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Abstract. Learning representations of nodes has been a crucial area of
the graph machine learning research area. A well-defined node embedding
model should reflect both node features and the graph structure in the
final embedding. In the case of dynamic graphs, this problem becomes
even more complex as both features and structure may change over
time. The embeddings of particular nodes should remain comparable
during the evolution of the graph, what can be achieved by applying an
alignment procedure. This step was often applied in existing works after
the node embedding was already computed. In this paper, we introduce a
framework – RAFEN – that allows to enrich any existing node embedding
method using the aforementioned alignment term and learning aligned
node embedding during training time. We propose several variants of our
framework and demonstrate its performance on six real-world datasets.
RAFEN achieves on-par or better performance than existing approaches
without requiring additional processing steps.

Keywords: Dynamic Graphs · Graph Embedding · Embedding Align-
ment · Graph Neural Networks · Link prediction · Machine Learning.

1 Introduction

In recent years, representation learning on structured objects, like graphs, gained
much attention in the community. The wide application range, which includes
recommender systems, molecular biology, or social networks, motivated a rapid
development of new methods for learning adequate representations of such data
structures. Especially real-world data often involves accounting for temporal
phenomena, which requires handling structural changes over time (i.e., dynamic
graphs).

Researchers widely use the embedding of dynamic graphs in a discrete-time
manner, i.e., the graph data is aggregated into snapshots and embeddings are
computed for each one of them. In opposite to the continuous-time approach,
one does not require to provide an online update mechanism, thus allowing one
to utilize any classical static embedding approaches or temporal embedding. On
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the other hand, the discrete-time approach requires an embedding aggregation
method that transforms the sequence of node snapshot embeddings into a single
node embedding matrix which captures the whole graph evolution. Unfortunately,
due to the stochastic properties of node embedding methods, such embeddings
are algebraically incomparable. To solve this problem, most existing approaches
apply a post-hoc correction [1,14,15,16].

In this work, we consider a different scenario where we build aligned node
embeddings by introducing an additional regularization term to a model’s loss
function. This term explicitly aligns embeddings of corresponding nodes from
consecutive timesteps, which eventually helps to improve results on a downstream
task. In particular, we summarize the contributions of the paper as follows:

C1. We propose a novel framework RAFEN for learning aligned node embeddings in
dynamic networks. It can be used with any existing node embedding method
(both for static and dynamic networks) and, contrary to existing post-hoc
methods, it does not rely on a time-consuming matrix factorization approach.

C2. We propose three different versions of the alignment function, including one
that treats all nodes equally and one that utilizes temporal network measures
for weighting the alignment process.

C3. We evaluate the proposed framework variants in a link prediction task over
six real-world datasets and show that our approach allows to improve results
on the downstream task compared to other existing methods.

2 Related Work

Static Node Embedding. To date, plethora of node embedding methods have
been introduced. The seminal work of Grover et al. [4] introduced Node2Vec
method, which enables learning structural embeddings of nodes in an unsupervised
manner. It pushes node embeddings apart when nodes are away from each other
but makes embeddings closer for nearby nodes, leveraging nodes co-occurrences
on common random walks as a measure of node "distance". Recently, the main
body of literature was focused on Graph Neural Networks, among which GCN
[8], GIN [18], and GAT [17] are the most notable ones. In particular, the Graph
AutoEncoder (GAE) [7] architecture leverages GCNs to learn unsupervised
node structural embeddings, using reconstruction of the adjacency matrix as
the training task. As static node embeddings can be adopted for time-discrete
dynamic graphs, we utilize Node2Vec and GAE as base for computing dynamic
node representations in this work.

Dynamic Node Embedding. The problem of dynamic node embedding has
recently gained more focus from researchers. We can distinguish meta approaches
that could utilize any static embedding method to produce dynamic snapshot
embeddings [1,14,15,16]. However, most of them utilize only the Node2Vec [4]
embeddings method. Another group of models are the ones dedicated for dynamic
node embedding, such as Dyngraph2vec [3], where the authors utilize the Autoen-
coder (AE) architecture to capture the temporal network’s evolving structure
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and provide three variants of the model which differ in the representation method
of a neighbor vector.

