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Abstract. The adjoint reversal of long evolutionary calculations (e.g. loops),
where each iteration depends on the output of the previous iteration, is a com-
mon occurrence in computational engineering (e.g. computational fluid dynam-
ics (CFD) simulation), physics (e.g. molecular dynamics) and computational fi-
nance (e.g. long Monte Carlo paths). For the edge case of a scalar state, the execu-
tion, as well as adjoint control flow reversal, are inherently serial operations, as
there is no spatial dimension to parallelize. Our proposed method exploits the
run time difference between passive function evaluation and augmented for-
ward evaluation, which is inherent to most adjoint AD techniques. For high
dimensional states, additional parallelization of the primal computation can and
should be exploited at the spatial level. Still, for problem sizes where the par-
allelization of the primal has reached the barrier of scalability, the proposed
method can be used to better utilize available computing resources and improve
the efficiency of adjoint reversal.
We expect this method to be especially useful for operator-overloading AD tools.
However, the concepts are also applicable to source-to-source transformation
and handwritten adjoints, or a hybrid of all approaches. For illustration, C++
reference implementations of a low dimensional evolution (lorenz attractor) and
a high dimensional evolution (computational fluid dynamics problem in Open-
FOAM) are discussed. Both theoretical bounds on the speedup and run time
measurements are presented.

Keywords: Algorithmic Differentiation, Adjoints, MPI

1 Introduction

Motivation

Adjoint sensitivities are desired in a variety of academic and industrial applications
due to their high accuracy and low computational cost compared to forward methods
(e.g. finite differences), for functions which map a high number n of input parameters
to a low (if not scalar) number of outputs m (f : Rn → Rm with m ≪ n). Such
sensitivities can be efficiently computed with Algorithmic Differentiation (AD, com-
monly also referred to as Automatic Differentiation). With adjoint AD, the full Jacobian
∇f(x) : Rn → Rm×n can be obtained at a computational complexity O(m) ·cost(f).
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The goal of this paper is to propose a novel way to better utilize parallel computing
resources in the context of adjoint control flow reversal. Our proposed method exploits
the run time difference between passive function evaluation and augmented forward
evaluation (see definitions in Section 2).

The computation of adjoints typically consists of two distinct phases (outlined in
more detail in the main matter):

Augmented forward evaluation Execution of function f , but all intermediate val-
ues required for the reverse propagation of adjoints are cached. Efficient AD tools
will pre-accumulate[32,10] partial Jacobians required for the reversal process al-
ready during this step, reducing the amount of data to be stored and the number
of operations to be performed during reverse propagation.

Reverse propagation of adjoints Evaluation of the adjoint model[11], restoring cached
values as necessary and utilizing pre-accumulated Jacobians. Sensitivities will be
propagated from the outputs back to the inputs and parameters.

The augmented forward evaluation is typically significantly slower than the pas-
sive (i.e. regular) evaluation of the same code, due to added memory bandwidth usage
for the caching of values, added computational operations for the pre-accumulation
of Jacobians, and (for some AD tools) added overhead due to the overloading of oper-
ators. The proposed method exploits this run time factor between augmented forward
and passive evaluation by distributing the work to multiple processors and only per-
forming a specific part of the calculation in augmented forward mode and remaining
in passive mode for the remaining part. Depending on the implementation, this intro-
duces additional passive computations, however, these are hidden in the parallelization
and do not influence the wall clock time.

We mainly focus on C++ codes, where the overhead for operator-overloading is
low, due to inlining and compile-time optimization. For interpreted languages (e.g.
Python, MATLAB) the overhead can be much higher. General purpose operator-overloading
tools include ADOL-C[33] (C,C++), CoDi-Pack[27] (C++), dco/c++[16], Sacado[25],
and AdiMat[2] (Matlab).

