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Abstract. Detecting anomalies in satellite telemetry data is pivotal in
ensuring its safe operations. Although there exist various data-driven
techniques for the task of determining abnormal parts of the signal, they
are virtually never validated over real telemetries. Analyzing such data
is challenging due to its intrinsic characteristics, as telemetry may be
noisy and affected by incorrect acquisition, resulting in missing parts
of the signal. In this paper, we tackle this issue and propose a ma-
chine learning approach for detecting anomalies in single-channel satellite
telemetry. To validate its capabilities in a practical scenario, we build a
dataset capturing the nominal and anomalous telemetry data captured
on board OPS-SAT—a nanosatellite launched and operated by the Eu-
ropean Space Agency. Our extensive experimental study showed that
the proposed algorithm offers high-quality anomaly detection in real-life
satellite telemetry, reaching 98.4% accuracy over the unseen test set.

Keywords: machine learning · anomaly detection · feature engineering
· satellite telemetry.
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1 Introduction

Many critical systems are being monitored using various sensors for detecting
their malfunction [11,20]. This is extremely important for satellites to ensure
their safe operations and to appropriately respond to any abnormal events that
are reflected in the telemetry data. In general, there are three types of anomalous
events which are commonly observed in satellite telemetry. In point anomalies,
telemetry signal values fall outside the nominal operational range, and hence
can be easily detected using out-of-limit checks. On the other hand, collective
anomalies correspond to the overall sequences of consecutive telemetry values
that are abnormal, whereas in contextual anomalies, the single telemetry val-
ues are anomalous within their local neighborhood [17]. There exist data-driven
algorithms for detecting such types of abnormal events [18], spanning across
classic techniques exploiting expert systems [25], unsupervised approaches [8,14]
and deep learning models [10] (often benefiting from recurrent neural networks
which are especially well-fitted to process time-series data [1,9]). Such algorithms,
however, are virtually never validated over real-life telemetry data. Also, they
often require long time-series data to build a model reflecting the nominal oper-
ation of the satellite—capturing it on board is tedious and time-consuming, thus
data-level digital twins have been blooming to simulate the correct telemetry [2].
Benchmark datasets commonly exploited to validate detection algorithms con-
tain time-series data, where each time series is split into its training and test
parts, presenting similar characteristics. Such data is not affected by the prac-
tical challenges commonly observed in on-board telemetry, such as data nois-
iness or missing data, due to e.g., inappropriate signal acquisition. Therefore,
the estimated anomaly detection capabilities of data-driven techniques may eas-
ily become over-optimistic, and the experimental scenarios are often flawed by
methodological issues in the field [23].

In this paper, we tackle the issue of thorough validation of machine learning
techniques for anomaly detection in satellite telemetry data. We not only propose
an end-to-end pipeline for detecting such abnormal events in signal data. We
also investigate its capabilities over a dataset capturing real-life telemetry data
captured on board OPS-SAT—a nanosatellite launched and operated by the
European Space Agency (ESA). OPS-SAT is a flying laboratory, providing a
platform for on-board experiments (e.g., those which may be too risky to be
executed on other operational satellites [7]), with one of them being anomaly
detection from telemetry data using the pipeline discussed in this work. Other
experiments performed on-board OPS-SAT include, among others:

– on-board unsupervised machine learning for spacecraft autonomy [13,22],
– the compression of housekeeping telemetry [5],
– assessing the stability of the attitude during inertial pointing mode using on-

board images of the sky [21],
– deploying and maintaining the MO/MAL ground infrastructure with this air-

craft [15],
– testing the on-board thermal vacuum [12],
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– and addressing fail-safety and redundancy design challenges [24].

Here, we build upon the available OPS-SAT telemetry data to build a rep-
resentative dataset that is used to train and validate our anomaly detection
techniques in a practical setting, reflecting real on-board telemetry challenges,
e.g., missing data and aperiodicity of the signal [6]. Our experimental validation
performed over a carefully bundled OPS-SAT telemetry dataset revealed that
our approaches exploiting hand-crafted feature extractors (which are indepen-
dent of the length of the signal and can effectively operate with missing data)
and classic supervised learners offer high-quality anomaly detection, reaching
98.4% classification accuracy over the unseen test set.

