
On Irregularity Localization
for Scientific Data Analysis Workflows

Anh Duc Vu1[0000−0003−4035−2804], Christos Tsigkanos2,3[0000−0002−9493−3404],
Jorge-Arnulfo Quiané-Ruiz4[0000−0002−9001−825X],

Volker Markl5,6[0009−0009−0964−026X], and Timo Kehrer2[0000−0002−2582−5557]

1Humboldt-Universität zu Berlin, Germany
2University of Bern, Switzerland
3University of Athens, Greece

4IT University of Copenhagen, Denmark
5Technical University of Berlin, Germany

6DFKI Berlin, Germany

Abstract. The paradigm shift towards data-driven science is massively
transforming the scientific process. Scientists use exploratory data anal-
ysis to arrive at new insights. This requires them to specify complex
data analysis workflows, which consist of compositions of data analysis
functions. Said functions encapsulate information extraction, integration,
and model building through operations specified in linear algebra, rela-
tional algebra, and iterative control flow among these. A key challenge
in these complex workflows is to understand and act upon irregularities
in these workflows, such as outliers in aggregations. Regardless whether
irregularities stem from errors or point to new insights, they must be
localized and rationalized, in order to ensure the correctness and over-
all trustworthiness of the workflow. We propose to automatically reduce
a workflow’s input data while still observing some outcome of interest,
thereby computing a minimal reproducible example to support workflow
debugging. In essence, we reduce the problem to the determination of the
input relevant to reproducing the irregularity. To that end, we present a
portfolio of different strategies being tailored to data analysis workflows
that operate on tabular data. We investigate their feasibility in terms
of input reduction, and compare their effectiveness and efficiency within
three characteristic cases.

1 Introduction

Computationally-intensive research methods exploiting large amounts of data
are becoming ubiquitous in numerous scientific disciplines [12]. During the sci-
entific process, researchers leverage exploratory data analysis to analyze, ma-
nipulate, and investigate data sets in order to apply statistical techniques, spot
anomalies, test hypotheses, or check assumptions. Typically, this involves the
composition of heterogeneous collections of data processing functions (e.g., data
integration, normalization, and filtering) into complex data analysis workflows [16].
Exploratory analysis in scientific computing often yields results for which it is

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

2 A.D. Vu et al.

hard to judge whether they are correct or not [23]. Irregularities in workflow
results could point to new interesting insights, or may be caused by errors in the
workflow or corrupt input data [5]. Either way, one has to perform data debug-
ging [3] with the goal of finding the cause of irregularities in order to increase
the trustworthiness in the workflow [21].

Many researchers pursued debugging and validation in data processing sys-
tems from different angles, notably by allowing the inspection of intermediate
[8] or sub-results [6], or tracking data provenance [2,13,14] for dataflow systems
like Apache Spark or Flink. What is common among these data provenance and
debugging approaches is that they assume that the workflow is a white-box: they
must be able to follow and label tuples through the entire process. However, this
is far from reality in scientific data analytics, where workflows are mostly com-
posed of black-box processes. Moreover, classical fault localization techniques,
e.g., [1,9,26], assume that suspicious behavior manifests in an error that can be
identified by a pre-defined test. Nevertheless, scientific data analytics is explo-
rative by nature, making it often impossible to define tests that specify correct
behavior in terms of expected outcomes [15,19].

Conversely, we aim at finding the cause of an irregularity in a workflow’s
input data by computing a minimal reproducible example that produces the
irregularity. The general idea is to iteratively reduce the input data to ease the
task of finding the cause of the output’s irregularity. As opposed to classical fault
localization, we refer to this process as irregularity localization, emphasizing the
fact that the outcome investigated may or may not be faulty.

Recently, we proposed outcome-preserving input reduction as a generic ap-
proach to support irregularity localization in data analysis workflows [24]. The
idea is to iteratively reduce the workflow’s input data while still observing some
outcome of interest in its results. While we do not ask developers for pre-defined
tests, we assume that, by looking at the workflow’s result, they may specify a
debugging question that characterizes the outcome of interest. For instance, the
expressions “(result.T ime = ”07h00” ∧ result.Count ≥ 166)” may be question-
ing a counted number in an aggregation. Then, the workflow may be executed on
a reduced input, and the debugging question is evaluated on its output data in
order to check whether a reduction is outcome-preserving and thus permitted.
For example, whether “(result.T ime = ”07h00” ∧ result.Count ≥ 166)” still
holds in the new result. We intend to perform this in iterations until we reach
a certain fixpoint (e.g., a degree of reduction or the consumption of a given
resources budget), thus obtaining a minimal reproducible example as a result.

