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Abstract. Heterogeneous graph neural networks have shown superior capabil-
ities on graphs that contain multiple types of entities with rich semantic infor-
mation. However, they are usually (semi-)supervised learning methods which
rely on costly task-specific labeled data. Due to the problem of label sparsity
on heterogeneous graphs, the performance of these methods is limited, prompt-
ing the emergence of some self-supervised learning methods. However, most
of self-supervised methods aggregate meta-path based neighbors without con-
sidering implicit neighbors that also contain rich information, and the mining
of implicit neighbors is accompanied by the problem of introducing irrelevant
nodes. Therefore, in this paper we propose a self-supervised deep heteroge-
neous graph neural networks with contrastive learning (DHG-CL) which not
only preserves the information of implicitly valuable neighbors but also further
enhances the distinguishability of node representations. Specifically, (1) we de-
sign a cross-layer semantic encoder to incorporate information from different
high-order neighbors through message passing across layers; and then (2) we
design a graph-based contrastive learning task to distinguish semantically dis-
similar nodes, further obtaining discriminative node representations. Extensive
experiments conducted on a variety of real-world heterogeneous graphs show
that our proposed DHG-CL outperforms the state-of-the-arts.

Keywords: Heterogeneous graph neural networks · Self-supervised learning ·
Contrastive learning.

1 INTRODUCTION

Heterogeneous graphs are widely present in real-world networks, which can model
various types of entities and their relations, such as academic networks, social net-
works, etc. Fig. 1(a) shows an example of a heterogeneous graph. Recently, hetero-
geneous graph neural networks (HGNNs) have become an emerging tool for mining
heterogeneous graph-structured data by aggregating the properties of neighbors. Pre-
cisely because of preserving both attribute and structural information, HGNNs show
superior performance in various graph-data mining tasks such as node classification,
link prediction, and graph classification. In fact, HGNNs are usually trained under the
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Fig. 1. A toy example of a heterogeneous graph (ACM) and its meta-path. (a) A heterogenous
graph ACM consists three types of nodes (author (A), paper (P) and subject (S)) and two types
of relations. (b) Two meta-paths involved in ACM (i.e., Paper-Author-Paper and Paper-Subject-
Paper).

(semi-)supervised learning paradigm, which means that the process requires the task-
specific labeled data. In most real-world scenarios, it is very difficult and expensive to
obtain labeled data. For example, in the case of microbiome networks, labeling these
data requires domain-specific knowledge which is often scarce or non-existent [33].

Motivated by methods [19, 20], self-supervised learning capable of training deep
models on unlabeled data promises to be a solution. Contrastive learning as a typi-
cal method of self-supervised learning has drawn massive attention for its outstand-
ing performance [1, 4, 23, 29], exploiting instance discrimination as a pretext task to
learn more discriminative representations. Recently, some efforts have been devoted
to investigating the potential of contrastive self-supervised learning on heterogeneous
graphs. For example, DMGI [17] using mutual information and HeCo [28] using co-
contrastive learning achieve desirable results on heterogeneous graphs. However, they
only focus on aggregating meta-path based neighbors without considering implicit
neighbors that also contain rich information.

To fully utilize the information of implicit neighbors and reduce the influence of
irrelevant neighbors on heterogeneous graphs, in this paper, we take an attempt to
perform a contrastive self-supervised learning on heterogeneous graphs. However,
mining the valuable neighbors on heterogeneous graphs is a non-trivial problem, pre-
senting us with two key challenges:

1. How to fully mine the relevant neighbors? It is well known that meta-paths [22] can
describe different semantic contents between the nodes and their neighbors. How-
ever, due to the complexity of heterogeneous graphs, there are many deep implicit
semantics on heterogeneous graphs and it may be informative for the learning of
node representations. For example, in Fig. 1, it only uses the local neighbors of
the paper P1 to predict the topic of P1 through the meta-path PAP. However, the
paper P3 and P1’s neighbor P2 belong to the same subject and P3 is also helpful
to predict the topic of P1. That is to say, P3 is the implicit valuable neighbor of P1.
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Therefore, modeling these implicit higher-order semantics between the nodes and
their neighbors is critical for HGNNs.

