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Abstract. In Federated Learning (FL), a shared model is learned across
dispersive clients each of which often has small and heterogeneous data.
As such, datasets in FL setting may suffer from the non-IID (Indepen-
dent and identically distributed) problem. In this paper, we propose
a BAGAN as machine learning model which has the ability to create
data for minority classes, and a Bi-FedAvg model as a new approach to
mitigate non-IID problems in FL settings. The performance comparison
between FedAvg and Bi-FedAvg in both IID and Non-IID environments
will be shown in terms of accuracy, converge stability and category cross-
entropy loss. On the other hand, the training and testing performance
among FedAvg, FedAvg with a conditional GAN model, and FedAvg
with BAGAN-GP model, on IID and Non-IID environments with three
imbalanced datasets will be compared and discussed. The results indi-
cate that Bi-FedAvg fails to outperform Fed-Avg, for Bi-FedAvg suffers
from model quality loss or even divergence when running on non-IID
data partitions. In addition to that, our experiments demonstrate that
higher quality images for complex image datasets can be generated by
BAGAN and combining federated learning and Balancing GAN model
together is conducive to obtaining a high-level privacy-preserving capa-
bility and achieving more competitive model performance. The project
will give an inspired further exploration of the implementation of a com-
bination between Federated learning and BAGAN on image classification
in real-world scenarios.
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1 Introduction

Deep learning methods have been employed extensively in the area of image clas-
sification. Due to its complexities, deep learning models require a large number
of samples for learning process. In such domain such as medical applications it is
often not possible to collect large datasets in one single hospitals (a.k.a clients).
At the same time, it’s also hard to combine data from different clients at one
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single central location because of their privacy regulations [7]. In this sense, Fed-
erated Learning (FL) became a dominant solution to this kind of problem [9].
In Federated Learning, only local client data will be utilized to train a local
model rather than be gathered to a central server, and the central server will
subsequently aggregate only the local model coefficients into the global model.
The privacy of users is well safeguarded in Federated Learning since no other
parties will ever have access to client data.

Nevertheless, in real situations, data from different clients are very hetero-
geneous. In other words, data of different classes are not evenly distributed in
multiple clients [3]. The clients may have too few samples of certain classes, or
missing some classes. This is the non independent and identically distributed, or
Non-IID data problem which is currently an open research question in federated
learning. For instance, the predicting accuracy of standard federated learning
models is lower than 55% with highly skewed Non-IID data, where each client
only contains one class of data, compared with IID type of data [20].

This paper proposes a novel federated learning method based on a balance
GAN (BGAN) model to handle the problem of imbalanced classes in datasets,
and a bi-directional FedAvg method to mitigate the effect of Non-IID problem.
The adversarial module in BGAN will learn the pattern of both majority and
minority classes in the dataset, and its generative model will generate images
for the minority classes.

The rest of this paper is organized as follows. In Section 2, various related
studies are discussed. In Section 3, we present our approach and data pre-
processing methodology. Section 4 presents our experiment and results. Finally,
the conclusions are drawn in Section 5.

2 Related Work

Many studies underscore the potential of deep learning will help to identify
complex patterns in medical industry. For that, sufficiently large and diverse
datasets are required for training. However, as multi-institutional collaborations
centrally share the patient data and as a result, there will be privacy and own-
ership challenges [17]. Federated Learning have been recently considered as a
potential solution for building a predictive model in medical industry without
sharing patient data to the Central model [14].

