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Abstract. The perimeter of a wildfire is essential for prediction of the
spread of a wildfire. Real-time information on an active wildfire can be
obtained with Thermal InfraRed (TIR) data collected via aerial surveys
or satellite imaging, but often lack the actual numerical parametrization
of the wildfire perimeter. As such, additional image processing is needed
to formulate closed polygons that provide the numerical parametriza-
tion of wildfire perimeters. Although a traditional image segmentation
method (ISM) that relies on image gradient or image continuity can be
used to process a TIR image, these methods may fail to accurately repre-
sent a perimeter or boundary of an object when pixels representing high
infrared values are sparse and not connected. An ISM processed TIR im-
age with sparse high infrared pixels often results in multiple disconnected
sub-objects rather than a complete object. This paper solves the prob-
lem of detecting wildfire perimeters from TIR images in three distinct
image processing steps. First, Delaunay triangulation is used to connect
the sparse and disconnected high-value infrared pixels. Subsequently, a
closed (convex) polygon is created by joining adjacent triangles. The final
step consists of an iterative trimming method that removes redundant
triangles to find the closed (non-convex) polygon that parametrizes the
wildfire perimeter. The method is illustrated on a typical satellite TIR
image of a wildfire, and the result is compared to those obtained by tradi-
tional ISMs. The illustration shows that the three image processing steps
summarized in this paper yield an accurate result for representation of
the wildfire perimeter.

Keywords: Wildfire Perimeter · Thermal Infrared Image · Delaunay
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1 Introduction

As unprecedented wildfire activity has occurred in recent years, the reliable
prediction of the spread of an active wildfire has proven to be challenging task.
Ensemble Kalman filtering [9] is often used as the data assimilation technique for
wildfire spread prediction [15]. Many applications have combined a data-driven
fire model such as FARSITE [11] with ensemble Kalman filtering to improve
the prediction accuracy [10,20,21]. Such data assimilation techniques do rely on
the availability of (past) fire perimeter measurements to predict (future) wildfire
perimeters for characterizing wildfire progression.

For the moment, manual delineation is still frequently used to obtain the
wildfire perimeter. Due to the significant advances in sensor technology for wild-
fire monitoring, new real-time data sources such as Thermal InfraRed (TIR)
imaging can be used for a data-driven approach to predict wildfire progression.
For example, wildfires can be monitored via MODIS data [6], satellite heat im-
ages [19] or thermal infrared imaging (TIR) on aerial flight systems [23] that
characterize ground temperature. In case of TIR or heat images, image pixels
represent temperature information or strength of the infrared band. In particular
for an RGB image, the R value is chosen as the data for the image pixels.

Many contributions can be found that provided automated extraction of
wildfire perimeters by applying classic edge detection algorithm, such as global
intensity thresholding algorithm, Sobel gradient operator, and Canny edge de-
tector [17, 24]. Among them, Canny method has the ability to outperform the
others [24]. Such edge detection methods might be good tools to automatically
delineate the wildfire perimeter, and the application of other edge detection
methods, such as graph-cut method and level set method, are beneficial for the
detection of wildfire perimeter. However, due to limited resolution of the image,
discontinuity of the two-dimensional image data, and possibly partial activity
of a wildfire along its boundary, identification of the most recent fire perimeter
remains a challenge. Furthermore, different image pixels may be independent
and subjected to noise or temporary fire inactivity. As a result, the burn area in
the wildfire image can be disconnected or even sparse.

Although combining Machine Learning (ML) methodologies with real-time
image data has been recognized to advance in wildfire science and manage-
ment [13], there is an important restriction that a huge amount of training sets
are required by ML techniques to learn the characteristics of the heat map of
the burn area. Although computer vision is applied more and more on wildfire
detection and measurement [22], few contributions can been found that provide
a closed polygon for the parametrization of the wildfire perimeter on the basis of
TIR or heat images. In [24], unsupervised edge detectors were applied to obtain
the wildfire perimeter automatically, but performance in case of sparse TIR data
had not been demonstrated.

The main contribution of the paper is to provided a novel TIR image pro-
cessing technique to characterize a closed polygon for the wildfire perimeter. To
solve the problem of discontinuity of a heat image, the basic concept of Delau-
nay triangulation is used to obtain a convex polygon of a burn area. Similar
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ideas are explored in [6] where the so-called α-shape algorithm is used to deter-
mine the wildfire perimeter using information on hot spots. Unfortunately, the
α-algorithm can only adjust the detected wildfire perimeter globally by chang-
ing the value of α, and is barely able to distinguish spot fires from the main
burn area in an TIR image. To solve this problem, the novelty of the TIR im-
age processing lies in the iterative trimming of triangular objects created by the
Delaunay triangulation to obtain a closer match of the wildfire perimeter.