This paper is structured as follows. In Section 2, we discuss the main objective
tackled in this paper and present the OPS-SAT telemetry channels of interest,
together with our end-to-end machine learning pipeline for detecting abnormal
events from time-series data. Our experimental study is reported and discussed
in Section 3. Section 4 concludes the paper and highlights the most exciting
future research pathways which may emerge from our work.

2 Materials and Methods

In this section, we discuss the investigated OPS-SAT telemetry (Sect. 2.1), to-
gether with our approach for detecting anomalies in such data (Sect. 2.2).

2.1 Dataset

In this work, we investigate the telemetry signals indicated by the ESA OPS-
SAT team as the most interesting from the operational point of view, and we
downloaded such data from the WebMUST client telemetry directory available
for OPS-SAT [4]. Those telemetry channels include the magnetometer readouts,
alongside the photo diode (PD) values—the following signals are collected:

– Magnetometer telemetry channels: I_B_FB_MM_0 (CADC0872) (see
its fragment rendered in Fig. 1), I_B_FB_MM_1 (CADC0873),
I_B_FB_MM_2 (CADC0874),

– PD channels: I_PD1_THETA (CADC0884), I_PD2_THETA (CADC0886),
I_PD3_THETA (CADC0888), I_PD4_THETA(CADC0890),
I_PD5_THETA (CADC0892), I_PD6_THETA (CADC0894).

It is of note that there are several practical challenges can be identified while
exploring telemetry data captured by experimental satellites. They encompass—
but are not limited to—the following issues:

– High fragmentation of telemetry signals. The data was registered mainly
during the important stages of the OPS-SAT mission.

– Missing data, reflected as a high number of “gaps” in the telemetry readouts.
– Presence of the recurring parts with noisy fragments or with an unusual

number of peaks (not necessarily abnormal) in the signal.
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Fig. 1. A preview of three different OPS-SAT telemetries for a long (several weeks)
timeframe. We can observe that the signal can easily become aperiodic and noisy, hence
exploiting the approaches which focus on predicting the nominal signal and confronting
it with the actual readouts [9] can easily become infeasible.

– Non-uniform acquisition frequency rates (the signal may be acquired
hourly, daily, or even monthly), and there might be some radical changes
in the signal characteristics along the analyzed months (due to e.g., various
changes in satellite operations or hardware characteristics).

– Lack of periodic and consistent nominal data which would be captured
over a long period of time.

The above-discussed telemetry channels were split into sub-parts, roughly
corresponding to their periods, and they were labeled as nominal or anomalous
by a human rater, and then the assigned labels were verified by the OPS-SAT

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_21

https://dx.doi.org/10.1007/978-3-031-35995-8_21
https://dx.doi.org/10.1007/978-3-031-35995-8_21


Machine learning detects anomalies in OPS-SAT telemetry 5

Operations Team using the OXI labeling system7. Overall, we collected 1273
nominal and 328 anomalous telemetry fragments for training, and 416
nominal and 117 anomalous fragments for testing, with the latter frag-
ments, never seen during training (this training-test dataset split is stratified
and it was generated randomly over all available telemetry fragments, to include
approximately 25% of all telemetry fragments in the test set).

2.2 Detecting OPS-SAT Anomalies Using Machine Learning

In our machine learning anomaly detection pipeline, we (1) extract an ar-
ray of discriminative features from the telemetry fragments8, and such
feature vectors are later (2) fed to a supervised learner which performs
prediction (here, we tackle a binary classification task of determining abnormal
vs. nominal telemetry fragments). For each telemetry segment, we extract the
following 18 features (referred to as (a–p)), with some of them already proven
to be discriminative for handling the classification tasks in telemetry data [16]:

– The features reflecting the basic statistics within the telemetry fragment
(those include its (a) duration, (b) length, (c) mean value, (d) variance, and
(e) standard deviation of a segment).

– The number of peaks within the fragment. More specifically, we sum the
number of peaks with prominence of at least 10% of the segment value, and
check this statistic for several segment representations, i.e., for (f) raw seg-
ment, alongside for its two variants after applying a smoothing transformation,
using the “lighter” (g), and “stronger” smoothing(h), and for its (i) first and
(j) second derivative.