FedAvg algorithm is the original version of federated aggregation algorithm
which was initially proposed by McMahan et al.[19]. It uses the local SGD up-
dates to build a global model by taking average model coeffcients from a subset
of clients with non-IID data. In FedAvg, a central server is used to communi-
cate between clients without accessing the data in local server. For Federated
Learning, three main challenges have attracted several researches to improve the
FedAvg algorithm. (1) how to handle non-identically distributed (Non-IID) data
across the network (statistical heterogeneity); (2) how to aggregate the coeffcient
at the central model; and (3) who and when to communicate client’s model co-
efficients. Accordingly, several derived models of FedAvg have been developed
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with theoretical guarantee. For instance, a method called FedProx is proposed
by LiTian [18] to tackle the Non-IID problem. FedProx can be viewed as a gen-
eralization and re-parametrization of FedAvg. Despite very little changes to the
method itself, but there will be significant implications both in theory and in
practice. Compared with FedAvg, one key improvement for FedProx is that it
introduces an additional proximal term to the local training, which essentially
restricts the local updates to be closer to the latest global model, and that will
help the federated training to converge faster [18]. Subsequently, pFedBayes [19]
is also proposed to mitigate the non-Non-IID problem. The idea for this model
is that each client uses the aggregated global distribution as prior distribution
and updates its personal distribution by balancing the construction error over
its personal data and the KL divergence with aggregated global distribution.
Another algorithm called PC-FedAvg [2, 1], it personalizes the resulting support
vectors to addresses the problem of Non-IID distribution of data in FL. Simlarly,
pFedMe [6] formulates a new bi-level optimization problem by using the Moreau
envelope as a regularized loss function. The idea behind that is allowing clients
to pursue their own models with different directions, but not stay far away from
the reference point. In this sense, the statistical diversity among clients will be
smaller. Therefore, the above algorithms could help us to think about how to
improve the current model or make some changes into the model for the Non-IID
problem and ultimately get a better performance.

A very recent method propsed by LiZheng [12] called FedFocus. The idea
behind this method is that the training loss of each model is taken as the basis
for parameter aggregation weights, and as training layer deepens, a constantly
updated dynamic factor is designed to stabilize the aggregation process, which
could improve the training efficiency and accuracy. On the other hand, the paper
applies it into COVID-19 detection on CXR images. The author claimed that
the training efficiency, accuracy and stability was significantly improved by us-
ing FedFocus. In this paper the authors utilise a GAN model on client side for
learning process. However, datasets are often class-imbalanced, which will neg-
atively affect the accuracy of deep learning classifiers [13]. It is pointed that the
existing GANs and their training regimes only work well on balanced datasets
but fail to be effective in case of imbalanced datasets.

This paper proposes a bi-directional version of the traditional FedAvg model
to alleviate the problem of Non-IID data with a better aggregation method on
the client side. Furthermore, our method used an improved version of GAN which
has the ability to deal with class-imbalanced datasets.

3 Bi-directional FedAvg Based Balanced GAN for
Learning Process

Federated learning uses a distributed framework which allows multiple clients to
collaboratively train a machine learning model using their own unique dataset.
This is to say that the client trains local data to obtain a local model and
aggregates the local model by updating parameters to the central server to obtain
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a global model. After multiple iterations until meeting a terminating condition,
the final model converges to the centralised machine learning result. Based on the
research work we reviewed, the accuracy of model decreases when the diversity
of data acroos the clients increases [5]. Hence, our new method i.e Bi-FedAvg
(Bi-directional FedAvg) adds an extra computation layer on the client side after
the central server has published the aggregated global model. Figure 1 presents
our Bi-FedAvg framework architecture.

Fig. 1: Core Architecture of Bi-FedAvg.

As can be seen from Figure 1, Bi-FedAvg averages the current aggregated
weights from the global model with the local client model’s weights to alleviate
the problem that training data differs from user to user as well as not population-
specific characteristics.

We implement a sample MLP model which includes two fully-connected lay-
ers and one softmax layer. After the training iterations, it is expected that local
data contributions will become less divergent. However, it still cannot mitigate
the Non-IID problem, which means the model may be negatively affected by
Non-IID data among clients. In reality, the majority of clients’ data categories
are unevenly distributed. Thus, we will use the BAGAN to solve the imbalanced
dataset. The BAGAN is a methodology to restore the balance of an imbalanced
dataset by using generative adversarial networks. Additionally, it has a higher
accuracy of deep-learning classifiers trained over the augmented dataset where
the balance has been restored [15]. However, it might also suffer from some
problems. For instance, it is unstable when images in different classes look sim-
ilar. For example, the imbalanced Flowers dataset has many similar classes so
BAGAN performs not well. On the other hand, it is hard to train and sensi-
tive to its architecture and hyper-parameters [8]. Therefore, we have adopted
the improved version of BAGAN-GP, which can improve the loss function of
BAGAN with gradient penalty. Moreover, Huang & Jafari (2021) propose an
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architecture of autoencoder with an intermediate embedding model, which helps
the autoencoder learn the label information directly. In our model architecture,
the BAGAN model will run on each client to augment the local data and re-
store class balance, then federated learning will be applied to the combination
of augmented data and original data of the client.