While the framework advocated in [24] is generally applicable, as it abstracts
from workflow implementations and execution engines, it needs to be instantiated
by providing implementations of its components. In particular, implementing a
reducer facility is challenging. The large amount of data and the limited informa-
tion about the workflow’s underlying mechanism make it difficult to distinguish
the relevant parts of the input data and require careful selection strategies for the
reduction attempts. In this paper, we present a portfolio of reduction strategies
tailored to scientific data analysis workflows, making the following contributions:

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 3

07
h0

0
07

h3
0

08
h0

0
08

h3
0

09
h0

0
09

h3
0

10
h0

0
10

h3
0

11
h0

0
11

h3
0

12
h0

0
12

h3
0

13
h0

0
13

h3
0

14
h0

0
14

h3
0

14
h4

5
15

h0
0

15
h3

0
15

h4
5

16
h0

0
16

h3
0

17
h0

0
17

h1
5

17
h3

0
18

h0
0

18
h3

0
19

h0
0

La
te

 a
fte

rn
oo

n
Ni

gh
t

Time

0

50

100

150

200

250

At
ta

ck
s

166

32 28 26

48
32

55
47

126

61

108

34

72
59

95

72

17

284

62

17

98

73 69

18

70 64

28 23
32

59

Top 30 shark attacks per time of day, sorted by time

(a) Result with a suspiciously high number of attacks at 07h00. (b) Data profile of a minimal
reproducible example.

Fig. 1: An example workflow that aggregates shark attacks per time of day.

– We present a concrete instantiation of a general framework for irregularity
localization in data analysis workflows (Sec. 3);

– We introduce a portfolio of strategies targeting the reduction of tabular
data. In particular, we propose Similarity-based Isolation, a data reduction
strategy that isolates those tuples, together with all their similar tuples,
having an effect on the outcome of interest (Sec. 4).

– We evaluate the proposed strategies experimentally over three different cases
with respect to feasibility and their individual performance (Sec. 5);

– We provide a replication package allowing our results to be reproduced.

2 Motivation and Background

Consider a data analysis workflow implemented as a computational notebook
taken from Kaggle1 over a dataset comprising shark attacks worldwide in the
last 100 years, where the workflow seeks to figure out the number of attacks
per time of the day. Fig. 1a shows a plot of the workflow’s result. Notably,
for 07h00 the number of attacks appears to be quite high compared to other
times of frequent attacks, which are around noon and afternoon – although the
peak at 15h00 is also high, the attacks at 07h00 are at a suspicious time. It
may certainly be the case that the data indeed show a high amount of attacks
for that time; however, there may also be an error or wrong assumption in the
analysis performed to produce this result, or the data may be corrupt. Either way,
there is an aspect of the result which is suspicious, i.e., showing an irregularity
which we should investigate further. In [24] we argued that such investigation of
suspicious results within data analysis workflows must accommodate the specific
needs of the scientists developing these workflows. Like the scientific discovery
process itself, the investigation should be done in an explorative manner. Our
1 kaggle.com/mysarahmadbhat/shark-attacks

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

4 A.D. Vu et al.

example represents a characteristic case where exploratory analysis is required to
deduce if the data indeed support shark attacks occurring early in the morning.
Intuitively, one would seek to spot the cause of the suspicious outcome with the
help of a minimal example of the input, referred to as irregularity localization.

The dataset of our motivating example contains about 25k rows and 24
columns, rather small compared to what is typically processed within scientific
data analytics, but still overwhelming for a human being. Thus, it is desirable to
reduce the input dataset to the minimum set of rows and columns of the input
table that reproduce the outcome of interest. We refer to this task as outcome-
preserving input reduction. For our example case, it turns out that we require
only a minor fraction of the input dataset to enable the workflow to reproduce the
suspicious result. Fig. 1b depicts a profile of such a reduced input dataset, com-
prising only 166 tuples and one column that are needed to reproduce the peak
of irregularly many shark attacks at 07h00. Observe that only column ‘Time’
has been deemed relevant, and the relevant tuples take the values of ‘Morning’,
‘Evening’ and ‘07h00’, which is surprising and would have been difficult to find
manually. This minimal reproducible example provides a strong hint to the user;
some data transformation applied within the workflow did yield these irregular
values, which needs to be investigated. For this particular example workflow, the
seemingly high number of attacks is caused by a data cleaning function that at-
tempts to map textual reports to clock time. Apparently, the workflow interprets
the string values ”Morning” and ”Evening” to 7 o’clock (which is a questionable
assumption made by the workflow developer), and it misses to distinguish a.m.
from p.m. (which is clearly an error in the workflow’s implementation).

Without this automated reduction, users may try to query the input data
by selecting the tuples where ’Time = 07h00’ to investigate their suspicion on
the workflow’s output. The result, however, would be that only 21 tuples of the
input that actually have the value ‘07h00’ would show up – as seen in Fig. 1b –
giving the user no indication where the remaining 145 attacks come from. More
generally, the key challenge addressed by our approach is to support irregularity
localization in cases where the suspicious parts of the output are a result of
the workflow’s execution, but they cannot be easily spotted in the input data,
rendering any ad-hoc analysis of the input data infeasible – especially when the
workflow contains tasks that change the data before processing it.

2.1 General Framework for Outcome-Preserving Input Reduction

A high-level vision of how to systematically support irregularity localization
through outcome-preserving input reduction for data analysis workflows is il-
lustrated in Fig. 2. A scientist initiates a workflow by submitting some input
data, yielding an output (marked as (1)). On further inspection by the scientist,
certain parts or aspects of the output data may be of particular interest, per-
haps because they are perceived as suspicious or exhibit irregularities that the
scientist did not expect and lacks a reasonable explanation for (2).