General purpose AD tools which use the source code transformation approach[11]
include TAPENADE[12] (C and Fortran), dcc[8] (C) and Tangent[9] (python). Recently,
a lot of research has focused on providing source code transformation for languages
based on the LLVM stack[15] (e.g. C++, Rust, but also interpreted languages like Ju-
lia). This research has produced frameworks such as Enzyme[20], Zygote[13], and
Diffractor[6]. Furthermore, domain-specific tools exist, e.g. DolfinAdjoint[5] for the
Dolfin[17] / FEniCS[1] packages for solving differential equations using FEM. Espe-
cially in the context of machine learning, a variety of new tools, often geared toward
specific linear algebra operations, have been developed (e.g. JAX[3]).

For high dimensional states (e.g. discretization points in numerical simulations),
additional parallelization of the primal computation can and should be exploited on
the spatial level. Still, for problem sizes where the parallelization of the primal has
reached the barrier of scalability, this method can be used to utilize remaining com-
puting resources and improve the efficiency of adjoint reversal.
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We expect the proposed method to be especially useful for operator-overloading
AD tools, however, the concepts are also applicable to source-to-source transformation
and handwritten adjoints.

Limitation of state-of-the-art approaches

Many parallelization schemes utilized in computational engineering face challenges
once the number of involved processes gets very large due to data access patterns, com-
munication overheads, and other factors[7]. Existing strategies for parallelizing ad-
joint computations often focus on assembling individual stencils (e.g.[19]), or involve
reversing the communication patterns in MPI (e.g.[28,27]). Both of these approaches
require significant code changes in order to incorporate adjoint computations. Our ap-
proach, though limited to evolution-style algorithms, does not require many changes
below the outer iteration level, as mostly a black box differentiation[11] approach is
retained.

Limitations of the proposed approach

The current implementation of the proposed method is limited to MPI parallelization.
Conceptually, it can also be extended to OpenMP or GPU parallelism (e.g. CUDA),
however, memory bandwidth limitations might reduce the effectiveness of the ap-
proach. As shown in Section 4.2, the scaling of the proposed method is bound by a
constant factor. To achieve scaling onto a high number of processors it needs to be
combined with a parallelization strategy for the underlying problem.

Data availability

The code for the case study in Section 5 and further illustrative code is available at
github.com/STCE-at-RWTH/parallel taping.

2 Notation and Foundations

We denote scalar variables in italics (e.g. y ∈ R) and vectors in bold (e.g. x ∈ Rn). The
corresponding adjoints are identified by x̄ ∈ Rn and ȳ ∈ R (Notation of[11]). For a
multivariate function y = f(x) the adjoint model reads

x̄ = ȳ · ∇f(x) , (1)

where ∇f(x) denotes the gradient of f evaluated at location x. For reference, we also
introduce the tangent model with tangents ẋ ∈ Rn and ẏ ∈ R

ẏ = ∇f(x) · ẋ . (2)

Equations (1) and (2) can be evaluated for a given code implementation of f explicitly
(by writing down the tangent/adjoint statements line by line, see code in GitHub) or
implicitly by means of Algorithmic Differentiation (AD).
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The gradient ∇f(x) can be calculated at cost O(1) · cost(f), where cost(f) is a
measure proportional to the run time needed to evaluate f , by choosing ȳ = 1 and
evaluating the adjoint model. To acquire the same gradient we need n calls to the tan-
gent model (by letting ẋ range over the unit vectors ei), yielding cost O(n) · cost(f).
Thus, the adjoint method is the natural choice for calculating gradients whenever
1 ≪ n.
For the adjoint mode, the data flow of the program has to be reversed to propagate
adjoints from the program outputs back to the inputs. With the adjoint model, the
program execution decomposes into a distinct forward and reverse section.

