) inputs do not include r′t, (ii) exogenous vector is not modulated (no pt), and
(iii) the output is composed of u-component context vector rt and correction for
ES, ∆αt.

To adjust the context vector to the individual price series forecasted by the
main track, this vector is element-wise multiplied by the u-component modula-
tion vectors, g(j), j = 1, ..., J , which are learned for each of the J series from the
main batch. Modulated context vector is of the form:

r′t
(j) = rt ⊗ g(j) (10)

Modulation vectors g(j) as well as vectors p(j) are updated by the overall
optimization procedure and have a static nature, i.e. they does not change while
stepping through the batch time steps.

4 Experimental Study

In this section, we apply our proposed model to forecast prices of 15 cryptocur-
rencies and compare its performance with that of comparative models including
both statistical and ML ones. Although cES-adRNN is able to predict both point
forecasts and predictive intervals, in this study we do not explore the model’s
capabilities to create probabilistic forecasts, focusing on point forecasts. The
model was implemented in Python using PyTorch. It was run on an eight-core
CPU (AMD Ryzen 7 1700, 3.0 GHz, 32 GB RAM).

During the model development and hyperparameter search, the data used
was from the period preceding the one-year test period, which spanned from
1 June 2021 to 31 May 2022. Then, using the best hyperparameters, a final
training was conducted and the model was tested on the data from the one-
year test period. The training procedure generally followed [17], but there a few
changes, necessitated by a small number of series:
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– batch size was changed once only, from 2 to 4, in epoch 6,
– although the batch size could not be increased much, but a similar effect of

obtaining more smooth and higher quality gradient was achieved by increas-
ing number of training steps applied to each batch, starting from 15, and
doubling it in epoch 2, tripling to 45 in epoch 3, increasing to 60 in epoch
4, and to 75 in epoch 5,

– additionally, in [17], the epoch was defined as executing 2000-2500 updates;
here due to very small dataset size, the overtraining was starting much ear-
lier, forcing us to reduce the number of updates per epoch to 300-500 for
horizon of 1, 150-200 for horizon of 7, and just 50-70 for horizon of 28,

– we used the ensemble size of 30.

As the performance metrics, the following measures were used: MAPE - mean
absolute percentage error, RMSE - root mean square error, MPE - mean absolute
percentage error, and StdPE - standard deviation of percentage error.

The models used for comparison were:

– Naive – naive model: the forecasted price for day i is the same as the price
for day i− h, where h = 1, 7 or 28 is the forecast horizon.

– ARIMA – autoregressive integrated moving average model [22],
– ES – exponential smoothing model [22],
– FNM – fuzzy neighbourhood model [22]
– MLP – perceptron with a single hidden layer and sigmoid nonlinearities [23],
– DeepAR – autoregressive RNN model for probabilistic forecasting [24],
– N-BEATS – deep NN with hierarchical doubly residual topology [25],
– Transformer – transformer NN with attention mechanism [26],
– WaveNet – autoregressive deep NN model combining causal filters with di-

lated convolutions [27].

We used R implementations of ARIMA and ES (package forecast), and Glu-
onTS implementations of MLP, DeepAR, N-BEATS, Transformer and WaveNet
[28]. A Naive model and FNM were implemented in Matlab.

Our experimentation involved two paths. The first path was to predict cryp-
tocurrency prices solely based on their historical values, without using exogenous
variables. The second path incorporated time series of both prices and exoge-
nous variables as input. Tables 1 and 2 show the results of both experimentation
paths. The models with exogenous variables are marked with the "+" symbol
(note that some of the models are not able to incorporate exogenous data).

The superiority of our proposed model over other models is clearly demon-
strated by the results presented in Tables 1 and 2: our model fed by exogenous
variables, cES-adRNN+, produced the most accurate forecasts for all horizons.
The differences in MAPE between cES-adRNN variants without and with ex-
ogenous inputs were: 3.0% for h = 1, 3.8% for h = 7, and 7.2% for h = 28. Note
that in case of other models, introducing exogenous variables not always lead
to error decreasing (this is especially evident for h = 1). For a horizon of 1, it
is challenging for forecasting models to outperform the Naive model. However,
our proposed model is the only one that generated errors lower than those of
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the Naive model. For longer horizons, the Naive model produced forecasts with
much greater errors than those of other models.

The cES-adRNN+ model shows the lowest StdPE values, indicating that its
predictions are less dispersed compared to the baseline models. Additionally, the
MPE values for cES-adRNN+ are also among the lowest. MPE reflects a forecast
bias. While our model can reduce bias by selecting an appropriate quantile order
for the loss function, it’s important to note that bias reduction may negatively
impact forecast error, which is our primary quality measure. As a result, we did
not further reduce bias in our model.

To further evaluate the accuracy of the models, we conducted a pairwise
one-sided Giacomini-White test for conditional predictive ability for each cryp-
tocurrency and forecast horizon [29]. Table 3 shows the results: GWtest value,
i.e. the percentage of cases where a given model outperformed other models in
terms of MAPE at a significance level of α = 0.05. For instance, a GWtest value
of 95.1 was obtained for h = 28 by cES-adRNN+, indicating that this model
had a significantly lower MAPE than other models in 95.1% of pairwise com-
parisons. For horizon of 1, our model demonstrates a highest value of GWtest
among all models (57.3), but note that the second highest value is for the Naive
model (45.8). For longer horizons, GWtest increased for cES-adRNN+ to 89.8
for h = 7, and 95.1 for h = 28.