A debugging question – in essence a query specified by the user that formally
describes the outcome of interest – together with a termination condition – e.g.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 5

Workflow System Output Data
Input Data

OracleReducer

StrategiesReduced  
Input Data

DQ
Validation

Irregularity
Observation

Debugging
Question (DQ)

Termination
Condition&

Observation Side

Input Workflow

Workflow Execution Side

Input Data Reduction Side

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 2: Outcome-preserving input data reduction for irregularity localization.

minimality of the input – is then supplied to the input reduction facility (3). The
debugging question is used by the Oracle component to generate an assertion
to answer whether the outcome specified by the question holds on the output
data (4). The difference to classical test oracles in software testing is that, in
general, there is no assessment on whether the specified outcome is correct or not.
Moreover, whereas tests are specified beforehand to define expected outcomes,
debugging questions are meant to be used ad-hoc on any observed outcome,
making them tools for explorative investigation.

The Reducer component operates upon the input data facilitating its reduc-
tion strategies in order to yield a subset of it (5). The analysis workflow may
be triggered again with the reduced input, producing a new output (6). There-
upon, again the oracle is employed to decide if the outcome of interest is still
observable in the new output data. This process is repeated iteratively until the
termination condition holds (4)-(6). The result (at each iteration) is a reduced
input intended to aid understanding the circumstances involving the irregularity
that is sought to be investigated.

3 Instantiation of the General Framework

To serve as a practical solution, the general framework previously introduced
needs to be instantiated by providing concrete implementations of (i) the for-
malism for specifying debugging questions to be interpreted by an oracle, and
(ii) the strategy of the reducer. Both heavily depend on the structure of the
workflow’s input and output. In this paper, we focus on tabular data, widely
used in data science and scientific computing. We assume that a workflow takes
a single dataset as input and produces a single output dataset. Both input and
output data are in the shape of a table, comprising arbitrary rows over a fixed
number of columns whose data types are defined by a schema.

Debugging Question and Oracle. When a user wishes to investigate their
suspicion regarding a result, the manner on how they express and formalize the
observed irregularity poses a challenge. Assuming the output is in the form of a
table, we propose to use an “SQL-like” query to characterize the suspicious parts

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

6 A.D. Vu et al.

of the table. With ease of use and familiarity in mind, we select the query syntax
of the python software library pandas2. This allows for a smoother adoption of
the technique advocated, as it eliminates the need for most users to learn yet
another new syntax. In our motivating example, for the unusual high number of
shark attacks at 7 o’clock in the workflow’s result, we may formulate the pandas
query ’(Time==”07h00” & Count == 166)’. An oracle evaluates the debugging
question on the output table, obtaining a certain number k of output tuples. We
store this amount of output tuples when the debugging question is evaluated
on the output table obtained from running the workflow on the original input
data set. Later on, after every iteration, the same query is then evaluated on the
output table obtained from running the workflow on a reduced input data set.
The outcome of interest is preserved if the query yields the same amount of k
output tuples.

Outcome-Preserving Input Data Reduction. Reducing an input dataset
to a minimal one where any smaller subset does not yield the outcome of in-
terest anymore presents a conceptual challenge. Without any assumptions on
the workflow behavior, finding such a minimal input dataset requires an exhaus-
tive search, which is infeasible for real-world datasets comprising a large number
of tuples. We can ease the problem by only requiring a local minimum which,
however, still requires testing its exponentially many subsets. A similar problem
that suffers from such a combinatorial explosion has been described by Zeller et
al. [26] in the context of test minimization. To keep the search for a local mini-
mum tractable, even when the search space is large, an approximation based on
the notion of n-minimality is defined which we adapt for our setting as follows:

Definition 1 (n-minimality). Let I be a set of tuples, A be a subset of I, and
is preserving : 2I → {True, False} be an evaluation function with is preserving(A) =
True. A is n-minimal if for all B ⊂ A it holds that if |B| ≤ n then is preserving(A−
B) = False.

In the use case of test minimization, [26] argues for 1-minimality being suffi-
cient to aid the developer to investigate what exactly causes the test case to fail.
We adopt a similar viewpoint for irregularity localization. If the user is presented
with a reduced input dataset where each tuple is necessary to reproduce results
obeying the outcome of interest, they can either: (i) surmise that the parts of
the workflow processing the data in question are not behaving as intended, or
(ii) improve their understanding of the workflow for further validation.

4 Investigated Reduction Strategies

We now describe the algorithms employed to find 1-minimal outcome preserving
sets. We first review some baseline strategies: leave-one-out, dd-min, prob-dd;
and afterwards describe a novel strategy based on similarity search and fault
isolation (similarity-iso).
2 https://pandas.pydata.org/

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 7

4.1 Baseline (leave-one-out)
To find a 1-minimal set, a naive strategy consists of iteratively removing a single
data element from the input data set, running the workflow, and consulting the
oracle of whether the outcome of interest is preserved. This step is applied to
all the elements from the input data set until an element removal changes the
outcome, and the next iteration starts until no more elements can be removed.
In our approach, it serves as the baseline upon which the strategies outlined in
the following are to be compared.