Learning of compatible representation. This problem has already been stud-
ied in literature [5,10,13]. In [5], the authors present the BC-Aligner method that
allows obtaining previous embedding models based on a learnable transformation
matrix. [10] achieves model compatibility with an alignment loss that aligns class
centers between models with a boundary loss to constraint new features to be
more centralized to class centers. [13] proposes backward compatibility training
for image classification by adding an influence loss that can capture dataset
changes along with new classes.

Post-hoc alignment for node embeddings There are already approaches
for alignment of node embeddings based on the Orthogonal Procrustes method
[1,14,15,16]. In [14,16], the authors use all common nodes between snapshots to
perform the alignment. In [1], it has been found that some nodes change their
behavior too significantly. Therefore, they use only a subset of common nodes,
which is selected based on activity and selection method. This approach in further
explored in [15] by introducing a wide range of activity functions that can be
used for the alignment process.

3 The proposed RAFEN framework

Definition 1. A dynamic network (graph) is a tuple G0,T = (V0,T , E0,T ), where
V0,T denotes a set of all nodes (vertices) observed between timestamp 0 and T ,
and V0,T is a set of edges in the same timestamp range. We model such a network
as a sequence of graph snapshots G0,1, G1,2, G2,3, . . . , GT−1,T .

Definition 2. Node embedding is a function f : V → R|V |×d that maps a set of
nodes V into low-dimensional (i.e., d ≪ |V |) embedding matrix F , where each
row represents the embedding of a single node.

Definition 3. Node activity scoring function s : Vcom → R|Vcom| (with Vcom =
Vi,j ∩ Vk,l and i < j < k < l) assigns a scalar score to each node from the set of
common nodes Vcom, which reflects the change in a node’s activity between two
snapshots Gi,j and Gk,l.

Definition 4. Reference nodes Vref is a subset of common nodes between two
snapshots retrieved by a selection function. We use the percent selection function
as defined in [1], with chooses the top p% of nodes – i.e., select(S, V ) = Vref ⊆
sortS(V ), s.t. |Vref | = p|V |.

Problem statement. Given a dynamic graph G0,T in the form of discrete graph
snapshots (see Definition 1), the objective is to find at any given timestamp
t ∈ {1, 2, . . . , T}, the node embedding Ft−1,t of the current snapshot Gt−1,t, such
that Ft−1,t will be algebraically compatible (aligned) with the node embedding
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Ft−2,t−1 of the previous snapshot Gt−2,t−1. Such compatibility is required to
properly aggregate snapshot embeddings F0,1, F1,2, . . . , Ft−1,t into a single node
embedding matrix F0,t that summarizes the whole graph evolution (see [1] for
more details about the aggregation mechanism).

RAFEN. As a solution for the alignment problem, we propose a novel framework
RAFEN that enhances the loss function of any existing node embedding method
Lmodel by means of an alignment regularization term Lalignment. It allows to learn
node embeddings that are aligned with a given anchor embedding (in our case:
the previous graph snapshot). Our framework can be used along with expert
knowledge by setting a model hyperparameter α or using temporal network
measures to automatically determine the alignment coefficient of each node. We
will discuss all framework details in the sections below. Moreover, we present a
general overview of our pipeline in Figure 1.

How to incorporate the alignment term? We enhance the loss function
of the node embedding model Lmodel by adding an alignment term Lalignment.
In order to balance between the information from the previous graph snapshot
(through the optimization of the Lalignment loss) and the information from the
current snapshot (through the optimization of the Lmodel loss), we propose to
combine both terms in the following way:

L = (1− α) · Lmodel + α · Lalignment (1)

The α parameter controls the trade-off between the model’s loss and the
alignment term, which are both critical factors in the model’s learning behavior.
We can distinguish two boundary conditions of the α parameter:

– α = 0 – the model uses only model loss,
– α = 1 – the model uses only alignment term.