2. How to alleviate the influence of irrelevant neighbors? We note that for each node,
increasing the order of neighbors will lead to an increase in the number of irrele-
vant neighbors. Contrastive learning aiming to pulling positive samples together
and pushing apart negative samples can be used to distinguish irrelevant neigh-
bors. However, there is a high correlation between nodes in the graph, so we can-
not treat all other nodes as negative samples like in images [1] and sentences [4].
Therefore, it is imperative to construct a graph-based contrastive learning task on
heterogeneous graphs.

To address the above challenges, we propose a self-supervised deep heteroge-
neous graph neural networks with contrastive learning, named DHG-CL, which not
only preserves the information of implicitly valuable neighbors but also further en-
hances the distinguishability of node representations. Specifically, we first design a
projection function on heterogeneous graphs that maps different types of nodes into
the same low-dimensional space. Next, to address the first challenge, we design a
cross-layer semantic encoder, including a semantic-aware attention mechanism and
a cross-layer message passing mechanism, which focuses on implicitly aggregating
high-order neighbors in different semantic spaces and explores the deep semantics.
Then, to address the second challenge, we introduce a graph-based contrastive learn-
ing task to distinguish irrelevant neighbors, further learning discriminative represen-
tations. More specifically, we construct a graph-based sampling strategy: (1) Inspired
by the data augmentation [4], we pass the same node to the encoder twice with stan-
dard dropout to obtain a positive pair, aiming to generate a different contrastive object
without changing the graph topology, so that we can get a strong supervision signal.
(2) Because of the high correlation between nodes on the graph, we only treat nodes
that are semantically irrelevant as negative samples. To delineate semantic irrelevance,
we take the nodes with the number of meta-paths less than the threshold to the target
node as negative samples. To summarize, the main contributions of this paper are as
follows:

– We propose a self-supervised deep heterogeneous graph neural networks with
contrastive learning. Unlike previous meta-path based methods, DHG-CL can fully
mine the higher-order valuable neighbors on heterogeneous graphs to achieve a
more informative node representation.

– We propose a graph-based contrastive learning task on heterogeneous graphs.
Specifically, we introduce a dropout mask and semantic based negative sampling
strategy to further learn discriminative representations.

– We conduct rich experiments on four real-world datasets and the results demon-
strate that the proposed DHG-CL significantly outperforms the state-of-the-arts.

2 RELATEDWORK

In this section, we review recent developments in heterogeneous graph neural net-
works and contrastive learning.
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2.1 Heterogeneous Graph Neural Networks

Graph neural networks have attracted extensive attention due to their superior per-
formance in modeling graph-structured data. Many researchers [26, 30] have made
a detailed summary of them. Some works [11, 24] propose to use convolutional neu-
ral networks and attention mechanisms for homogeneous graph. In recent years, some
HGNNs [2,6–8,27] are proposed to learn node representations on heterogeneous graphs.
For example, Wang et al. [27] propose a heterogeneous graph attention network named
HAN consisting of node-level and semantic-level attention. Ji et al. [8] propose a
deeper architecture and improve the node-level aggregating process to alleviate the
semantic confusion. However, since the above HGNNs usually rely on a large amount
of labeled data, they fail to fully perform well in sparse labeled scenarios. In this pa-
per, we perform a self-supervised learning on heterogeneous graphs to learn the deep
structural properties of graphs.

2.2 Contrastive Learning

The methods of contrastive learning have shown their success in self-supervised learn-
ing by distinguishing positive and negative samples [13,14]. In CV [1,5] and NLP [4,16],
many excellent contrastive learning methods have emerged. For example, Chen et
al. [1] propose SimCLR, which utilizes data augmentation techniques to generate two
related views as a positive pair by randomly transforming a given image. Gao et al. [4]
propose SimCSE to perform data augmentation through dropout operations. In graph
learning, studies on contrastive learning [9, 25, 28] are proposed to learn node rep-
resentations. Veličković et al. [25] propose DGI to maximize the mutual information
between global representation and local patches. On heterogeneous graphs, Park et
al. [17] propose DMGI to integrate the node embeddings by introducing the consen-
sus regularization framework and the universal discriminator. Wang et al. [28] propose
HeCo, which constructs a cross-view contrastive learning task after learning node
embeddings from two views (network schema and meta-path views). However, both
of them ignore the mining of deep implicit semantics, failing to explore neighbors
other than the meta-path based neighbors. To go one step further, we implement a
cross-layer semantic encoder to explore implicitly valuable neighbors, and then de-
sign graph-based contrastive learning to reduce the influence of irrelevant neighbors.