4.2 Delta Debugging (dd-min)
Our second strategy is based on the principle of Delta Debugging. Specifically, we
adapt ddmin [26], a classical fault localization technique originally proposed for
test case minimization. ddmin is based on a binary search: we start by splitting
the input space into two halves and testing each of them whether they can be
removed from the input without changing the outcome. If one of the halves can
be removed, we found a new smaller dataset that still preserves the outcome.
We continue halving the smaller but still outcome preserving input partition. If
neither of the halves preserve the outcome, the granularity is increased to remove
quarters of the dataset. This is done until the granularity is so small that we
try to remove single elements from the dataset, at which point it becomes the
leave-one-out strategy.

4.3 Probabilistic Delta Debugging (prob-dd)
Wang et. al. [25] pointed to the weakness of the ddmin algorithm in not taking
advantage of past executions while iterating, but only following a pre-determined
schedule of testing subsets. To ameliorate this, they devised Probabilistic Delta
Debugging ; the improvement consists of using a probabilistic model to guide the
selection which is updated after each test. In such a model, each element of the
input is assigned a random variable that decides whether that element will be
in the reduced dataset or not. We refer to the original paper [25] for technical
details.

4.4 Similarity-based Isolation (similarity-iso)

The next strategy is constructed with the objective of better localizing elements
of interest than ddmin. It is based on the intuition that similar elements – by
means of a distance function – will cause similar effects on the outcomes of a
computation. This strategy is a derivative of the dd fault isolation algorithm [26],
which computes an n-minimal-difference between two sets.

Definition 2 (n-minimal-difference). Let I be a set of data tuples; A,B are
subsets of I, and is preserving : 2I → {True, False} is an evaluation function. Given
that B ⊂ A, is preserving(A) = True, and is preserving(B) = False, then A −
B is an n-minimal-difference if for all C ⊆ (A − B) it holds that if |C| ≤ n then
is preserving(A− C) = False and is preserving(B ∪ C) = True.

Our strategy exploiting the notions of a 1-minimal difference and similar-
ity of data tuples is illustrated in Algorithm 1. The outer while loop (lines 3
to 16) maintains two sets. min preserving refers to the smallest input dataset

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

8 A.D. Vu et al.

Algorithm 1: Similarity-based Isolation

Data: input
Result: reduced input

1 min preserving ← input
2 isolated ← ∅
3 while True do

/* Isolate a 1-minimal difference */

4 max changing ← ∅
5 ∆ ← (min preserving − max changing) − isolated
6 while |∆| > 1 do
7 test ← (get subset(∆, 1

2
|∆|) + max changing) + isolated

8 if is preserving(test) = True then
9 min preserving ← test

10 else
11 max changing ← test

12 ∆ ← (min preserving − max changing) − isolated

13 if ∆ = ∅ then
/* No new tuples can be isolated */

14 break

15 else
/* Isolate ∆ and all similar tuples in min preserving */

16 isolated ← isolated + ∆ + get similar elements(min preserving, ∆)

17 return ddmin(isolated)

that preserves the outcome of interest; it is initialized with the original input
dataset (line 1) and constantly reduced within each iteration. isolated is ini-
tialized with the empty set (line 2) and accumulates those input tuples which,
presumably, have an effect on the outcome. In each iteration, min preserving

and isolated are updated in two steps: First, we try to find a single tuple that
is not yet included in isolated (lines 4 - 12) but causes a different outcome if
removed. Second, if such a tuple can be found, this tuple as well as all similar –
by some distance function, e.g. levenshtein – tuples in min preserving that pre-
sumably also change the outcome are added to isolated (line 16). This process
of alternating isolation and similarity search is repeated until no new elements
can be isolated (line 14) and a fixpoint is reached. The procedure finishes by
running any of the other minimization strategies – currently ddmin – to find a
1-minimal solution (line 17).

Isolation: The isolation step (lines 4 - 12) is realized by isolating a 1-minimal
difference, referred to as ∆, between min preserving and max changing, a set
that accumulates the currently largest set of input tuples changing the outcome
of interest. Since we can safely assume that the empty set produces a radically
different result than the original input data set and thus changes the outcome of
interest, max changing is initialized with the empty set (line 4). The set ∆ is ini-
tialized as the set difference between min preserving and max changing, from
which we also remove those tuples that have been isolated in previous iterations
(line 5). Then, in each iteration of the inner while loop (lines 6 - 12), half of

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 9

the elements are taken from ∆, and unified with the currently largest outcome-
changing set max changing and the already isolated elements in isolated (line
7). For the obtained set of input tuples, referred to as test, we run the workflow
and let our oracle decide whether the outcome of interest is preserved (line 8). If
so, a smaller outcome-preserving set has been located (line 9). Otherwise, a new
largest outcome changing set has been located (line 11). We proceed with the
next iteration of the inner while loop, as long as ∆ contains more than one tuple
(line 6). The procedure takes logarithmic many steps to isolate an 1-difference.