4 Experimental Setup

4.1 Data Collection

We conduct three different experiments using three different datasets i.e MNIST,
CIFAR-10 and COVID-19 Radiography. The MNIST dataset was published by
Lecun team [11], it consists of a picture for a handwritten number and a corre-
sponding label. There are 10 categories of images, corresponding to 10 numbers
from 0 to 9. The MNIST dataset contains 60000 training sets and 10000 testing
sets. As for the CIFAR-10, it is a labelled subset of 80 million tiny images dataset
which was collected by Krizhevsky, Nair and Hinton [10]. The CIFAR-10 dataset
contains 60000 images with a 50000 training set and a 10000 testing set, which
include 10 labelled classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship and truck. The COVID-19 Radiography dataset is a chest X-ray images
about COVID-19 positive cases along with normal and viral pneumonia images
created by a team of researchers along with medical doctors [4] [16]. This dataset
contains 3616 COVID-19 images, 10192 normal, 6012 lung opacity and 1345 vi-
ral pneumonia images. Figure 2 shows the distribution of classes in COVID-19
dataset. As can be seen, the COVID-19 dataset is highly imbalanced. The Nor-
mal class has 10192 images, which is 3 times as many as COVID-19 class (3616).
The details of three datasets, including image resolution, number of classes, and
minimum/maximum/total number of images in classes, were shown in Table 1

Fig. 2: The distribution of classes in COVID-19 dataset .
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Table 1: Datasets information including resolution, number of classes, and
min/max/total number of images in classes.

Dataset Resolution Classes Min Max Total

MNIST 28 * 28 10 5421 6742 60000

CIFAR-10 32 * 32 10 5000 5000 50000

COVID-19 299 * 299 4 1345 10192 21165

4.2 Results

Comparison experiments on FedAvg and Bi-FedAvg: The first experi-
ment we conducted was to evaluate the performance of Bi-FedAvg algorithm
in both IID and Non-IID settings, and to compare the resultant accuracies
with FedAvg using the three different image datasets MNIST [11], CIFAR-
10 [10] and COVID-19 Radiography dataset. Initially, we apply the following
data pre-processing procedures on the three datasets. RGB images in CIFAR-10
and COVID-19 datasets were converted to grayscale. Images in the COVID-19
dataset were resized to 64 * 64 pixels to avoid large time consumption and insuffi-
cient memory problems in the testing environment. After scaling feature vectors
to 0 to 1 scale, training and test datasets with a test size of 0.30 were created.
Using RELU as the activation function, a multilayer perceptron with two hidden
layers and 200 hidden units on each layer was constructed. Each client contained
the same number of data points. However, clients in the IID and Non-IID set-
tings had different arrangements of the data. The data was further processed
and batched with a batch size of 32 for each client. For FedAvg, an initial global
model’s weight was set and would serve as the initial weights for all local models.
In each communication round for a total of 30 to 300 communication rounds, 10
randomly selected clients were fitted into local models. Local weights for each
client were averaged, updated to a global model, and this process was iterated to
find the performance on the test dataset. For Bi-FedAvg, an additional average
process was implemented between the global model weight and local models’
weights before assigning the global weight to each local model.