3 PRELIMINARY

In this section, we will present several basic concepts of heterogeneous graphs.

Definition 1. Heterogeneous Graph. A heterogeneous graph is defined as a graph
G = (V, E ,A,R), where V and E denote the sets of nodes and edges. It is also associ-
ated with type mapping functions, including a node type mapping function ϕ : V → A
and an edge type mapping function φ : E → R.A andR denote a set of node types and
a set of edge types, where |A|+ |R| > 2.
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Definition 2. Meta-path. A meta-path P is defined as a path which consists of a set
of nodes and edges. It is also in the form of A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1(abbreviated

as A1A2 · · ·Al+1), which can also be described as R1 ◦R2 ◦ · · · ◦Rl, where ◦ denote a
combination operator on relations.

Definition 3. Semantic context. Given a meta-path P , the semantic context NP
i of

node i is defined as a set of neighbors connected to node i via meta-path P .

4 THE PROPOSED DHG-CL MODEL

In this section, we will introduce the proposed DHG-CL in detail and Fig. 2 presents the
overview of DHG-CL. We encode deep implicit semantics on heterogeneous graphs
through a semantic-aware attention mechanism and a cross-layer message passing
mechanism. To further enhance the distinguishability of embeddings, we introduce
dropout mask and semantic based negative sampling strategy to construct a graph-
based contrastive learning task. Finally, DHG-CL iteratively updates node embeddings
via optimizing the contrastive loss.
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Fig. 2. The overview of the proposed DHG-CL.

4.1 Node Transformation

On heterogeneous graphs, different types of nodes lie in different feature spaces due
to the heterogeneity of nodes. Therefore, we first apply a type-specific transformation
to project different types of nodes into the same feature space. Specifically, we design
a transformation matrix Wϕi

for node i with type ϕi:

hi = σ (Wϕi · fi) , (1)

where hi is the projected embedding of node i, σ is the activation function and fi is
the feature of node i. hi can also be viewed as the node embedding h0

i .
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4.2 Cross-layer Semantic Encoder

To capture the deep implicit semantics, we design a cross-layer semantic encoder, illus-
trated as Fig. 3. Now, we give a brief introduction to it, including neighbor aggregation
and message combination:

hl
i ← Combinel

(
Aggregatel

(
hl−1
j

)
, hl−1

i

)
, (2)

where Aggregatel (·) is the neighbor aggregation function in layer l, Combinel (·) is
the message combination function in layer l, hl−1

j is the output embedding of node j

in layer l−1, node j ∈ Ni, denoted as
{
NP1

i , . . . ,NPm
i

}
,NPn

i is the set of neighbors
of node i in meta-path Pn.

Neighbor Aggregation Since there are multiple semantic contexts, in order to obtain
sufficient expressive ability, we design a semantic-aware attention mechanism. To be
specific, we do not simply fuse them in the same space [27], but instead maintain
its own semantic space for the different semantics. Therefore, we design a semantic
projection to map semantic context into their own space:

hl
j,P = W l

P · hl−1
j , (3)

where W l
P is the semantic-specific transformation matrix, node j ∈ NP

i .
After that, different neighbors will make different contributions to the target node,

so we design an intra-semantic attention to preserve the important information of
neighbors as much as possible:

elij,P = LeakyReLU
(
alP

T · [hl
i,P∥hl

j,P ]
)
, (4)

where elij,P indicates the importance of node j to node i in meta-path P , alP is the
semantic-specific attention vector for meta-path P , ∥ is the concatenate operation,
LeakyReLU (·) is the activation function (with negative slope a = 0.01).