Similarity Search: The similarity search (line 16) follows the intuition that
similar data is likely to have similar effects on the outcome of a computation.
Given our assumption of tabular data, we define the similarity of two data records
as the average similarity over each column value For each column value, we
employ classical distance metrics, depending on the column’s data type. In the
base case, we currently use normalized Euclid distance for numerical values,
Levenshtein distance for strings, and equality for categorical data.

5 Evaluation

We conducted experiments to assess how suitable it is to perform outcome-
preserving input reduction with our framework and the aforementioned strate-
gies. Our evaluation3 addresses the following research questions: (RQ1) How
feasible is a search for 1-minimal datasets for outcome-preserving input reduc-
tion?, and; (RQ2) How do the reduction strategies compare to each other with
respect to their resource consumption? To answer RQ1, we consider measures
from the user’s perspective – namely the degree of reduction and the overall
time it takes to do so. For RQ2, we investigate the runtime properties of the re-
ductions, measuring the number of times the workflow is executed by a strategy,
and the time a strategy requires between each of these iterations.

5.1 Experimental Setup

We adopt three workflows derived from publicly available computational note-
books, referred to as Shark (described in Sec. 2), NBA (a workflow analyzing
NBA players), and FEC (a workflow analyzing the 2012 US federal election
commissions data).

The NBA case is an erroneous notebook from a study about failure identifi-
cation strategies in Jupyter notebooks [20], which entails explorative analysis on
a dataset about NBA players – study participants were tasked with fixing vari-
ous errors. At some point the NBA players are grouped into point and shooting
guards, and their average height must be calculated. The study mentions that
one of the participants remarked that a “mean height of 12 doesn’t seem to make
a lot of sense”, likely referring to an expected length unit of centimeters or me-
ters. As such, we adopt the parts of the NBA notebook calculating the average
height, and apply our search strategies with the debugging query (Position ==
3 Our replication package can be found at https://osf.io/fk2x4/?view_only=

442434edaec94c2b8172a759699d0886

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://osf.io/fk2x4/?view_only=442434edaec94c2b8172a759699d0886
https://osf.io/fk2x4/?view_only=442434edaec94c2b8172a759699d0886
https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

10 A.D. Vu et al.

ddmin
leave_one_out

prob_dd
similarity_iso

102

103

nr
 o

f t
up

le
s

166 166 166 166

reduced set size

(a) Reduced inputs (shark)

ddmin
leave_one_out

prob_dd
similarity_iso

100

101

nr
 o

f t
up

le
s

2 2 2 2

reduced set size

(b) Reduced inputs (NBA)

ddmin
leave_one_out

prob_dd
similarity_iso

103

104

105

106

nr
 o

f t
up

le
s

407

1001267 1001731

455

reduced set size

(c) Reduced inputs (FEC)

ddmin
leave_one_out

prob_dd
similarity_iso

104

105

106

107

ti
m

e
in

 m
s

347286

4420118
2538092

31120

total execution time

(d) Exec. times (shark)

ddmin
leave_one_out

prob_dd
similarity_iso

103

104

105

ti
m

e
in

 m
s

597

66341

1123 819

total execution time

(e) Exec. times (NBA)

ddmin
leave_one_out

prob_dd
similarity_iso

106

107

ti
m

e
in

 m
s

632489

7200240 7200009

691950

total execution time

(f) Exec. times (FEC)

Fig. 3: Size of reduced input in no. of tuples and total execution time in ms (log scale).

”PG” ∧ Height < 100) to check why point guards appear with such low height.
The dimensions of this dataset are 1184 rows, and 13 columns.

The third case concerns the US federal election commissions data from 2012
and is taken from the book ”Python for Data Analysis, 3rd Edition”4. The
input dataset consists of about 1M rows and 16 columns. One of the results of
this analysis yields a table listing the donations by state to candidates Barack
Obama and Mitt Romney. Of interest is that for the state Arkansas, Obama
received about 77% of the donations from individuals, more than three times
as much as Romney. However, in the election of 2012, Arkansas was won by
the Republican party with more than 60% of the votes – a possible irregularity.
Therefore, we use the following debugging question to investigate: ‘contbr st‘ ==
”AR” ∧ ‘Obama,Barack‘ > 0.77 ∧ ‘Obama,Barack‘ < 0.78.

We proceed to apply the reduction strategies of Sec. 4. Experiments were
performed on an Intel E7-4880 2.5GHz CPU. Each experiment was repeated 10
times; measurements reported in the sequel are average values.

5.2 Results

The issue that causes the Shark workflow to calculate a surprisingly high number
of attacks has been already discussed in Sec. 2. A minimal example to reproduce
this result is a dataset that comprises the 166 tuples taking the values ”7h00”,
”Morning”, and ”Evening” in the column ’Time’.

The low average height calculated by the NBA workflow is caused by a data
cleaning step which neglects that players’ heights are given not only in centime-
ters but also in inches. So any input set of size 2 where at least one of the elements
has a height value in inches is sufficient to reproduce the outcome specified.