Conceptually, all computer codes can be transformed into the execution of ele-
mental functions φj operating on a single vector of data v ∈ Rn+p+m, using n
inputs (v0 to vn−1), p intermediate values (vn to vn+p−1) and m outputs (vn+p to
vn+p+m−1)[10,21]. The corresponding adjoints can then be accumulated in v̄. In the
following procedure i ≺ j denotes a (direct) dependence of variable vj on vi (that is
∂φj

∂vi
̸= 0). Then the forward section computes the intermediates and output variables;

Only after this is finished the reverse section starts to propagate the adjoints of outputs
and intermediates back to the inputs.

for j =n, . . . , n+ p+m− 1

vj = φj(vi)i≺j

}
forward section,

for i =n+ p− 1, . . . , 0

v̄i =
∑
j:i≺j

∂φj(vi)

∂vi
· v̄j

 reverse section.
(3)

Note, that the derivatives ∂φj

∂vi
required in the reverse section still potentially depend

on vi (if φj is non-linear in vi). Thus, either the values vi, or the Jacobian ∂φj

∂vi
(pre-

accumulation), need to be cached until they are consumed in the reverse section. This
caching is where the majority of the adjoint methods’ memory penalty stems from.
Figure 1 illustrate the concept of Jacobian pre-accumulation on a per-statement level.
This technique reduces the amount of data that needs to be stored for the reverse sec-
tion and also allows to perform most of the calculations already during the forward
phase. Statement level pre-accumulation can efficiently be implemented by C++ ex-
pression template techniques[16].

3 Serial Adjoint Reversal of Evolution

First, we consider a serial evolution with state x ∈ Rnx (states are repeatedly over-
written by an iteration formula) and parameter p ∈ Rnp (parameters remain constant
throughout the computation). Each iteration step only depends on the state x from the
previous iteration and global parameters p (within each iteration additional interme-
diate variables might be used). To uniquely identify the states x during the different
phases of the computation we introduce an upper index for each iteration. In prac-
tice, the state may use only a single memory location (thus overwriting the existing
memory). However, for the adjoint reversal, it may be required to cache the states x.
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v = x1 · x2 · x2
3

y = (x2 + x3) · v
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Fig. 1. Example for pre-accumulation of two statements. Elimination of intermediate nodes and
edges from the middle graph saves memory for three nodes and four edges. Edges are labeled
with partial derivatives.

1 doub le f ( doub le x , c o n s t doub le p ) { r e t u r n p ∗ s i n ( x ) ; }
2

3 doub le e v o l u t i o n ( i n t n , doub le x , c o n s t doub le p ) {
4 f o r ( i n t i = 0 ; i<n ; i ++)
5 x = f ( x , p ) ;
6 r e t u r n x ;
7 }

Listing 1.1. Example of evolution with function f , scalar input x, and scalar parameter p

First, we consider scalar evolutions (nx = 1, np = 1) of the form:

xn = fn(xn−1, p) ◦ fn−1(xn−2, p) ◦ . . . ◦ f2(x1, p) ◦ f1(x0, p)

with arbitrary (differentiable) functions f i : R × R → R ∈ C1. An example of such
an evolution, where f is always the same iteration procedure x = p · sinx, is given in
Listing 1.1. This can easily be generalized to vector-valued evolutions of the form:

y = J ◦ fn(xn−1,p) ◦ fn−1(xn−2,p) ◦ . . . ◦ f2(x1,p) ◦ f1(x0,p)

with arbitrary (differentiable) functions f i : Rnx × Rnp → Rnx ∈ C1 and a final
reduction J : Rnx → R ∈ C1 that reduces the state x to a scalar, such that the
adjoint model only needs to be run once to get a full gradient of J with respect to x
and p. A graphical representation of the vector evolution, as well as the corresponding
derivatives, are given in Figure 2.

3.1 Reversal of serial evolution

We define the augmented forward run f̂ of a function f as a function evaluation,
which produces the same outputs, but caches all information required for the adjoint
data flow reversal.
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Fig. 2. Directed acyclic graph (DAG) representation of a three-step evolution (left), and the total
derivative of J w.r.t. p (right). Note how the derivative can be found by multiplying the partial
derivatives along paths from p to J , adding up parallel paths.