Then we perform mask attention which means we only compute elij,P for nodes
j ∈ NP

i to inject the graph structure into the model. After obtaining the different
importance of nodes, we normalize them to get the weight αl

ij,P by softmax function:

αl
ij,P =

exp
(
LeakyReLU

(
alP

T · [hl
i,P∥hl

j,P ]
))

∑
k∈NP

i

exp
(
LeakyReLU

(
alP

T · [hl
i,P∥hl

k,P ]
)) . (5)

Next, we aggregate the context information with the corresponding weights:

h̃l
i,P = σ

 ∑
j∈NP

i

αl
ij,P · hl

j,P

 , (6)
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where h̃l
i,P is the learned embedding of node i in semanticP . For example, as shown in

Fig. 3, we learn the embedding of node i with semantics “co-author” and “co-subject”
in ACM. Then, we design a concatenation operation to fuse the semantics in different
spaces, and then map the fused embedding of node i back to its original space:

h̃l
i = W l

o · Concatenate
(
h̃l
i,P1

, . . . , h̃l
i,Pm

)
, (7)

where W l
o is the transformation matrix, h̃l

i is the aggregated embedding of node i in
layer l.

Message Combination For meta-path based HGNNs, they only need one layer to
aggregate the information of neighbor j into node i. However, in this way the model
can only learn a single manually designing semantic, ignoring the implicit higher-
order neighbors. To capture implicit higher-order proximity information, we need a
deeper model. Therefore, we stack our model to L layers, which enables nodes to reach
a large proportion of nodes on the graph and mines the deeper semantics. In addition,
to preserve the semantic information of each layer as much as possible, we design a
cross-layer message passing mechanism:

hl
i = hl−1

i + h̃l
i, (8)

where hl
i is the output embedding of node i in layer l.
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Fig. 3. The cross-layer semantic encoder.

4.3 Graph-based Contrastive Learning

On heterogeneous graphs, there are various implicit relationships between nodes,
which usually contain rich semantics. With the proposed encoder, we successfully fuse
the rich information among nodes. However, as the order of neighbors increases, the
target node will fuse the information of many irrelevant nodes. To enhance the distin-
guishability of representations, we need to push away nodes that have little semantic
relationship with the target node.

The customized meta-path is usually based on domain knowledge, which reflects
the known high-order semantics of nodes under the specific task. For example, the
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meta-path PAP contains a semantic: two papers published by the same author are
more similar in topic, which is more helpful to distinguish the category of the paper.
Therefore, the number of meta-paths connected between two nodes reveals their simi-
larity. That is, the higher the number is, the more similar they are. Given nodes i and j,
if node j has Cij

n instances to reach node i through meta-pathPn, we define a function
to measure the number of meta-path connections between nodes i and j:

Cij =

m∑
n=1

Cij
n . (9)

Motivated by SimCSE [4], the key factor for us to obtain positive pairs is to in-
dependently sample xi and x+

i by using the dropout mask. Specifically, we pass the
same node to the pre-trained encoder twice. By exploiting the standard dropout twice,
we can obtain two different representations as a positive pair without changing the
graph topology. Then, we take nodes with Cij less than Tneg as negative samples. The
model learns the contrastive information by predicting the positive sample among the
negative samples.

Before calculating the contrastive loss, we feed embeddings we get from the en-
coder into a multilayer perceptron to project them into the contrastive learning space:

Zi = W2 · σ
(
W1 · hL

i + b1
)
+ b2, (10)

where W1 and W2 are the transformation matrices, hL
i is the output embedding of

node i from encoder. For the contrastive learning task, we simply feed the same input
to the encoder twice. In this way, we can obtain two embeddings with different dropout
masks and we define them as ZDi

i and Z
D

′
i

i , where Di and D
′

i are the different dropout
masks. Finally, we calculate the contrastive loss as follows:

Li = − log
esim(Z

Di
i ,Z

D
′
i

i )/τ∑
j∈Si\{i}

esim(Z
Di
i ,Z

Dj
j )/τ +

∑
j∈Si

esim(Z
Di
i ,Z

D
′
j

j )/τ

, (11)

whereSi is the set of positive and negative samples of node i,Si = {i, j|j ∈ V andCij <
Tneg}, Tneg is the threshold for sampling negative samples, τ is a temperature param-
eter, sim(Z1, Z2) is the cosine similarity ZT

1 ·Z2

||Z1||·||Z2|| .