Choosing the right α value is essential for the model’s performance. It can be
done by a simple grid search or through expert knowledge. However, performing
an α grid search might be time-consuming and computationally expensive. To
address this, we propose a simplified version of our framework, where we set
equal importance to both loss terms, which is equivalent to setting α = 0.5

L = Lmodel + Lalignment (2)

Alignment loss term (Lalignment) The foundation of our proposed RAFEN
framework is the alignment loss term Lalignment. We build upon the mean squared
error (MSE) between node v’s embedding from the current snapshot F (v)

t−1,t and its
representation from the previous snapshot F (v)

t−2,t−1. We apply such regularization
to a subset of the common nodes Vcom ∈ Vt−2,t−1 ∩ Vt−1,t.
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Fig. 1. Overview of the RAFEN pipeline. The pipeline can be decomposed into two steps:
(1) For the snapshot Gt−2,t−1 that we want align to, we compute node embeddings
Ft−2,t−1 using the vanilla node embedding method f . (2) For the next snapshot Gt−1,t,
we additionally compute the alignment loss term, which we add to the node embedding
method model loss – Eq. (2). The alignment loss term is calculated as an MSE (mean
squared error) – Eq. (3) between the representation of common nodes of currently
trained node embeddings Ft−1, t and embeddings from the previous snapshot Ft−2,t.
There is no need to take all common nodes to calculate the alignment loss. Instead, we
apply node scoring function s that computes the difference in node’s activity between
snapshots and selects a subset of common nodes – Eq. (5) or use the output as weights
in alignment loss term – Eq. (4)
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Let us now define three RAFEN variants:

– RAFEN_ALL – we use all common nodes between consecutive snapshots:

Lalignment =
1

|Vcom|

∑
v∈Vcom

(
F

(v)
t−1,t − F

(v)
t−2,t−1

)2

(3)

– RAFEN_Weighted – similarly to the previous case, we use all common nodes,
but instead of treating each one of them equally, we assign weights that reflect
the node activity change (node activity scoring function s(·) - see Definition
3) of a particular node between the graph snapshots;

Lalignment =
1

|Vcom|

∑
v∈Vcom

((
F

(v)
t−1,t − F

(v)
t−2,t−1

)2

· s(v)
)

(4)

– RAFEN_REF – in [1,15], the authors show that utilizing all common nodes in
the alignment process may lead to degraded performance in the downstream
tasks due to the fact that some nodes change their behavior too much. They
use Vref ⊂ Vcom subset of common nodes, which is built according to the
node activity scores (the top p% of the common nodes are selected).

Lalignment =
1

|Vref|

∑
v∈Vref

(
F

(v)
t−1,t − F

(v)
t−2,t−1

)2

(5)

4 Experimental Setup

We evaluate all methods for the link prediction task. Following, we discuss the
details and hyperparameters of the experiments.

4.1 Datasets

We conducted experiments on six real-world datasets. We followed the graph
snapshots split procedure defined in [15], such that we split graphs based on the
timestamp frequency (monthly or yearly). Moreover, the first four snapshots in
ppi, and ogbl-collab datasets were ignored, as merging them would result in a
too broad timespan of such merged snapshots. Also, the two last snapshots of
bitcoin-alpha and bitcoin-otc were merged to provide more data for validation.
We present an overview of datasets in Table 1. Despite the similarities with
the experimental setup in [15], we reproduced all experiments due to a refined
evaluation protocol on link prediction. Also, our method differs in alignment
procedure, i.e., it aligns embedding to the previous snapshot instead of the first.
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Table 1. Statistics of graph datasets. |V| - number of nodes, |E| - number of edges,
Dir - whether the graph is directed or not, T - number of snapshots

Dataset |V| |E| Dir Timespan T Snapshot Network
timespan domain

fb-forum [12] 899 33 720 × 5.5 months 5 1 month social
fb-messages [12] 1 899 61 734 × 7.2 months 7 1 month social
bitcoin-alpha [12] 3 783 24 186

√
5.2 years 5 1 year crypto

bitcoin-otc [12] 5 881 35 592
√

5.2 years 5 1 year crypto
ppi [12] 16 386 141 836 × 24 years 5 5 years protein
ogbl-collab [6] 233 513 1 171 947 × 34 years 7 5 years citation

4.2 Node embeddings

We selected two different methods as our base models for computing node embed-
dings. First, we used Node2Vec, a widely renowned node structural embedding
method that relies on random walks. To show our framework’s universality, we
included a second method – GAE, an encoder-decoder model that utilizes the
graph convolution operation. Both methods are capable of capturing meaningful
structural features of the graph and are trained in an unsupervised manner.
Nonetheless, due to the flexibility of our framework, other node embedding mod-
els could also be utilized. For both models, each snapshot representation was
recomputed 25 times to account for randomness in these methods (e.g., random
walks in Node2Vec, weight initialization in the encoder of the GAE model).