Both rough trimming and fine trimming are included in the iterative trim-
ming method. For the rough trimming, after obtaining the convex polygon cov-
ering all pixels of the burn area by applying the Delaunay triangulation, two
threshold values are created for this step. One is related to the longest side of
the triangle created by Delaunay triangulation, and the other one is related to
the relative burn area surrounding a vertex in a chosen domain. Based on these
two threshold values, the iterative trimming method will first delete the redun-
dant abnormally large triangle created by the vertex of the polygon, and then
delete the isolated pixels of burn area caused by spot fire. As a result, a new
convex polygon can be obtained relying on the remaining pixels of the burn area,
and this process will be repeated iteratively until all the pixels of spot fires are
removed. When the rough trimming is finished, another two threshold values re-
lated to the longest side of triangles connected to the vertex of the polygon and
the relative burn area surrounding a vertex are created for the fine trimming.
The wildfire perimeter can be finally obtained by tuning the threshold values.
The performance of the iterative trimming method is illustrated by comparing
the wildfire perimeter created by the iterative trimming method to those cre-
ated by some classical edge detection methods, such as Canny edge detection,
graph-cut method, and level set method.

2 Thermal Infrared Image of a Wildfire

One typical discontinuous RGB TIR image of wildfire is presented in Figure 1,
and the corresponding R-value TIR image is presented in Figure 2. It can be
observed from Figure 1 and Figure 2 that the bright area alternates with the
dark area. Although the different bright areas are close, they are not connected.
Delaunay triangulation is applied in this paper to link up those bright areas.

To prepare for the Delaunay triangulation, the active pixels and inactive
pixels are defined as

yi,j = f([i, j], b) =

{
0, if b < bt,

1, if b ≥ bt,
(1)

where i, j describe the location of the pixel, b is the R-value of the TIR image,
and bt is the threshold value to distinguish between active pixel and inactive
pixel. yi,j = 1 means the pixel at i, j is identified as an active pixel. It is part
of burn area and can be used to detect the wildfire perimeter; yi,j = 0 means
the pixel at i, j is considered to be an inactive pixel. It represents either inactive
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Fig. 1. Example of an RGB TIR image, courtesy of DigitalGlobe WorldView-3 satellite
data of the Happy Camp Complex fire. The size of the image is 850× 550 pixels.

wildfire or unburned area and should not be used for the detection of wildfire
perimeter. In this paper, bt is chosen to be 50. The reason is that the pixels with
the R-value smaller than 50 belong to nearly completely dark area as shown in
Figure 2.

3 Delaunay Triangulation and Iterative Trimming

3.1 Delaunay Triangulation

In 1934, Boris Delaunay introduces the Delaunay triangulation [7] that is well
known for maximizing the minimum of all the angles of the resulting trian-
gles. The Delaunay triangulation has been used in many applications due to the
property of providing connectivity information for a given set of points [12]. This
property is also adopted in this paper to solve the problem of missing connection
between the burn area.

By applying the Delaunay triangulation on the active pixels determined from
Figure 2 in Section 2, the connecting triangles (red) can be established as shown
in Figure 3(a). The union set of all the resulting triangles created by Delaunay
triangulation is a convex hull depicted in Figure 3(b). It can be observed that
the convex hull contains many redundant (sliver) triangles that hide the shape
of the wildfire perimeter. These redundant large triangles are mostly caused
by the vertices of the polygon characterizing the wildfire perimeter. Delaunay
Triangulation connects these vertices as it did for the internal disconnected burn
area. In addition, some active pixels are caused by spot fires and should also be
removed to discover the main perimeter of the main wildfire. Therefore, it is
important to distinguish the triangles outside the main wildfire perimeter from
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Fig. 2. R-value of TIR image depicted in Figure 1.

those inside the wildfire perimeter. To this end, an iterative trimming method
is set up to trim the convex hull and reveal the wildfire perimeter.

3.2 Iterative Trimming Method

To cut out the redundant triangles established by Delaunay triangulation and the
active pixels caused by spot fires, two iterative trimming steps are used: rough
trimming and fine trimming. In the process of rough trimming, the abnormally
large triangles and the pixels of spot fire will be removed iteratively. After that,
the remaining polygon is further trimmed in the fine trimming process. Details
on both trimming processes are as follows.