The experiment was implemented in both IID and Non-IID settings. IID-
imbalanced setting indicates that each client has an imbalanced dataset con-
taining all classes. Non-IID setting means that each client has an imbalanced
dataset with a random number of classes obtained. Figure 3 showed the training
accuracy and categorical cross entropy loss plot on three datasets in the IID
environment. It was evident that Bi-FedAvg had upward trends for training ac-
curacy performance on all datasets, however FedAvg only had an upward trend
for training accuracy performance on the MNIST dataset, whereas CIFAR-10
and COVID-19 datasets exhibited a brief upward trend for 10 communication
rounds followed by a decline trend. The early stopping callback approach was
used to terminate training when the validation loss reached a stopping decrease;
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Fig. 3: Training accuracy and categorical cross entropy loss plot of three datasets
in IID environment. Top: MNIST. Middle: CIFAR-10. Bottom: COVID-19
dataset.

nevertheless, the performance of Bi-FedAvg outperformed FedAvg on all selected
datasets in the IID setting.

Experiments on Bi-FedAvg with CGAN, BAGAN-GP, and without
GAN model: The second experiment was designed to assess the training and
testing performance of several experiment settings, including FedAvg, FedAvg
with a conditional GAN model, and FedAvg with BAGAN-GP model, on IID
and Non-IID environments with three imbalanced datasets. This experiment
utilized the same datasets as the previous one, including the MNIST, CIFAR-
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10, and COVID-19 Radiography datasets. We applied the same pre-processing
and the structure of multilayer perceptrons as in the first experiment. Before
distributing data samples into each client, BAGAN-GP or CGAN were used to
restore class balance by generating images for classes with insufficient numbers of
images. The data were then combined with real and generated images to create
additional data for each client, which was subsequently fitted into local models.
The hyperparameters for BAGAN-GP are defined as follows: The optimizer was
set to the Adam algorithm with a learning rate of 0.0002 and momentum (0.5,
0.9); the default batch size and dimension of the latent vector were set to 128,
and the training ratio of the discriminator to the generator was set to 5 [8].
Each client’s images were fitted to BAGAN-GP with 100 learning steps and two
epochs per learning step. For CGAN, the discriminator and generator were set
to multilayer perceptron with three hidden layers and LeakReLU as activation
function. The optimizer was the same as BAGAN-GP and the batch size was set
to 512. To restore balance, a random half-batch of images was selected for each
epoch, and 2000 epochs were run to generate images. For the IID environment,
an additional parameter was set to the randomly selected step to allocate each
client with data points from all classes with a proportion of minimum data points
in each class. This ensured that there were no situations where certain classes
only contain one or two data points.

Figure 4 shows the training accuracy and category cross-entropy loss of sev-
eral experiments using three datasets in an IID environment. For the perfor-
mance on the MNIST and COVID-19 datasets, all three experiments had sim-
ilar training and testing performances. The accuracy plots on the right-hand
side increased rapidly on the first 50 communication rounds and turned to in-
crease mildly after the rest of the communication rounds. FedAvg and FedAvg
with BAGAN-GP performed slightly better on test datasets, achieving 96.967%
accuracy and 1.496 category cross-entropy loss on the MNIST dataset, while
FedAvg with CGAN performed slightly better with 81.17% accuracy and 0.931
category cross-entropy loss on COVID-19 dataset. On the Cifar-10 dataset, the
growth trend of accuracy plots was relatively more gradual than that on the
MNIST dataset. FedAvg with BAGAN-GP had the best performance on the
test dataset with 42.41% accuracy and 2.052 categorical cross-entropy loss. Ta-
ble 2 demonstrated the test accuracy and category cross-entropy loss of three
experiments using three datasets in the IID environment.

Table 2: Test accuracy and category cross-entropy loss of three experiments using
three datasets in the IID environment.

MNIST-Accuracy MNIST-Loss CIFAR-10-Accuracy CIFAR-10-Loss COVID-Accuracy COVID-Loss

FedAvg 96.97% 1.496 41.15% 2.062 80.42% 0.936

FedAvg+CGAN 96.83% 1.498 40.15% 2.070 81.17% 0.931

FedAvg+BAGAN-GP 96.97% 1.496 42.41% 2.052 80.79% 0.937
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Fig. 4: Training accuracy and category cross-entropy loss of three experiments
using three datasets in the IID environment.