Node2Vec We trained the Node2Vec model, reusing the hyperparameters config-
uration from [15], as these were obtained from a hyperparameter search procedure.
In particular, we use 128-dimensional embeddings, except for the bitcoin-alpha
dataset where we use 32 as the embedding size. Further, we use the same configu-
rations in our RAFEN models, as we desire that our models perform well without
additional hyperparameter search. We utilize the Node2Vec implementation from
the PyTorch Geometric library [2].

GAE We use a Graph Autoencoder with two Graph Convolutional layers (GCN)
as an encoder and the Inner-Product decoder. Since datasets do not come with
node features required by the GCN layers, we use an additional trainable lookup
embedding layer, which serves as a node feature matrix for the model (we
evaluated different strategies in preliminary experiment – this one turned out to
work the best). We train these models for 100 epochs using the Adam optimizer
with a learning rate of 0.01, and a hidden layer size of 128.
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4.3 Aligned models

We tested variants of our RAFEN framework with loss functions introduced in
section 3, namely RAFEN_ALL, RAFEN_WEIGHTED, and RAFEN_REF. In addition,
RAFEN_WEIGHTED involves scoring function, denoted as s(·) in Eq. (4). For scoring
function, we selected Edge Jaccard (EJ) [15], and Temporal Betweenness (TB)
[19] due to their good performance in post-hoc alignment methods in previous
work. Also, these two functions provide desired variability, such that they are
from a different family of methods: Edge Jaccard is based only on edge changes in
the static scheme, while Temporal Betweenness takes into account the time aspect.
We denote the two variants as RAFEN_WEIGHTED_EJ and RAFEN_WEIGHTED_TB, for
Edge Jaccard and Temporal Betweenness respectively.

It is worth noting that Lmodel and Lalignment are in different scales. Therefore,
we additionally scale them with the loss value of the model from the first batch.

4.4 Link Prediction

We define the link prediction task as edge existence prediction on the last
snapshot of the graph GT−1,T , based on the previously learned representations
from previous snapshots F0,1, . . . , FT−2,T−1. We take existing links in the graph
GT−1,T as positive examples. To avoid out-of-distribution nodes in evaluation,
we filter edges wherein one of the nodes was not observed previously. The number
of negative edges (non-existing edges) is equal in size to the positive ones. In the
negative sampling process, we also applied a simple edge reject criterion that
prevents adding already existing edges as negative ones. Having edges sampled,
we split the datasets into train, val and test splits in the proportion: 60%, 20%,
20%, respectively. This split is both leveraged during grid-search hyperparameter
optimization and the method evaluation. Finally, using optimal hyperparameters,
we performed the final evaluation with training and validation subsets merged.
The results of the evaluation are reported in Section 5.

To fuse the node embeddings from all snapshots into a single one that reflects
the graph evolution, we evaluate 4 different aggregation schemes:

– mean – node embeddings are averaged across snapshots,
– last – only the node embedding from the last snapshot is taken,
– FILDNE – weighted incremental combination of previous snapshot embeddings

as in [1],
– k-FILDNE – weighted incremental combination of previous snapshot embed-

dings with automated weight estimation as in [1].

Further, we use a logistic regression classifier, which takes the Hadamard prod-
uct of the two aggregated node embeddings. We utilize the implementation from
the scikit-learn [11] library with liblinear solver, keeping other hyperparameters
values default.

Summarizing, the experiments were performed on link prediction with em-
beddings trained with 3 variants of loss function and 4 embeddings aggregation
schemes. We also report results for the two embedding methods (Node2Vec, GAE)
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trained without alignment. In addition, we used 3 post-hoc alignment methods
from [15] as our baselines. To sum up, we evaluate the following models:

– (whole graph) – embeddings are trained on whole graph G0,T−1,
– (last snapshot only) – embeddings are trained on last graph snapshot

GT−2,T−1,
– Posthoc-PA – Procrustes Aligner (PA),
– Posthoc-EJ – Edge Jaccard Aligner (EJA),
– Posthoc-TB – Temporal Betweenness (TB),
– RAFEN_ALL – RAFEN variant with all common nodes between consecutive

snapshots and simplified loss importance term,
– RAFEN_Weighted_EJ – RAFEN_Weighted variant with Edge Jaccard node

activity scoring method and simplified loss importance term,
– RAFEN_Weighted_TB – RAFEN_Weighted variant with Temporal Betweenness

node activity scoring method and simplified loss importance term.