Rough Trimming As mentioned, the goal of rough trimming is to remove the
abnormally large triangles created by Delaunay triangulation and some small
groups of active pixels caused by spot fire to obtain a coarse shape of the main
fire. The abnormally large triangles are selected by using the histogram of the
longest side of all triangles. If the longest side of a triangle appears just once
in a bin of the histogram and larger than the upper boundary of the last bin
with count larger than two, then the triangle is categorized into the abnormally
large triangle. The detailed procedure to recognize the abnormally large triangle
is summarized in Algorithm 1.

Figure 4 shows the histogram calculated on the basis of the triangles depicted
earlier in Figure 3(a). From the histogram in Figure 4, it can be observed that
most of the triangles have a longest side smaller than 50, and abnormally large
triangles can be recognized by choosing the last few triangles with one count in
the histogram.
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(a) Delaunay triangulation on active pixels
of Figure 2.

(b) Polygon (red) by the union set of the
triangles

Fig. 3. Delaunay triangulation and convex hull.

Algorithm 1 Identifying abnormally large triangle
Input: Longest side of each triangle, s
Output: Abnormally large triangle
1: Construct a histogram about the longest side of each triangles, h=histogram(s).
2: Find the index of the last triangle with count larger than one,

k=find(h.count > 1, ‘last’).
3: Abnormally large triangles are identified as the triangles with longest side larger

than lr = k × h.binwidth.

Due to the fact that spot fire is outside the main body of the wildfire, it is
only necessary to check whether the vertices of the currently established polygon
belong to the main fire or a spot fire. Spot fires are defined as a tiny connected
burn area that is isolated from the main fire. Therefore, the active pixels of spot
fires can be distinguished by the relative surface area within a chosen domain.
The chosen domain can be a square patch of the TIR image centered by the
vertex of the current polygon, and the relative surface area can be calculated by
the ratio of the number of the connected active pixels containing the vertex of
the current polygon and the number of pixels inside the whole square patch. The
approach to select the active pixels of spot fires is summarized in Algorithm 2.

Algorithm 2 Identifying active pixels of spot fire
Input: Vertices of currently established polygon, n; size of square image patch, m×m;
threshold value, du.
Output: Active pixels of spot fires.
1: For each vertex, calculate the summation, pq, q = 1, 2, . . . , n, of the number of all

connected active pixels starting from the vertex inside the m×m square patch.
2: Compute the ratio pq

m×m
, for q = 1, 2, . . . , n

3: If pq
m×m

≤ du, all the connected active pixels with respect to the qth vertex of the
polygon are regarded as part of the active pixels of spot fires.
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Fig. 4. Histogram of the longest side of the triangles in Figure 3(a). The unit of the
side length is (one) pixel length.

As a consequence of removing the active pixels of spot fires, the set of points
for Delaunay triangulation are affected. Hence, an iterative process of Delaunay
triangulation, removing the abnormally large triangles, and removing the active
pixels of spot fires is operated until all the active pixels of spot fires are elimi-
nated. During the iteration, the number n of the vertices of the polygon will also
change accordingly. After the rough trimming, a coarse shape of the main wild-
fire can be acquired, and the fine trimming will further remove the redundant
triangles produced by Delaunay triangulation.

Fine Trimming Instead of just removing the abnormally large triangles coarsely
as done in rough trimming, fine trimming is more rigorous. With the goal of ob-
taining the perimeter of the main wildfire, the fine trimming is focused on the
triangles connected with the vertices of the current polygon to avoid making the
polygon disconnected. The redundant triangles can also be determined by the
histogram of the longest side, or specific requirement on the wildfire perimeter.

Furthermore, considering the fact that the TIR image is sparse, the density
of the active pixels around a vertex should also be taken into account. Heavier
trimming can be done on the triangles connected to a vertex having a denser
neighbouring active pixels, and those triangles connected to a vertex that has a
relatively sparse neighbouring active pixels should be discarded more carefully.
As a result, two threshold values are established for the fine trimming. The first
one is the threshold value lf , set for the longest side of the triangles that should
be removed, and the second one is the threshold value dl, set for the density of
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the neighbouring active pixels around a vertex. The value of dl is chosen so that
the triangles connected to a vertex with a sparse neighbouring active pixels will
be protected from being removed even when the longest sides of the triangles
are longer than lf .