For Non-IID environments, a random selection function was assigned to each
client in order to distribute data points from a random number of classes with
a minimum percentage of data points in each class.

Figure 5 depicted the training accuracy and category cross-entropy loss of
several experiments using three datasets in the non-IID environment. For the
performance on the MNIST dataset, the training and testing performances of
all three experiments are similar. Before 50 communication rounds, the curve
displayed a few mild undulations. FedAvg with the BAGAN-GP model gets
the greatest performance on the test dataset, with 96.23 percent accuracy and
1.508 percent category cross-entropy loss. On the CIFAR-10 dataset, the per-
formance plots of all training experiments demonstrated large fluctuations, but
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Fig. 5: Training accuracy and category cross-entropy loss of three experiments
using three datasets in the non-IID environment

an overall upward trend. FedAvg with the BAGAN-GP model achieved the best
performance on the test dataset, with 32.29% accuracy and 2.131 category cross-
entropy loss. On the COVID-19 dataset, the performance plots of all training ex-
periments demonstrated an extreme fluctuation, which indicated that the model
did not converge within 500 communication rounds. On the test dataset, Fe-
dAvg performed the best, followed by FedAvg with BAGAN-GP and FedAvg
with CGAN. FedAvg and FedAvg with BAGAN-GP had a similar upward trend;
however, FedAvg with BAGAN-GP had a greater peak for the same variation
during the training process as FedAvg without GAN model, indicating that
BAGAN-GP should have a superior performance. Possible mistakes or volatil-
ity in the model’s learning processes may have impacted the final accuracy or
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Fig. 6: Comparison of generated images for BAGAN-GP and CGAN model in
COVID-19 dataset. Left: Generated images for BAGAN-GP. Right: Generated
images for CGAN.

category cross-entropy loss on test datasets, which led to BAGAN-GP’s poorer
performance. Table 3 demonstrated the test accuracy and category cross-entropy
loss of three experiments using three datasets in the non-IID environment.

Table 3: Test accuracy and category cross-entropy loss of three experiments using
three datasets in the non-IID environment.

MNIST-Accuracy MNIST-Loss CIFAR-10-Accuracy CIFAR-10-Loss COVID-Accuracy COVID-Loss

FedAvg 96.17% 1.508 29.04% 2.156 73.30% 1.028

FedAvg+CGAN 95.64% 1.513 29.05% 2.158 65.53% 1.090

FedAvg+BAGAN-GP 96.23% 1.508 32.29% 2.131 67.47% 1.063

Furthermore, Figure 6 demonstrated the comparison of generated images for
the BAGAN-GP and CGAN model in the COVID-19 dataset. It was evident that
BAGAN-GP generated higher-quality images than CGAAN, especially when
images had minor differences between classes. The conditional GAN model did
not help to increase the performance due to its relatively simple architecture
that could not generate high quality images for complex image datasets.
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5 Conclusion

We have also introduced BAGAN as a data augmentation tool to resolve the
heterogeneous and imbalanced data distribution problem in federated learning.
The purpose of using BAGAN is to restore class balance in client data and im-
prove local data quality. Experiment results showed that BAGAN outperforms
our baseline model and CGAN in most of the scenarios. Different from other
data augmentation methods in federated learning where client data are shared
with the server to train a good generator, our GAN model is trained specifically
on each client using only client data. While the majority of data augmenta-
tion methods used data sharing and may raise the risk of data privacy leakage,
our approach can protect client data privacy because no local data or labelling
information is shared with the central server. Our research offers a new data
augmentation framework for the generative adversarial network (GAN) based
method that can enhance model performance while maintaining client data pri-
vacy. In the field of bio-medics, gathering and distributing large amounts of
medical photographs appears to be impossible, in part because of the lack of
sufficient public access to sensitive data and patient privacy concerns. However,
research has found that most patients are willing to volunteer their data for re-
search purposes if sufficient precautions have been taken to protect their privacy.
Therefore, our framework provides a potential solution to break the boundary
of data sharing limitations without leaking patient-sensitive data.
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