5 Results

This section presents the results of our experiments, divided into three subsections
presenting different framework characteristics. First, we compare the embedding
aggregation methods. Next, we show the results for the two formulations of RAFEN
loss function, i.e., with and without hyperparameter α. Finally, we present the
results of several variants of RAFEN models compared to the baselines approaches.

5.1 Embeddings aggregation method comparison

Foremost, we evaluated the embedding aggregation methods, namely last, mean,
FILDNE, k-FILDNE. We summarize these results in Table 2. We chose the best
aggregation method that performs well on both GAE and Node2Vec-based models
based on mean ranks for each dataset separately, i.e., bitcoin-alpha: k-FILDNE;
bitcoin-otc: last; fb-forum: FILDNE; fb-messages: k-FILDNE; ogbl-collab: last,
ppi: last. Please note that for the bitcoin-alpha dataset, the best aggregation
method for Node2Vec and GAE differs. However, we chose k-FILDNE due to a
better combination of mean ranks (i.e., 1.22 and 1.56 vs 3.44 and 1.44).

Counterintuitively to previous dynamic graph representation learning papers
[1] for four out of six datasets, the best aggregation method was last, which does
not aggregate all historical representations. That behavior led us to an additional
study that we conducted to further explore both Posthoc and RAFEN methods. We
contrasted AUC on the link-prediction of RAFEN_ALL and Posthoc-PA with plain
Node2Vec embeddings and computed their relative performance. In particular,
we evaluated two scenarios:

– Prev – we take each node’s v embedding F
(v)
t−1,t at time step t and evaluate

it on link-prediction using the previous snapshot’s graph structure Gt−2,t−1

as a target,
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Table 2. Mean ranks of aggregation methods on different datasets. Ranks were calcu-
lated on the link prediction task (evaluated on last snapshot), using the AUC metric over
25 runs. Then we took mean ranks of all the RAFEN and Posthoc models for Node2Vec
and GAE models, seperately.

Aggregation method
Dataset Model FILDNE k-FILDNE last mean

bitcoin-alpha Node2Vec 2.11 1.22 3.22 3.44
GAE 3.00 1.56 4.00 1.44

bitcoin-otc Node2Vec 1.89 3.00 1.11 4.00
GAE 1.67 2.89 1.44 4.00

fb-forum Node2Vec 1.22 2.11 3.11 3.56
GAE 1.33 2.22 2.78 3.67

fb-messages Node2Vec 2.00 3.00 1.00 4.00
GAE 1.83 2.50 1.67 4.00

ogbl-collab Node2Vec 2.00 3.00 1.00 4.00
GAE 2.00 3.00 1.00 4.00

ppi Node2Vec 2.33 2.67 1.00 4.00
GAE 2.89 2.06 1.11 3.94

– Next – we take each node’s v embedding F
(v)
t−1,t at time step t and evaluate

it on link-prediction using next snapshot’s graph structure Gt,t+1 as a target.

We report the link prediction AUC ratio between alignment methods and the
non-aligned Node2Vec version. Results are shown in Figure 2.

Our proposed RAFEN method increased the evaluation performance on previous
snapshots for all of the benchmarked datasets. The gain ranges from 3.5% on the
first snapshot of the ppi dataset up to a 63% difference on the third snapshot of
bitcoin-otc. In the case of the Next scenario, we observe that the last snapshot
evaluation performance increased on four our of six datasets – ranging from 1.2%
in the case of the ogbl-collab dataset up to 7.4% in fb-forum.