– The segment’s variance using its (k) first and (l) second derivative.
– The squared sum of (m) the number of missing readouts.
– The segment’s (n) weighted length (relative to its sampling that also differs

across different telemetry segments in the dataset), and (o) the variance
relative to segment’s length and (p) to the segment’s duration.

Our extractors are independent of the length of the segment, and they can be ef-
fectively exploited to extract features from the segments with missing readouts—
this may not be possible while operating over the raw telemetry data.

To tackle the issue of the relatively small amount and limited representa-
tiveness of OPS-SAT training samples, we introduce several data augmentation
techniques specifically targeting the telemetry segments. Although they can be
effectively used to synthesize both nominal and anomalous segments based on
the actual samples, we augment the nominal examples only, in order to ensure
that the abnormal signal segments were validated by the OPS-SAT Operations
7 The OXI labeling system has been developed by KP Labs and it is available at https:
//oxi.kplabs.pl. OXI allows for not only investigating time-series data, together
with the ground-truth information but also for generating ground truth.

8 It is of note, however, that our approach can be applied to any time-series data, not
only satellite telemetry.
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Team (and they are not the result of synthetic data augmentation). We introduce
the following data transformations to augment such telemetry samples:

– Mirroring a segment over the OX axis (ω1)—a segment is flipped along
the horizontal axis.

– Mirroring a segment over the OY axis (ω2)—in a single telemetry chan-
nel, two consecutive nominal segments are flipped along their median value,
starting from the half length of the first segment to the half of the second one.

– Shifting a segment (ω3)—in a single telemetry channel, two consecutive
nominal segments are shifted for a certain number of steps (steps of 15% and
25% of the segments’ length were applied). The resulting segment starts at the
shifted (by a given number of steps) starting position, and it finishes at the
shifted ending position of the first segment. Hence, the last point of the first
(shifted) segment will overlap the second segment—to avoid information leaks
across the training and test sets, both neighboring segments that undergo this
augmentation step must be originally included in the training set.

Finally, once the features are extracted and the training set has been poten-
tially augmented, such nominal and anomalous examples are fed to the classifier
to perform training. We may easily exploit any supervised learner in the pro-
posed approach—this flexibility of our processing chain is shown in Section 3.

3 Experimental Validation

The main objective of our experimental study is to investigate the classifica-
tion performance of the proposed classification engine for detecting anomalies in
real-life OPS-SAT telemetry data. On top of that, we are aimed at verifying the
flexibility of the processing chain, alongside the impact of improving the clas-
sification part of the pipeline working on a stable set of extracted features. We
focus on classic classification models, including widely-adopted random forests,
multi-layer perceptrons, adaptive boosting algorithms, k-nearest neighbors and
support vector machines (SVMs) with a linear kernel function. To quantify the
performance of the models, we calculate their accuracy, precision, recall and F1

score, as well as the Matthews correlation coefficient (rϕ) over the unseen test set,
with rϕ being the measure commonly used in imbalanced classification tasks [3].
All metrics should be maximized, with one indicating their perfect score. We split
the experimental study into two experiments: in Experiment 1 (Section 3.1), we
train the classification models over the original data only, whereas in Experiment
2 (Section 3.2) we benefit from data augmentation of nominal training samples.

3.1 Experiment 1: Exploiting Original Training Dataset

In the preliminary experiment, we optimized the most important hyperparame-
ters of the classification models using a five-fold cross-validation procedure over
the training set [19]. Thus, we ultimately had the maximum depth of random
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forests of 20 and a maximum allowed number of features of 50% and 50 esti-
mators; the size of the hidden layer in the multi-layer descriptor was 400; for
adaptive boosting, we used 500 estimators; for SVMs, the regularization (C)
parameter was set to 8; and k = 5 for k-nearest neighbors. The results obtained
for such optimized models are gathered in Table 1 (they are sorted according
to rϕ). Although precision exceeds 0.92 for the k-nearest neighbor classifier, we
can observe rather low rϕ values across all investigated algorithms, indicating
that the number of false positives (i.e., abnormal telemetry segments incorrectly
classified as nominal) is large. This kind of error is, however, unacceptable in
practice, as it could lead to missing anomalous events, e.g., in the on-board fault
detection, isolation, and recovery system. On the other hand, a too large number
of false negatives can deteriorate the usability of the system, if such incorrectly
classified nominal segments are to be reviewed by the operations team before
taking action in response to potential on-board anomalies. In practice, the latter
issue is commonly a more severe problem, especially if the number of false alarms
gets (very) large. In this work, we hypothesize that deploying data augmentation
routines to synthesize nominal training examples may help deal with those issues
by generating a larger and more representative training set that will allow us to
elaborate well-generalizing models.