The FEC workflow was obtained with no fault injection – a reduced input set
should confirm that the analysis is as intended, illustrating that the presented
4 wesmckinney.com/book/data-analysis-examples.html

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 11

ddmin
leave_one_out

prob_dd
similarity_iso

0
100

101

102

103

104

105

nr
 o

f r
ed

uc
ti

on
s

569

25448

463

30

3030

332
1197

357

successful
failed

(a) # executions (shark)

ddmin
leave_one_out

prob_dd
similarity_iso

0

100

101

102

103

104

nr
 o

f r
ed

uc
ti

on
s

10

1182

15 13
4 4

7 6

successful
failed

(b) # executions (NBA)

ddmin
similarity_iso

0
100

101

102

103

104

105

nr
 o

f r
ed

uc
ti

on
s

300 272

5089 4960

successful
failed

(c) # executions (FEC)

ddmin
leave_one_out

prob_dd
similarity_iso

10 1

100

101

102

103

104

ti
m

e
in

 m
s

2.011
0.554

1395.763

13.694

avg time between executions

(d) Avg. time between execu-
tions (shark)

ddmin
leave_one_out

prob_dd
similarity_iso

10 1

100

101

ti
m

e
in

 m
s

0.157
0.082

9.93

1.916

avg time between executions

(e) Avg. time between execu-
tions (NBA)

ddmin
similarity_iso

101

ti
m

e
in

 m
s

3.09

20.485

avg time between executions

(f) Avg. time between execu-
tions (FEC)

Fig. 4: Number of workflow executions and average time between executions (log scale).

approach is not only useful for irregularity localization but also for validation by
providing a smaller dataset.

RQ1. Sizes of the reduced datasets and the time needed to conclude the re-
ductions are reported in Fig. 3. Note that the y-axes are scaled logarithmically.
For the Shark and NBA workflow, each strategy found 1-minimal input sets of
the same size, namely 166 and 2 tuples, which corresponds to reductions of 99,5%
and 99.8% compared to the original input sizes of 25614 and 1184, respectively.
Regarding the overall time needed to find these 1-minimal sets, leave-one-out
took the longest, with a factor of almost 100 compared to the other starte-
gies in case of the NBA workflow. Also Prob-dd was clearly outperformed by
ddmin and similarity-iso on both cases. For the shark workflow, prob-dd
took around 40 minutes, ddmin required about 6 minutes, and similarity-iso

was the clear winner requiring less than a minute. For the NBA case, ddmin
requires around 600ms, which is about 25% less than the second best strategy
similarity-iso. In the FEC case, we observe that ddmin with a runtime of
8 minutes is about 1 min faster than similarity-iso and produces a dataset
about 10% smaller. leave one out and prob-dd are not competitive at all within
a time-out of 2 hours. Because the number of tuples in the FEC dataset is so
high, leave one out is getting timed out because it is only removing a single
tuple per iteration, and prob-dd takes so long to update probabilities for each
element that it also times out before it can finish. In the sequel, we will thus not
consider these strategies for the FEC workflow evaluation, and they are omitted
from Fig 4f and Fig. 4c, respectively.

RQ2. As observed, there are differences in how long the various strategies
require to find a solution. Fig. 4 illustrates RQ2-related measurements, again not-
ing that the y-axes are log-scaled. Figure 4a shows the number of reductions that
were attempted by each strategy for the shark workflow, divided by successful
and failed attempts – the sum represents the total number of workflow execu-
tions. Unsurprisingly, the longest running strategy leave-one-out also executed

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

12 A.D. Vu et al.

the workflow the most, while the fastest strategy similarity iso required the
least amount of attempts. Interestingly, even though prob-dd only took about
half as many reduction attempts than ddmin, it took nearly 7 times as long. For
an explanation, observe Fig. 4d, depicting the average execution time between
workflow executions. This metric records the average time each strategy requires
to decide on the next reduction candidate based on the result of the previous
execution. For this metric, we observe that prob dd requires considerably more
time to choose the next candidate, but with the payoff of needing only half as
many executions than ddmin. The same can be observed with similarity-iso,
which takes more than 6 times as much to choose the next potential solution
than ddmin, but requiring 10 times less workflow executions. For the NBA case,
Fig. 4e illustrates that the longest running strategy also executed the workflow
the most, with leave one out doing so almost more than 100 times as much
as the others. Again, prob-dd takes considerably more time between workflow
executions. ddmin requires the least amount of executions. Paired with a low
overhead between the executions, this allows ddmin to be faster. The FEC work-
flow shows that even though similarity-iso did less iterations than ddmin, the
higher time between iterations cause similarity-iso to perform a bit slower.