The density of the active pixels around a vertex can be measured similarly
by the relative surface area pq

m×m used in the Algorithm 2, where pq is the
number of all the connected pixels starting from the qth vertex of the current
polygon, and m × m is the size of the chosen square patch. All the triangles
with a longest side larger than lf and connected with a vertex that meet the
requirement pq

m×m > dl will be removed in the fine trimming. During the process
of trimming, new vertex will appear as the triangles are eliminated. Therefore,
the trimming process should be operated iteratively until the number of the
vertices of the polygon stays the same.

One of the main differences between the rough trimming and the fine trim-
ming is that no active pixels are removed in the fine trimming. For this reason,
the value of dl can be less than the value of du. In other words, new vertex
with pq

m×m ≤ du may appear during the fine trimming, and dl can be chosen as
dl <

pq

m×m ≤ du to trim the triangles connected to this newly created vertex.
The complete procedure of the iterative trimming method including the step of
Delaunay triangulation is summarized in Algorithm 3.

Algorithm 3 Iterative trimming method
Input: TIR image of wildfire.
Output: Wildfire perimeter.
1: Determine the set of active pixels.
2: Find the locations of the active pixels, and apply the Delaunay triangulation on

the active pixels.
3: Remove the abnormally large triangles and the active pixels caused by spot fires

summarized in Algorithm 1 and Algorithm 2 respectively.
4: If the number of active pixels changes, go back to step 2.
5: Remove the triangle connected to the the qth vertex with pq

m×m
> dl, if the longest

side of this triangle is larger than lf .
6: If the number of vertices of the polygon changes in step 5, repeat step 5.

The performance of the iterative trimming method based on the TIR data
given earlier in Figure 1 is illustrated in the next section. In addition, the estab-
lished polygon of the main wildfire perimeter obtained by the iterative trimming
method on the basis of the Delaunay triangulation is compared to those obtained
by the Canny edge detector, the graph-cut method, and the level set method.
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4 Results and Discussion

4.1 Iterative Trimming Method

Considering the distribution of active pixels in Figure 2, the computed longest
side of the triangles in Figure 3(a) and the resulting histogram depicted in Fig-
ure 4, the values of lf ,m, du, dl are chosen as 50, 11, 0.16, 0.08 respectively. The
polygons obtained after the rough trimming and the fine trimming are shown in
Figure 5(a) and Figure 5(b). It is worthwhile to note that, although the high-
value infrared pixels are sparse and disconnected, the iterative trimming method
can obtain a closed polygon of the wildfire automatically. It can also be noticed
that some isolated active pixels outside the red polygon are regarded as the spot
fires, and are not used to establish the polygon of the main wildfire. The com-
putation time is around one second. As reference for the computation time, all
calculations were performed on an Intel Core i7-7500U CPU with 16 GB RAM.

(a) Polygon (red) obtained by rough trim-
ming.

(b) Polygon (red) obtained by fine trim-
ming.

Fig. 5. Results of iterative trimming method.

4.2 Canny Edge Detector

The Canny edge detector is developed by John F. Canny in 1986 [5]. Although
Canny edge detection is a traditional edge detection method, it has been widely
applied and improved in more recent researches [1,8,18]. It was also utilized in the
study of wildfire monitoring [24] and was shown to be one of the most effective
unsupervised detection algorithms. Three performance criteria: good detection,
good localization, and unique response to a single edge, form the basis of Canny
edge detector.

A Canny edge detection has five steps including smoothing the image by
Gaussian filter, calculating the gradient of the image, deleting spurious response
to true edges, using double threshold to find out prospective edge, and tracking
edge by preserving strong edges and weak edges that are connected to strong
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10 Tan, Hu, Tan, de Callafon & Altıntaş

edges. The image processing toolbox of MATLAB provides the standard edge
detection algorithm, and Canny edge detector can be applied by calling the
function edge(I,’canny’,threshold,sigma), where I is the image, threshold
is used to ignore the unnecessary edges, and sigma decides the standard deviation
of the Gaussian filter.

It is clear from the procedure of Canny edge detector that the image gradient
is the basis for this edge detection method. For the TIR image given earlier
in Figure 2, the Canny edge detector is more likely to work on detecting the
boundaries of all isolated clusters of pixels instead of the main wildfire. To blur
the image to a greater extent so that the effect of the isolation is reduced, a
larger standard deviation of the Gaussian filter can be applied.

The results of Canny edge detection with default value for the threshold
and two different standard deviations of the Gaussian filter are shown in Fig-
ure 6. Although increasing the standard deviation of Gaussian filter leads to a
slightly better result, the Canny edge detector is still not able to detect the main
boundary of the main wildfire.