Table 1. The classification results obtained over the test set using machine learning
models with default parameterization (sorted by rϕ). The best results are boldfaced.

Model Accuracy Precision Recall F1 score rϕ
Random forest 0.9294 0.8826 0.8050 0.8233 0.7830
Multilayer perceptron 0.8958 0.7814 0.8077 0.7688 0.7215
Adaptive boosting 0.9101 0.8138 0.7774 0.7646 0.7151
k-nearest neighbors 0.9051 0.9204 0.7495 0.7643 0.7133
SVM with linear kernel 0.8957 0.8249 0.7132 0.7369 0.6765

3.2 Experiment 2: Augmenting Training Datasets

Table 2. The summary of the segment data set for OPS-SAT telemetry anomalies.

Class Training set ω1 ω2 ω3 Validation set
Nominal 1273 2677 703 1406 416

Anomalous 328 — — — 117

The augmentation methods can substantially increase the size of the training
set (Table 2). Several examples of augmented training samples are visualized in
Fig. 2, where each column represents one telemetry segment (marked with a solid
line) and its augmented version (rendered as a dashed line). In this experiment,
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we initially trained a random forest classifier (as it achieved the largest F1 score
in the previous experiment across all supervised models) using all versions of
the augmented training sets. To better understand the impact of specific data
augmentation routines on the overall performance of the classifier, we employed
them separately (and then collectively), hence obtaining four augmented training
sets. In Table 3, we gather the performance gain for each augmented dataset
separately, and for all of them collectively (see the last row in this table). We
can appreciate that the biggest improvement in the random forest’s accuracy
is obtained while exploiting ω1 (mirroring training segments over the OX axis),
as well as while utilizing all augmentation techniques (ω1 ∧ ω2 ∧ ω3). Here, the
results are reported for the very same test set to ensure fair comparison.

Fig. 2. The examples of the nominal telemetry segments (Ω, green solid lines), with
their augmented versions with different parameterizations (ω1, ω2, ω3, blue and violet
dashed lines). Each column provides one selected telemetry segment and its augmented
versions. Some augmentations have been applied more than once, thus we have syn-
thesized segments denoted as: ω

′
1, ω

′′
1 , ω

′′′
1 . The presented segments are extracted from

the following OPS-SAT telemetry channels: xID = 100 from CADC0872, xID = 788
from CADC0874, and xID = 1074 from CADC0888.
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Table 3. The benefit of exploiting data augmentation, quantified as the gain in a metric
when compared to the classifier trained over the original training set. The positive and
negative values indicate an increase or decrease in the model’s performance.

Augmentation Accuracy Precision Recall F1 score rϕ
ω1 0.0491 0.1055 −0.0764 0.0109 0.0535
ω2 0.0064 −0.0363 −0.0615 −0.0592 −0.0535
ω3 0.0347 0.0870 −0.0521 −0.0054 0.0243

ω1 ∧ ω2 ∧ ω3 0.0548 0.1174 −0.0978 −0.0079 0.0393

Knowing that the latter approach results in the largest accuracy and preci-
sion gains (hence, we minimize the number of false positive alarms), we selected
this augmented version of the training set for further experiments with all other
supervised models. Here, we optimized their hyperparameters following the five-
fold cross-validation procedure over the augmented training set, resulting in 400
neurons in the hidden layer of the multi-layer perceptron, 500 estimators in adap-
tive boosting, C = 8 for an SVM, and k = 5 for k-nearest neighbors. In Table 4,
we summarize the classification measures obtained using all optimized classifiers,
with the random forest model (max. depth of 25) exceeding the accuracy of 0.98,
and the corresponding rϕ amounting to 0.826, significantly outperforming the
random forest model trained over the original training set (Table 1).