5 EXPERIMENTS

5.1 Experimental Setup

Datasets We conduct experiments on four real-world networks. The detailed descrip-
tions are summarized in Table 1.

– ACM [32]. ACM is extracted from KDD, SIGMOD, SIGCOMM, MobiCOMM, and
VLDB. The target nodes are papers which are divided into three classes: Database,
Wireless Communication, and Data Mining.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_19

https://dx.doi.org/10.1007/978-3-031-35995-8_19
https://dx.doi.org/10.1007/978-3-031-35995-8_19


Self-supervised Deep Heterogeneous Graph Neural Networks 9

Table 1. The statistics of four datasets.

Dataset Nodes Edges Meta-path

ACM
paper (P):4,019 P-A:13,407 PAPauthor (A):7,167 P-S:4,019 PSPsubject (S):60

DBLP

author (A):4,057 P-A:19,645 APApaper (P):14,328 P-C:14,328 APCPAconference (C):20 P-T:85,810 APTPAterm (T):7,723

Freebase

movie (M):3,492 M-A:65,341 MAMactor (A):33,401 M-D:3,762 MDMdirect (D):2,502 M-W:6,414 MWMwriter (W):4,459

IMDB
movie (M):3,676 M-A:11,028 MAMactor (A):4,353 M-D:3,676 MDMdirect (D):1,678

– DBLP [3]. DBLP is extracted from the computer science bibliography website.
The target nodes are authors which are divided into four classes: Database, Data
Mining, Artificial Intelligence, and Information Retrieval.

– Freebase [12]. Freebase is a dataset about movies extracted from Freebase. The
target nodes are movies which are divided into three classes: Action, Comedy and
Drama.

– IMDB [32]. IMDB is a subset of dataset IMDB. The target nodes are movies which
are divide into three classes: Action, Comedy, and Drama.

Baselines We compare the proposed DHG-CL with three categories of baselines,
including: two unsupervised homogeneous methods (i.e., DeepWalk, DGI), four un-
supervised heterogeneous methods (i.e., Mp2vec, HERec, DMGI, HeCo), and a semi-
supervised heterogeneous method (i.e., HAN), to verify the effectiveness of DHG-CL.

– DeepWalk [18]. It performs random walk on homogeneous graphs and learns the
representations of nodes through the skip-gram model.

– DGI [25]. It maximizes the mutual information between the graph-level summary
and the local patches.

– Mp2vec [2]. It performs meta-path based random walk on heterogeneous graphs
and learns the representations of nodes through the skip-gram model.

– HERec [21]. It utilizes a meta-path based random walk strategy to filter node
sequences and applies DeepWalk to embed the heterogeneous graphs.

– DMGI [17]. It minimizes the disagreements among node embeddings and em-
ploys a universal discriminator to discriminate the graph-level summary and local
patches.

– HeCo [28]. It adopts network schema and meta-path structure as two views to
perform contrastive learning on heterogeneous graphs.

– HAN [27]. It adopts hierarchical attention mechanism to model both node-level
and semantic-level importance.
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Implementation Details For all baselines, we use the settings in their original pa-
per and modify a few parameters. Specifically, for random walk based methods like
DeepWalk, Mp2vec and HERec, we set the walk length to 20, the window size to 5, the
number of walks to 10 and the number of negative samples to 5. For Deepwalk, we ig-
nore the heterogeneity of nodes and test its performance on the whole heterogeneous
graph. For DGI, Mp2vec and HERec, we test all the meta-paths for them and report
the best performance.

For the proposed DHG-CL, we adopt Adaptive Moment Estimation (Adam) [10]
optimizer, set the dimension of node embeddings to 64, tune the learning rate from
0.0005 to 0.001, and tune the patience for early stopping from 20 to 50. For the cross-
layer semantic encoder, we set the dimension of the semantic space to 64, and the
number of layers to 2. For the contrast task, we tune dropout including feature dropout
from 0.1 to 0.9, attention dropout from 0.1 to 0.9, temperature coefficient τ from 0.5 to
0.9, and negative threshold from 3 to 5. To reduce randomness, we perform all methods
10 times and report the average results.