(a) sigma = 1. (b) sigma = 5.

Fig. 6. Boundaries (red) of the wildfire generated by Canny edge detector.

4.3 Graph-Cut Method

The graph-cut method is a widely used method in the field of computer vision
and details can, for example, be found in [2,4,25]. Here a short summary of the
graph-cut method is given. An image is first transformed to a graph consisting
of nodes and edges, where edges are used to connect every two neighbour nodes,
and nodes are composed of two terminal nodes, source node and sink node, and
all pixels. Each edge is assigned with a weight or cost, and the goal of the graph-
cut method is to find a minimum cut of the graph by using the max-flow min-cut
theorem [3]. With the minimum cut, the image is divided into a foreground and
a background.

The graph-cut method has a good ability to produce an optimal solution to
the image segmentation of a binary problem, which is similar to distinguishing
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between the burn area and unburned area in a TIR image of a wildfire. Therefore,
the graph-cut method is applied on Figure 2 to obtain the boundary of the
wildfire via the image segmenter application in MATLAB. The seeds required
by graph-cut method are highlighted as Figure 7(a), and the result of the graph-
cut method is shown in Figure 7(b).

(a) Seeds for foreground (green) and back-
ground (red).

(b) Boundaries (red) generated by graph-
cut methods..

Fig. 7. Results of graph-cut method.

It can be observed that graph-cut method only works well on identifying
part of the wildfire boundary near the provided seeds. Although a good wildfire
perimeter can be created by graph-cut method when more detailed and compli-
cated seeds are provided, too much human interaction is required and the work
involved is almost the same as a manual delineation, limiting the application in
automatic wildfire perimeter detection.

4.4 Level Set Method

The level set method is an impressive tool for image segmentation by exploiting
the information of regions and boundaries of the object [16]. It applies level
sets for numerical analysis of surfaces, and the application of level sets makes it
beneficial to track the change of the topology, such as the development of a hole.
In addition, the level set method provides an implicit description of the object
without the need of parameterizing the object. Due to the fact that a level set
method has a good ability to separate two regions, it might be a solution to the
binary problem of detecting the burn area from the unburned area.

Unfortunately, for a disconnected TIR image of a wildfire as depicted in
Figure 2, it is infeasible to decide whether a hole exists, or what the size of
the hole is. Moreover, continuous image gradient and intensity of the pixels
are important components of level set method to determine the speed of the
evolving and the shape described by each level set. Another potential problem
of the level set method is that the final result is dependent on the choice of

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_22

https://dx.doi.org/10.1007/978-3-031-35995-8_22
https://dx.doi.org/10.1007/978-3-031-35995-8_22


12 Tan, Hu, Tan, de Callafon & Altıntaş

the initial contour, but the shape of the wildfire can be arbitrary. Hence, an
algorithm of automatically generating an initial zero-level contour is required,
or a fire expert needs to provide an initial contour for each image of a wildfire
to apply the level set method.

To test the performance of the level set method on Figure 2, the level set
method introduced by [14] is adopted. By choosing the parameters α = 2, λ =
5, µ = 0.01, the result can be achieved after 200 iterations as Figure 8(b),
with the initial contour established as Figure 8(a). It can be observed that the
boundary captured by level set method passes through the disconnected part of
the burn area of the TIR image. The reason for that is level set method also
relies on the image gradient or pixel intensity to calculate the level sets, and
there is a huge change in the image gradient between the disconnected areas.

(a) Initial zero level contour. (b) Final zero level contour

Fig. 8. Results of level set method.

5 Conclusions

This paper introduces an iterative trimming method (ITM) based on Delaunay
triangulation with a goal to establish a closed polygon of the main wildfire
perimeter automatically for a TIR image of wildfire. Although the burn area
caused by spot fire is deleted in the ITM, they can be captured respectively
by treating each burn area of a spot fire as a main wildfire perimeter. The
performance of the iterative trimming method is validated by providing a study
that compares the result of the ITM with those of the various edge detection
methods based on a satellite generated TIR image. The comparison study shows
that the various edge detection methods fail to provide a single closed polygon
that parametrizes the main wildfire perimeter. Often, disconnected burn areas
will be detected separately. The proposed ITM shows good performance with
a single closed polygon for the wildfire perimeter. For further studies, more
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information of the wildfire can be used in the iterative trimming method. For
example, the wind direction and wind speed can be used to predict the location
of the spot fire, and a priori knowledge of the spot fire can be included in the
iterative trimming method to better capture and remove the active pixels caused
by spot fires.
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