Conceptually, the adjoint reversal of a (scalar) evolution loop always consists of
the following steps: The evolutionary loop, where all variables which are required for
the adjoint reversal are cached

xn = f̂n(xn−1, p) ◦ f̂n−1(xn−2, p) ◦ . . . ◦ f̂2(x1, p) ◦ f̂1(x0, p)

is followed by the calculation of adjoints of the inputs x̄0, p̄, as well as all intermediate
adjoints x̄i (either implicitly using an AD tool, or by explicitly calculating the required
gradients):

x̄0 =
d

dx

[
fn(xn−1, p) ◦ fn−1(xn−2, p) ◦ . . . ◦ f1(x0, p)

]
· x̄n

as well as the adjoint of parameters p:

p̄ =
d

dp

[
fn(xn−1, p) ◦ fn−1(xn−2, p) ◦ . . . ◦ f1(x0, p)

]
· x̄n .

An example code on how to implement such a reversal using handwritten adjoints is
given in the code on GitHub. For a general-purpose AD tool the workflow is always
similar, where the adjoint statements are built automatically during the second step:

1. Mark initial values x0 and parameters p as active inputs.
2. Execute augmented forward section for full n-step evolution, storing required in-

termediate values.
3. Seed the outputs, e.g. final state xn.
4. Propagate adjoints back from x̄n to x̄0 and p̄.
5. Harvest adjoints x̄0 and p̄.
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4 Parallel Adjoints of Evolution

Building on the serial reversal procedure, we now expand it to a parallel setting. For
notational simplicity, we focus on scalar states and parameters, however, the procedure
can be applied to vector-valued states and parameters virtually unchanged.

4.1 Parallel Reversal Procedure

To transition from a serial evolution to a parallel adjoint evolution, we define an evo-
lutionary loop where the first n−1 iterations are calculated in passive mode and only
the last f̂n is calculated in augmented forward mode:

xn = f̂n(xn−1, p) ◦ fn−1(xn−2, p) ◦ . . . ◦ f2(x1, p) ◦ f1(x0, p)

As only one iteration step is cached, only the following adjoints can be calculated:

x̄n−1 =
df(xn−1, p)

dxn−1
· x̄n

as well as a partial adjoint update for p:

p̄n =
d

dp
f(xn−1, p) · x̄n

where, due to the incremental nature[11] of the adjoint:

p̄ =

n∑
i=0

p̄i .

For the following discussion of parallel adjoint propagation, we assume that the n
iteration steps can be distributed onto n processors. If less processors are available
(P < n), one can, without loss of generality (for evenly divisible n), redistribute the
loop iterations, such that each processor reverses n/np steps of the iterations.

As before, each processor calculates only one iteration step f̂i in augmented primal
mode, such that it can later calculate the adjoint reversal x̄i−1 = x̄i · ∂fi

∂xi−1 . If we have
n processors, then all steps can be reversed. However, all processors, except the last,
have to wait for adjoint x̄i to be calculated and sent to it by processor (i + 1). Thus,
the reverse propagation phase remains a serial operation, as the propagation of the
next iteration can not start until the current one has finished. All gains come from
the fact that each processor has to perform only one active forward evaluation and
can rely on faster passive evaluations for the remaining iterations up to the active
one. Each processor except the first has to perform some amount of redundant passive
computation (f0 to f i−1) before it can execute f̂ i. A graphical representation of the
procedure is given in Figure 3.

In the following we outline the procedure for each processor i:

1. Execute passive evolution up to step (i− 1):
xi−1 = f i−1(xi−2, p) ◦ . . . ◦ f2(x1, p) ◦ f1(x0, p);
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2. Execute augmented forward section xi = f̂ i(xi−1, p);
3. Seed outputs x̄i (received from processor (i+ 1) if i < n, else x̄n = 1);
4. Propagate adjoints back from x̄i to x̄i−1 and p̄i;
5. Harvest adjoints x̄i−1 and p̄;
6. Send calculated adjoints x̄i−1 to processor (i− 1) (if i > 1);
7. Reduce partial parameter adjoints p̄ =

∑n
i=0 p̄

i (e.g. MPI Allreduce).

A possible implementation for the parallel adjoint reversal of the previous evolution
is available on GitHub.