To provide a comparison for those metrics, a deep learning algorithm [9] ob-
tained precision: 0.855 and recall: 0.855 (it was evaluated for the SMAP Space-
craft data), and precision: 0.926 and recall: 0.694 (for the Curiosity telemetry
dataset). Although we are aware that comparing the algorithms over different
sets may easily become biased, we can indeed observe that our classification
models were able to exceed the reported metrics for very challenging OPS-SAT
telemetry data which indicates their significant generalization capabilities and
robustness against noisy and difficult time-series data.

Table 4. The results (obtained over the test set) elaborated using all investigated
classification models with optimized hyperparameters and trained over the augmented
training set (ω1 ∧ ω2 ∧ ω3), sorted by rϕ. The best results are boldfaced.

Model Accuracy Precision Recall F1 rϕ
Random forest 0.9843 1.0000 0.7317 0.8239 0.8261

Multi-layer perceptron 0.9792 0.8716 0.7437 0.7795 0.7815
Adaptive boosting 0.9812 0.9422 0.6858 0.7817 0.7893

SVM with linear kernel 0.9729 0.9097 0.6154 0.6683 0.6802
k-nearest neighbors 0.9491 0.8662 0.6637 0.7186 0.7008

Finally, for the best model (random forest), we present the confusion matrix
in Fig. 3, which—besides presenting all measures (the number of true positives,
true negatives, false positives, and false negatives: NTP , NTN , NFP , and NFN ,
respectively) brings the examples of correctly and incorrectly classified test seg-

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_21

https://dx.doi.org/10.1007/978-3-031-35995-8_21
https://dx.doi.org/10.1007/978-3-031-35995-8_21


10 B. Ruszczak et al.

ments. The classifier correctly identified 82% abnormal segments (96/117), and
99% (413/416) nominal segments, showing its potential practical utility for on-
board anomaly detection. Additionally, we can observe a significant heterogene-
ity of the test segments, highlighting the difficulty of the classification task.

Fig. 3. The confusion matrix for the best classifier (random forest trained over the
augmented training set with optimized hyperparameters), and the examples of cor-
rectly and incorrectly classified test segments (with the green and orange background,
respectively). These example segments were extracted from the following OPS-SAT
telemetries: xID = 1782 from CADC0894, xID ∈ {5, 13, 1823} from CADC0872.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_21

https://dx.doi.org/10.1007/978-3-031-35995-8_21
https://dx.doi.org/10.1007/978-3-031-35995-8_21


Machine learning detects anomalies in OPS-SAT telemetry 11

4 Conclusions and Future Work

Detecting anomalies in spacecraft telemetry data is of paramount practical im-
portance to appropriately respond to various unexpected events that may hap-
pen on-board an operational satellite. Albeit there exist data-driven approaches
toward this task, they are virtually never validated over telemetry channels cap-
tured by a real spacecraft. In this paper, we tackled this problem and proposed
an end-to-end machine learning pipeline for detecting such abnormalities. Our
approach benefits from hand-crafted feature extractors which are independent
of the length of the telemetry segments which are later classified by a supervised
learner as nominal or anomalous. To understand its generalization capabilities,
we validated it over a curated (and validated by the ESA Operations Team) set
of nominal and abnormal telemetry channels acquired on-board OPS-SAT—a
nanosatellite operated by ESA. The experiments indicated that our technique
offers high-quality detection of anomalies from OPS-SAT telemetry. Also, we
showed that exploiting the suggested data augmentation routines allows for sig-
nificantly improving the generalization capabilities of the classification models.

Our current research efforts are focused on deploying the proposed anomaly
detection system on-board OPS-SAT. It is of note that the model has been
already trained on the ground, and we are in the process of uplinking it to
the satellite. Also, we are working on utilizing our method for other missions,
to further prove its generalizability. Finally, it would be interesting to exploit
unsupervised clustering over large-scale telemetry datasets while utilizing our
feature extractors. This may help accelerate the process of generating ground
truth for supervised models (as pre-classified telemetry segments would have to
be verified by humans), and possibly uncover intrinsic characteristics of such
time-series data that might have not been observed by the Operations Teams.
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