5.2 Comparison of RAFEN’s α-based variants

In section 3, we proposed two formulations of the loss function for our RAFEN
framework. Since the first variant defined in Eq. (1) involves an α hyperparameter,
which requires additional domain knowledge or hyperparameter search procedure
(e.g., grid search), we investigate whether its simplified variant with Lmodel

and Lalignment treated equally important provides competitive performance.
Likewise, RAFEN_REF models require defining a reference node selection function
with hyperparameters, like top p% in our case. Therefore, we compare it to
RAFEN_Weighted models that rely only on scoring function and do not involve
additional hyperparameters. Results of the comparisons are shown in Table 3.
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Fig. 2. Single snapshot representation evaluation study. In the first figure row, the
previous snapshot evaluation is shown (denoted as Prev), and in the second row next
snapshot evaluation (denoted as Next). Each column represents a different dataset. Y-
Axis contains a link prediction AUC metric Ratio calculated between Alignment Method
and vanilla Node2Vec. X-Axis presents snapshot IDs on which node representation was
trained.

Across almost all the shown comparisons, we can observe that percentage
AUC difference in alpha-based models to simplified/weighted versions is in the
range (-1.61% to 1.71%). We can observe outlier values in both bitcoin-alpha
and ppi favoring α hyperparameter. Conversely, there is an outlier in fb-forum
favoring the weighted method. As in most cases, the differences are negligible,
we decided to use simplified/weighted versions for the comparison with baselines.
In the aftermath, RAFEN requires only one additional hyperparameter compared
to plain GAE or Node2Vec models, which is the node activity scoring function.

5.3 RAFEN comparison to baselines

The results of the comparison between our proposed RAFEN framework and
baseline models are presented in Table 4. Compared to snapshot-based Node2Vec
and GAE baselines, RAFEN was better on four datasets: bitcoin-otc, fb-forum, ppi,
and ogbl-collab – only losing to the variant trained on the full graph data. For
the remaining two datasets, namely fb-messages, and bitcoin-alpha, we observe
the superior performance of post-hoc methods. However, as the previous study
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Table 3. Comparison of α-based RAFEN with simplified/weighted versions. We present
the percentage difference of averaged link prediction AUC metric on the last snapshot
over 25 runs. Values below zero denote better performance of the simplified/weighted
variant, and values above zero denote better α variant performance. We mark outlier
values with bold.

Model Selector RAFEN variant bitcoin
alpha

bitcoin
otc

fb
forum

fb
messages

ogbl
collab ppi

Node2Vec
All α vs Simplified -0.55% 0.42% -0.58% 1.71% 0.59% 0.16%
TB REF_α vs Weighted 4.84% 0.00% -2.59% 1.34% 0.35% -0.49%
EJ REF_α vs Weighted 5.01% -0.42% 1.04% 2.79% 0.47% -0.49%

GAE
All α vs Simplified 0.49% 1.16% -0.12% -0.54% 0.76% 0.50%
TB REF_α vs Weighted 2.07% 0.91% -1.53% 2.12% 0.25% 0.17%
EJ REF_α vs Weighted 3.96% 0.52% 0.81% -1.64% 1.27% 0.00%

(see Section 5.2) shows, these datasets provided the most significant differences
between α based and weighted. When the models were tuned, they would have
also improved performance compared to RAFEN_Weighted on these datasets.

In the case of RAFEN_Weighted, the temporal betweenness scoring function
was barely better than Edge Jaccard, showing notable differences only in the case
of GAE on ogbl-collab and Node2Vec on fb-forum. When comparing RAFEN_ALL
and RAFEN_Weighted, RAFEN_ALL approach served as a strong baseline, showing
better performance and higher rank in most of the experiments. We hypothesize
that the scoring functions we leveraged led to decreased performance. Hence, it
requires further investigation and refinements, which we leave for future work.

6 Conclusion and future work

In this paper, we tackled the problem of learning aligned node embedding for
dynamic graphs modeled as a series of discrete graph snapshots. Contrary to
existing approaches, such as post-hoc methods, we perform the alignment step
during the embedding training. We proposed a novel framework – RAFEN – which
allows to enrich any existing node embedding method with the aforementioned
alignment capabilities. We conducted experiments on six real-world datasets and
showed that our approach, even in its simplified version (with minimum set of
hyperparameters), achieves better or on-par performance compared to existing
approaches. For future work, we want to explore more advanced mechanisms for
the actual alignment step, including better investigation of the scoring function
in RAFEN_Weighted setting and the applicability of RAFEN for continuous-time
dynamic graphs.

Our code with experiments and data, all enclosed in DVC pipelines [9], is
available publicly at https://github.com/graphml-lab-pwr/rafen.
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