Fig. 3. Illustration of serial and parallel adjoint reversal for n = 4, λ = 5, α = 2. Adjoints
for the state x are passed along from processor to processor, as necessary requirements for the
further reversal of the evolution. Adjoints for parameter p can be calculated thread local and
are summed up with an MPI Allreduce operation at the end. For n=4 Equation (4) predicts
a speedup of 28/18 ≈ 1.55 and an upper limit for the speedup of 7/3 ≈ 2.33.

4.2 Run time analysis

For the following analysis of the run time of the algorithm, we assume the following:

– MPI communication cost (Send, Receive, Allreduce) is negligible compared to com-
putation cost;

– Cost of each active function evaluations f̂ i is constant:
cost(f̂ i) = cost(f̂) =: cf̂ ;

– Cost of each passive function evaluations f i is constant:
cost(f i) = cost(f) =: cf ;

– Active (augmented forward) evaluation is slower than passive by a factor of λ > 1:
cf̂ = λcf ;

– Adjoint propagation has cost cf̄ , with a run time factor α > 0: cf̄ = αcf .

With the above assumptions we obtain the following costs:
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– Total serial execution cost (n augmented forward evaluations and consecutive re-
verse propagations):

T1 = n · cf̂ + n · cf̄ = n · (cf̂ + cf̄ ) = n · (λ+ α) · cf

– Total parallel execution cost (n − 1 passive evaluations, one augmented forward
evaluations, and n reverse propagations)

Tn = (n− 1) · cf + 1 · cf̂ + n · cf̄ = (n+ λ+ αn− 1) · cf

With T1 and Tn we can calculate the possible speedup (for n → ∞) as:

S∞ =
limn→∞ T1

limn→∞ Tn
= lim

n→∞

λ+ α

1 + α+ λ−1
n

=
λ+ α

1 + α
(4)

Looking at the derived formula, we can see, that this approach benefits from shifting
as much work as possible from the reverse propagation phase to the augmented for-
ward phase (decreasing α, increasing λ). Operator-overloading AD tools are especially
suited for this approach, as they have a higher factor between passive and augmented
forward execution, compared to source-to-source tools. All except one processor have
some amount of downtime during their blocking receive. This time can potentially be
used to run further optimizations on the recorded data. An additional benefit of the
parallel taping approach is the reduction of (per processor) peak memory required for
the caching of the augmented forward section (only one instead of n steps have to
be held in memory). While the overall memory consumption (for the cache) stays the
same, using MPI it can be straightforwardly spread over multiple compute nodes.

5 Case Study: Lorenz Attractor

To demonstrate the feasibility of the proposed method we model a simple Lorenz
attractor[18] using explicit forward Euler time integration of the form:

xi+1 = xi +∆t

 σ ∗ (xi
1 − xi

0)
xi
0 ∗ (ρ− xi

2)− xi
1

xi
0 ∗ xi

1 − β ∗ xi
2

 .

Thus, we have state x = (x0, x1, x2) ∈ R3 and parameters p = (β, ρ, σ) ∈ R3. We
run the iteration with a small time-step ∆t for 2 · 107 iterations. In terms of floating
point operations, this computation is not very demanding, as only multiplications and
subtractions are executed.
The iteration is implemented in C++ and differentiation is handled by the operator-
overloading AD tool dco/c++. We obtain a scalar output by evaluating the distance
of the final iterate from the origin: J =

√
x2
0 + x2

1 + x2
2. The gradient dJ

dp is then
calculated by one evaluation of the adjoint model.

Timing the execution on 8 of 36 cores of an Intel Xeon E5-2695 v4[4] system we get
the following run-time factors (as defined in Section 4):

Augmented forward to passive ratio: λ = 6.83
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Fig. 4. Run time of 2 · 107 iterations of the (adjoint) Lorenz attractor (left axis) and speedup
compared to serial execution (right axis). The limit predicted by Eq. 4 is marked as a dashed
line. Run time average of 20 executions.