5.3 Summary and Threats to Validity

Our results, when viewed ex post facto, illustrate some key findings. Firstly the
baseline strategy leave-one-out performs the worst and is impractical, espe-
cially for a dataset like FEC that has millions of tuples – as expected for a strat-
egy that removes only a single element each iteration. Secondly, when relevant
data (and resp., irrelevant data) is spatially grouped together, a simple parti-
tioning strategy like ddmin can easily remove unnecessary elements,. However,
in the shark example, where relevant tuples are scattered, ddmin underperforms.
Instead, our novel strategy similarity-iso is able to isolate the scattered data
quickly, vastly outperforming ddmin in those cases, while still being competitive
with ddmin’s best cases by only adding minimal overhead. prob-dd is perfor-
mant at choosing promising candidates while simultaneously being generically
applicable. However, the amount of time and space needed to update element
probabilities can be costly when the number of elements is large, which we ob-
served in the FEC workflow, where the high number of tuples caused prob-dd to
timeout. Overall, our results show that similarity search is rather balanced and
performant, concluding up to 10 times faster in cases that pose difficulties for
the others, while where ddmin outperforms, similarity-iso is only marginally
slower while still requiring less iterations. The above strengthen the argument
that similarity-iso offers the best tradeoff and has the strongest potential for
further big data refinements.

Regarding threats to validity, risk of internal validity mainly lies in the cor-
rectness of implementation (which we release along with a reproduction kit).
The core implementations of ddmin and prob-dd are based on their respective
original sources with instrumentation for measurements and time-outs. Risk to
construct validity lies in the fact that the debugging questions, which are central
to the approach, have been specified by us. But, since this technique is mainly

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 13

supposed to be a tool for the exploration of the workflow behaviour, any de-
bugging question that specifies a property of the result could have been taken
to showcase the reduction strategies. As such, finding the “correct” debugging
question, is out of the scope of this work. Another possible point is the number
of experiment repetitions; three of the four strategies however are deterministic,
and prob-dd’s main hurdle is the amount of processing between iterations. The
threat to external validity lies in the subject selection – vastly different cases,
e.g., where tuple similarity is difficult to be defined, may yield different results.
However, it may be argued that the cases presented are representative of typical
workflows utilizing tabular data.

6 Related Work

Much of the research on scientific workflows has focused on optimizing for speed
and resource utilization, led by high-performance computing [17, 22]. However,
with workflows becoming ubiquitous, there is a changing mindset that human
productivity arguably still is the most expensive resource [4].

Artemis [11] and Nautilus [10] are systems that provide explanations of why
or why not certain tuples are in the result, by modifying sub-query operators or
by inserting tuples into the data. In our black box setting we cannot modify the
individual operators of a workflow and we do not address why a result is missing
but rather why a particular result is there using only the input data.

So-called why-provenance [2] is popular to answer why a specific tuple ap-
pears in the result, representing the set of input tuples that are responsible for its
computation. Ikeda et al. [13] demonstrate how to utilize provenance to debug
workflows by enabling forward tracing of input tuples and backward tracing of
result tuples. Titian [14] enables collection of provenance for Apache Spark by
tracking records through the various data operators. TagSniff [3] is a data debug-
ging model for big data that allows users to efficiently capture data provenance.
However, given the black-box nature of scientific workflow tasks, the above works
are not applicable because they require white-box access to either track or re-
verse calculate the relevant tuples. Gulzar et. al. [7] also remark that provenance
often returns excessively much data, and in the worst case the whole input. To
tackle this, their BigSift approach combines provenance with delta debugging to
find a minimal set that leads to a test failure, which relies on a test suite that
cannot be generally assumed to be available.

BugDoc [18] can find the responsible component in a pipeline when given an
oracle, by iteratively re-executing it with different instantiations. We note that
our technique can be used after BugDoc identifies the responsible input data, to
reduce it to a minimal reproducible example for further cause localization.

7 Conclusion and Future Work

Motivated by the need to support exploratory analysis within scientific com-
puting, we proposed to iteratively reduce a workflow’s input data while still

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

14 A.D. Vu et al.

observing some outcome of interest to produce a minimal reproducible example
– in essence, we determine the input relevant to reproducing the irregularity. To
that end, we presented a portfolio of reduction strategies applicable to tabular
data, the shape most often encountered by scientist users. We further investi-
gated the strategies’ input reduction and resource consumption over three case
studies. To realize an end-to-end framework, we identify open challenges at dif-
ferent levels of abstraction, which provide avenues for future work. Firstly, we
considered tabular data; in general, data shape as well as processing and size
naturally affect choice and development of reduction strategies, yielding tradeoffs
that should be assessed. Thus, future work should investigate the applicability
on larger sizes of data, and also data across different domains like imaging and
genomic data for example. Secondly, regarding the debugging questions, it is
true that the burden of formulating them still lies on the user. We argue that
our use case is slightly easier than the well known oracle problem from software
testing, where a user has to specify correct behaviour upfront. In the presented
use case, the user observes already computed results from the workflow and may
formulate properties that this data has right now, as opposed to properties that
all results should have. Thus, instead of thinking about all possible results, the
user only has to consider the currently observed data. Still, the important step
of the debugging question specification should be investigated; users should be
supported effectively in their formulation in subsequent works.