Figure 5 presents examples of BTC price forecasts generated by the most
accurate models. The top panel displays one-day ahead forecasts for the first
three months of the test period, revealing a characteristic inertia or lag in the
predictions. The middle panel shows 7-day ahead forecasts for the first three
weeks of the test period, while the bottom panel displays 28-day ahead forecasts
for the first three months. Notably, the models are unable to accurately predict
BTC price fluctuations for longer horizons due to insufficient information in the
input variables.

Table 1. Forecasting metrics for models without exogenous variables (univariate case).

Horizon 1 Horizon 7 Horizon 28
Model MAPE RMSE MPE StdPE MAPE RMSE MPE StdPE MAPE RMSE MPE StdPE
Naive 3.25 70.6 0.36 4.68 10.63 256.0 2.86 11.52 22.43 567.3 9.66 20.87
ARIMA 3.38 73.7 0.22 4.82 7.92 194.4 1.23 9.72 16.45 418.5 3.99 18.32
ES 3.29 71.1 0.33 4.80 7.53 181.3 1.56 9.84 15.60 386.2 5.27 21.63
FNM 5.48 101.8 0.97 7.49 10.18 249.0 3.35 11.79 20.79 530.9 9.51 23.75
MLP 3.38 75.1 0.86 4.75 7.87 198.7 1.80 9.21 15.97 462.1 2.05 15.89
DeepAR 3.30 72.1 0.33 4.73 7.71 191.5 2.41 9.14 16.68 381.4 8.73 16.02
N-BEATS 3.27 71.0 0.48 4.69 7.33 179.8 0.06 8.81 16.48 382.6 5.79 16.46
Transformer 5.44 157.7 4.68 4.95 8.09 188.5 3.09 9.42 17.95 647.1 3.42 18.22
WaveNet 10.23 188.9 4.84 15.89 8.10 191.3 3.48 9.75 18.18 403.0 10.56 17.94
cES-adRNN 3.29 72.3 0.39 4.75 7.40 184.2 1.58 8.99 15.05 391.7 5.40 15.74

The model training process took several hours on a desktop-class computer,
utilizing only CPUs (without GPUs) running in parallel with all available cores.
The final forecast was then aggregated after the training. The forecasting process
is expected to be much faster, as it does not involve gradient calculations. In a
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Table 2. Forecasting metrics for models with exogenous variables (multivariate case).

Horizon 1 Horizon 7 Horizon 28
Model MAPE RMSE MPE StdPE MAPE RMSE MPE StdPE MAPE RMSE MPE StdPE
MLP+ 3.33 75.4 0.31 4.74 7.74 201.1 1.20 9.06 15.54 430.7 4.64 15.88
DeepAR+ 3.31 71.8 0.42 4.72 7.27 181.0 -0.27 8.59 15.95 432.8 8.04 15.82
N-BEATS+ 3.35 70.7 0.69 4.70 7.35 179.8 0.81 8.85 16.87 375.5 6.24 16.29
Transformer+ 5.91 173.6 5.28 4.96 7.54 188.6 0.61 9.12 14.50 468.1 0.26 15.35
WaveNet+ 4.01 86.4 2.10 6.56 7.86 187.0 3.00 9.48 19.29 572.0 12.98 17.50
cES-adRNN+ 3.19 68.9 0.21 4.58 7.12 179.6 0.55 8.67 13.97 374.3 2.08 15.11

Table 3. GWtest metric.
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Horizon 1 45.8 29.8 32.0 15.6 30.2 15.6 31.1 8.4 31.1 0.0 31.6 25.8 39.1 31.1 36.4 57.3
Horizon 7 2.2 32.4 53.3 5.3 20.4 27.1 31.6 52.4 40.0 30.7 76.4 44.0 77.3 67.6 78.7 89.8
Horizon 28 3.6 44.0 64.4 10.7 43.6 25.3 56.9 72.4 42.7 22.7 57.8 15.6 75.1 69.3 83.1 95.1

real-life scenario, we would expect daily forecasts based on saved NN weights,
which could be generated in less than a minute. The retraining process could be
performed less frequently, for example, on a monthly basis.

5 Conclusions

Cryptocurrencies are notoriously volatile and their prices are influenced by a
range of factors, such as market sentiment, regulatory changes, and technolog-
ical advancements. Moreover, the lack of discernible patterns in the price data
and its erratic fluctuations make accurately predicting cryptocurrency prices a
daunting task. Despite these challenges, our study employs state-of-the-art ML
model, cES-sdRNN, that incorporates various mechanisms and procedures to
improve forecasting efficiency, such as a hybrid architecture, context track, re-
current cells with dilation and attention mechanisms, dynamic ES model, cross-
learning, quantile loss function, ensembling, and overfitting prevention mecha-
nisms. Our proposed model, which uses exogenous variables as input, outper-
formed all comparative models, achieving the highest accuracy across all forecast
horizons.
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Fig. 5. Examples of forecasts for BTC: top panel - h = 1, middle panel - h = 7, bottom
panel - h = 28.
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