Adjoint propagation to passive ratio: α = 2.05

Thus, Equation (4) limits the theoretical speedup to approximately three. For P = 20
we see an actual speedup of 2.75. The run time and speedup for up to 32 processors
are presented in Figure 4. After a certain number of processors no more improve-
ment is achieved and even a slight slowdown is observed. As the problem dimension
is not scaled with the number of processors, the amount of (traced) work per processor
shrinks, making communication and memory allocation overheads more visible.

The time the MPI parallel program spends in the different phases of the compu-
tation is outlined in Figure 5. All processors, except the last, spend time waiting for
incoming adjoints from the next processor (gray parts of the bars). This time can con-
ceivably be used for productive waiting, e.g. optimizing the recorded tape, such that
once the reverse propagation starts (green part) it is executed faster. In the current
implementation, passive calculations of the same iteration are performed on multiple
processors (f0 on all but the first, f1 on all but the first and second, and so on). The pas-
sive computations could be bundled on a single processor, at the expense of additional
communication and some further implementation work (processors need to be able to
advance their state forward without actually performing the iteration). The resulting
code would not necessarily be faster, but certainly more energy efficient (even more if
idle processors are used in some other way or are allowed to enter a low power state).
The approach of utilizing a dedicated process for all passive calculations is used in the
following example.

6 Case Study: Parallel Taping in OpenFOAM

Here we present the reversal of evolutions as encountered in OpenFOAM[22]. Open-
FOAM is an open-source computational fluid dynamics solver suite, based on the finite
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Fig. 5. Time spent in different phases of the computation for eight processors. For reference also
the serial execution without any MPI communication is given on the right. Reverse interpreta-
tion starts on P7 and finishes on P0.

volume method. A version of OpenFOAM augmented with features of algorithmic dif-
ferentiation has been developed by the author’s institution[29].

For this case study, we use a variation of the simpleFoam solver, which imple-
ments the SIMPLE algorithm[24] with added penalty parameters to facilitate topol-
ogy optimization[23]. The solver is run for a fixed number of time steps, all of which
are traced and reversed by AD (except for linear solver calls, which are differentiated
symbolically[30]).

Two different versions of the OpenFOAM solver, implementing the (MPI-) parallel
taping approach, were developed[14]:

1. A version that operates with AD data types throughout (even if a time step does
not need to be reversed, the AD data types are retained, but the tape recording is
switched off).

2. A version where the time steps required to kick-start the adjoint recording are
calculated on a different thread, running a different set of binaries.

Due to architectural limitations within OpenFOAM, we can currently not instantiate
the full codebase with different floating-point types at the same time (e.g. with a pas-
sive floating point type double and an adjoint AD type ad::adjoint t〈double〉).
Using the first approach, the execution time for evaluating a single SIMPLE iteration
step is not as fast as with fully passive (e.g. double) data types. That is, the observed
run time factor lies somewhere in between cf and cf̂ .

However, it is possible to compile different sets of binaries for different types. In
the second implementation, we use this to calculate all time steps on a single processor
running a binary with true passive double data types. This data is used to kick-start

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_29

https://dx.doi.org/10.1007/978-3-031-35995-8_29
https://dx.doi.org/10.1007/978-3-031-35995-8_29


12 M. Towara et al.

P0 P1 P2 P3 Serial
0

50

100

Ru
n

tim
e

(s)

P0 P1 P2 P3 P4 Serial
0

50

100

Ru
n

tim
e

(s)

Final reduction
Reverse propagation
Waiting for adjoints
Augmented forward
Passive forward
Waiting

Fig. 6. Run time (in s) for a run of code variant 1.) on 4 nodes (top) and a run of code variant 2.)
on 4+1 nodes (bottom). Run times are averaged over 10 runs.

the calculation of augmented forward and reverse propagation phases on the remain-
ing processes, which are running the version of OpenFOAM instantiated with adjoint
data types. As most processors have idle time after the recording of the tape, it is possi-
ble to move the extra process calculating with true double data types onto a processor
with such idle time, eliminating the need for an extra processor.