Acknowledgements. Funded in part by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – SFB 1404 FONDA

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: On the accuracy of spectrum-based
fault localization. In: Testing: Academic and industrial conference practice and
research techniques. IEEE (2007)

2. Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: A characterization
of data provenance. In: Intl. Conf. on Database Theory. Springer (2001)

3. Contreras-Rojas, B., Quiané-Ruiz, J., Kaoudi, Z., Thirumuruganathan, S.:
Tagsniff: Simplified big data debugging for dataflow jobs. In: ACM Symposium
on Cloud Computing. pp. 453–464. ACM (2019)

4. Deelman, E., et al.: The future of scientific workflows. Journal of High Performance
Computing Applications 32(1) (2018)

5. Galhotra, S., Fariha, A., Lourenço, R., Freire, J., Meliou, A., Srivastava, D.:
Dataexposer: Exposing disconnect between data and systems. arXiv preprint
arXiv:2105.06058 (2021)

6. Grust, T., Kliebhan, F., Rittinger, J., Schreiber, T.: True language-level SQL de-
bugging. In: Intl. Conf. on Extending Database Technology (2011)

7. Gulzar, M.A., Interlandi, M., Han, X., Li, M., Condie, T., Kim, M.: Automated de-
bugging in data-intensive scalable computing. In: Symposium on Cloud Computing
(2017)

8. Gulzar, M.A., Interlandi, M., Yoo, S., Tetali, S.D., Condie, T., Millstein, T., Kim,
M.: Bigdebug: Debugging primitives for interactive big data processing in spark.
In: ICSE. IEEE (2016)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

Irregularity Localization for Scientific Workflows 15

9. Heiden, S., Grunske, L., Kehrer, T., Keller, F., Van Hoorn, A., Filieri, A., Lo, D.:
An evaluation of pure spectrum-based fault localization techniques for large-scale
software systems. Software: Practice and Experience 49(8), 1197–1224 (2019)

10. Herschel, M., Eichelberger, H.: The nautilus analyzer: understanding and debug-
ging data transformations. In: Intl. Conf. on Information and Knowledge Manage-
ment. pp. 2731–2733 (2012)

11. Herschel, M., Hernández, M.A.: Explaining missing answers to spjua queries. Pro-
ceedings of the VLDB Endowment 3(1-2), 185–196 (2010)

12. Hey, A.J., Tansley, S., et al.: The fourth paradigm: data-intensive scientific discov-
ery, vol. 1. Microsoft Research (2009)

13. Ikeda, R., Cho, J., Fang, C., Salihoglu, S., Torikai, S., Widom, J.: Provenance-
based debugging and drill-down in data-oriented workflows. In: Intl. Conf. on Data
Engineering. IEEE (2012)

14. Interlandi, M., Shah, K., Tetali, S.D., Gulzar, M.A., Yoo, S., Kim, M., Millstein,
T., Condie, T.: Titian: Data provenance support in spark. In: Proc. of VLDB.
vol. 9 (2015)

15. Kanewala, U., Bieman, J.M.: Testing scientific software: A systematic literature
review. Information and software technology 56(10) (2014)

16. Leser, U., Hilbrich, M., Draxl, C., Eisert, P., Grunske, L., Hostert, P., Kainmüller,
D., Kao, O., Kehr, B., Kehrer, T., Koch, C., Markl, V., Meyerhenke, H.,
Rabl, T., Reinefeld, A., Reinert, K., Ritter, K., Scheuermann, B., Schintke,
F., Schweikardt, N., Weidlich, M.: The Collaborative Research Center FONDA.
Datenbank-Spektrum (1610-1995) (November 2021)

17. Lin, B., et al.: A time-driven data placement strategy for a scientific workflow
combining edge computing and cloud computing. IEEE Trans. on Industrial Infor-
matics 15(7) (2019)

18. Lourenço, R., Freire, J., Shasha, D.: Bugdoc: A system for debugging computa-
tional pipelines. In: Proc. of the 2020 ACM SIGMOD (2020)

19. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about
quality and reproducibility of jupyter notebooks. In: Intl. Conf. on Mining Software
Repositories. IEEE (2019)

20. Robinson, D., Ernst, N.A., Vargas, E.L., Storey, M.A.D.: Error identification
strategies for python jupyter notebooks. arXiv preprint arXiv:2203.16653 (2022)

21. Sanders, R., Kelly, D.: Dealing with risk in scientific software development. IEEE
software 25(4) (2008)

22. Shirvani, M.: A hybrid meta-heuristic algorithm for scientific workflow schedul-
ing in heterogeneous distributed computing systems. Engineering Applications of
Artificial Intelligence 90 (2020)

23. Vogel, T., Druskat, S., Scheidgen, M., Draxl, C., Grunske, L.: Challenges for veri-
fying and validating scientific software in computational materials science. In: Intl.
Workshop on SE for Science. IEEE (2019)

24. Vu, A.D., Kehrer, T., Tsigkanos, C.: Outcome-preserving input reduction for sci-
entific data analysis workflows. In: Intl. Conf. on Automated Software Engineering,
New Ideas and Emerging Results (2022)

25. Wang, G., Shen, R., Chen, J., Xiong, Y., Zhang, L.: Probabilistic delta debugging.
In: ESEC/FSE (2021)

26. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering 28(2) (2002)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_24

https://dx.doi.org/10.1007/978-3-031-35995-8_24
https://dx.doi.org/10.1007/978-3-031-35995-8_24