Table 2. Comparison results (%±σ) for node classification.

Datasets Metrics Split HAN DeepWalk DGI Mp2vec HERec DMGI HeCo DHG-CL

ACM

Ma-F1
20 87.61±0.5 66.04±2.1 82.24±3.4 68.05±1.0 68.67±0.7 87.99±0.5 88.33±0.2 89.64±0.3
40 87.68±0.6 69.70±1.2 84.01±2.6 66.30±0.4 66.64±0.6 88.23±0.4 87.28±0.4 90.71±0.2
60 86.28±0.8 63.64±2.0 84.79±2.5 67.77±0.8 68.25±1.5 89.48±0.3 88.97±0.4 90.88±0.1

Mi-F1
20 87.53±0.5 62.46±3.9 81.79±3.9 67.98±1.9 68.82±1.2 87.30±0.6 88.38±0.3 89.28±0.4
40 87.89±0.6 71.87±2.8 83.66±3.1 67.81±0.3 68.87±2.1 87.78±0.4 87.02±0.4 90.51±0.3
60 86.67±0.5 67.69±4.7 84.36±2.9 70.53±1.0 71.15±1.7 89.00±0.4 88.44±0.5 90.55±0.3

DBLP

Ma-F1
20 89.28±2.4 82.14±0.7 88.95±0.3 89.56±0.8 87.74±1.3 89.46±0.1 91.06±0.3 92.24±0.7
40 89.86±1.9 85.01±0.4 87.98±0.4 90.71±0.6 89.24±0.9 89.44±0.1 89.90±0.5 91.07±0.8
60 89.55±1.5 85.69±0.3 90.87±0.4 91.52±0.8 89.90±0.7 88.68±1.0 90.90±0.4 91.96±0.5

Mi-F1
20 89.84±2.4 83.00±0.5 90.04±0.3 90.12±0.8 88.51±1.2 90.28±0.1 91.76±0.3 92.74±0.7
40 90.24±1.9 85.26±0.4 88.74±0.3 91.12±0.6 89.81±0.9 90.11±0.1 90.22±0.6 91.46±0.9
60 90.72±1.1 86.55±0.4 91.85±0.3 92.28±0.7 90.86±0.6 89.20±0.8 91.77±0.3 92.71±0.6

Freebase

Ma-F1
20 57.75±0.9 50.15±2.5 55.76±0.9 52.26±1.9 55.48±1.5 54.56±0.5 59.33±0.9 61.74±0.8
40 55.51±1.2 50.87±2.1 54.33±1.4 53.59±1.2 57.31±1.8 51.93±0.8 61.15±0.5 61.28±1.1
60 56.13±0.9 51.50±1.3 53.48±0.7 51.42±1.8 53.69±1.5 50.21±1.0 60.93±0.5 60.62±1.4

Mi-F1
20 61.22±1.7 59.67±1.7 63.85±2.2 54.36±2.1 57.89±1.7 61.60±2.1 61.95±1.1 66.56±0.5
40 57.60±1.5 61.94±1.7 61.76±3.6 55.86±1.5 59.84±1.9 62.86±3.2 63.88±0.8 65.91±0.9
60 58.94±1.2 61.39±1.4 64.47±2.1 53.78±1.9 56.34±1.6 58.85±2.9 63.94±0.8 66.40±1.2

IMDB

Ma-F1
20 39.38±1.8 35.94±0.5 36.20±0.6 36.47±1.5 34.38±1.4 36.86±0.9 39.98±0.9 45.13±1.0
40 40.30±1.9 36.01±1.0 39.56±0.4 36.88±1.3 36.89±1.5 37.93±0.7 40.76±0.8 41.49±0.7
60 44.79±1.3 33.63±1.0 40.82±0.5 37.05±1.9 35.25±1.1 37.22±1.2 41.79±0.8 41.90±0.9