On the investigated hardware (Intel Skylake Platinum 8160), the passive run time
is about λ1 = 2.5 times lower than the active run time (4.4s vs 11.3s per 64 time steps).
With an observed interpretation factor of α1 = 1.54 we get the scaling limit according
to Equation (4) as S1 ≈ 1.6. As expected, for version 2 the factor λ2 = 6.0 is higher
(1.86s vs 11.3s). With an observed interpretation factor of α2 = 3.6 we get the scaling
limit according to Equation (4) as S2 ≈ 2.1.
Figure 6 shows an example run with AD tool dco/c++ on the common pitzDaily[26]
OpenFOAM case (flow over a backward-facing step). The case is run and adjoined over
256 time steps, obtaining the gradient w.r.t. roughly 50 000 design parameters. Here
we distribute the calculation over four processors, thus each processor is responsible
for recording and adjoining 64 time steps. We observe, that each recorded time step
requires about 400 MB of memory. The state that needs to be communicated by MPI
is just about 600 kB big, which is way below the interconnect capacity on the used
system to have any non-negligible influence on the run time.
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The observed adjoint recording factors are lower because a significant amount of
run time is spent in the solution of linear equation systems, which for efficiency are
differentiated symbolically, which removes complexity from the recording phase and
the solution of additional systems of linear equations to the interpretation phase[31],
effectively lowering the factor λ and increasing α.

7 Summary & Outlook

We demonstrated the feasibility of the approach to scalar and low-dimensional evolu-
tions (lorenz attractor), as well as high dimensional ones (OpenFOAM). With operator-
overloading AD tools, typical achievable speedups lie between two and three. To achieve
scaling which extends to larger numbers of threads, the approach should be combined
with parallelization of the underlying problem. This has the added benefit, that the
parallel taping approach still gives benefits if primal and adjoint scaling by domain
decomposition has stopped. The proposed method is not limited to first derivatives but
is also applicable to all higher derivatives schemes, that at least contain one instance
of the adjoint model (e.g. tangent over adjoint mode for obtaining second derivatives).
While currently implemented as a manual approach, this technique could also be in-
tegrated into the AD tool itself, also removing the limitation to evolutions.
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C. H. Bischof, H. M. Bücker, P. D. Hovland, U. Naumann, and J. Utke, editors, Advances in
Automatic Differentiation, pages 351–362. Springer, 2008.

26. R. W. Pitz and J. W. Daily. Combustion in a turbulent mixing layer formed at a rearward-
facing step. AIAA Journal, 21(11):1565–1570, 1983.

27. M. Sagebaum, T. Albring, and N. R. Gauger. High-performance derivative computations
using codipack. ACM Transactions on Mathematical Software (TOMS), 45(4):1–26, 2019.

28. M. Schanen. Semantics Driven Adjoints of the Message Passing Interface. Dissertation, RWTH
Aachen University, 2014.

29. M. Towara. Discrete adjoint optimization with OpenFOAM. Dissertation, RWTH Aachen
University, Aachen, 2018.

30. M. Towara and U. Naumann. Simple adjoint message passing. Optimization Methods and
Software, pages 1–18, 2018.

31. M. Towara, M. Schanen, and U. Naumann. MPI-parallel discrete adjoint OpenFOAM. Pro-
cedia Computer Science, 51:19 – 28, 2015. 2015 International Conference On Computational
Science.

32. J. Utke, A. Lyons, and U. Naumann. Efficient reversal of the intraprocedural flow of control
in adjoint computations. Journal of Systems and Software, 79(9):1280–1294, 2006. Selected
papers from the fourth Source Code Analysis and Manipulation (SCAM 2004) Workshop.

33. A. Walther and A. Griewank. Getting started with Adol-C. U. Naumann and O. Schenk,
Combinatorial Scientific Computing, Chapman-Hall CRC Computational Science, pages 181–
202, 2012.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_29

http://openfoam.com/
https://dx.doi.org/10.1007/978-3-031-35995-8_29
https://dx.doi.org/10.1007/978-3-031-35995-8_29