Mi-F1
20 39.98±1.4 35.38±1.1 36.39±0.6 36.73±1.4 35.93±1.7 38.07±0.7 40.14±1.0 44.74±1.0
40 40.50±1.8 36.71±1.2 39.49±0.5 36.97±1.3 37.49±1.3 37.92±0.7 40.96±0.8 41.75±1.1
60 45.27±1.3 35.32±0.5 40.96±0.5 37.08±1.9 37.15±1.1 37.87±1.2 41.87±0.8 43.80±1.3

5.2 Node Classification

After obtaining the learned embeddings of nodes by pre-training model, we feed them
into a linear classifier to predict their labels. Following [28], we choose 20, 40, 60 la-
beled nodes for each class as the training set, 1000 nodes as the validation set, and
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1000 nodes as the test set. Then, we use common evaluation metrics: Macro-F1, Micro-
F1 and report the test performance when it performs best in the validation set. The
comparison results are shown in Table 2.

From Table 2, we can see that DHG-CL achieves the best performance in most
cases. Comparing DeepWalk and Mp2vec, DGI and DMGI, we can see that unsuper-
vised methods for heterogeneous graphs generally outperform unsupervised methods
for homogeneous graphs, which demonstrates the benefits of graph heterogeneity.
We can also see that DHG-CL outperforms HeCo and DMGI, indicating that encod-
ing deep semantic information and introducing data augmentation technology have
brought certain performance improvements. Moreover, DHG-CL outperform the semi-
supervised method HAN, demonstrating the potential capabilities of self-supervised
HGNNs.

5.3 Node Clustering

To more comprehensively evaluate the embeddings of nodes learned by DHG-CL, we
also conduct a node clustering task. In this task, we utilize the K-means algorithm to
perform clustering of nodes and set the number of clusters as the number of classes.
Then, we adopt normalized mutual information (NMI) and adjusted rand index (ARI)
to assess the quality of the clustering results. Since initializing the centroids will affect
the performance of K-means, we repeat the process for 10 times and report the average,
as shown in Table 3. Similarly, the proposed DHG-CL significantly outperforms other
methods in most cases, which further proves the effectiveness of DHG-CL. Since HAN
is trained with label guidance, we do not compare with it.

Table 3. Comparison results for node clustering.

Methods ACM DBLP Freebase IMDB
NMI ARI NMI ARI NMI ARI NMI ARI

DeepWalk 36.59 28.77 66.17 71.25 13.47 14.92 0.35 0.08
DGI 50.13 45.27 69.88 75.63 16.26 17.25 0.09 0.08

Mp2vec 37.75 30.21 73.74 78.81 16.50 17.24 0.47 0.44
HERec 35.97 28.90 72.19 77.75 16.30 17.23 0.44 1.04
DMGI 50.05 40.38 67.05 71.72 16.10 16.29 0.73 1.17
HeCo 57.92 56.45 71.11 76.64 15.23 16.88 0.81 0.84

DHG-CL 60.57 59.07 77.37 81.57 16.74 17.93 0.88 0.96

5.4 Visualization

For a more intuitive evaluation, we conduct the task of visualization on ACM dataset.
We use t-SNE [15] algorithm to visualize embeddings and choose different colors for
different labels.
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(a) DeepWalk (b) DGI (c) HeCo (d) DHG-CL

Fig. 4. Visualization paper embedding on ACM. Each point indicates one paper and its color
indicates the topic.

From Fig. 4, we can observe that Deepwalk and DGI designed for homogeneous
graphs do not perform well and have blurry boundaries, which may lead to confu-
sion among nodes. In contrast, the heterogeneous graph methods perform much better
than the above homogeneous graph methods. It demonstrates that graph heterogene-
ity contains rich information for node classification, node clustering tasks, etc. For
heterogeneous graph method, DHG-CL has higher intra-class similarity and a clearer
boundary than HeCo to distinguish nodes.

5.5 Variant Analysis

In order to verify the effectiveness of each part of DHG-CL, we design two variants of
DHG-CL as follows:
– DHG-CLshallow . To verify the effectiveness of cross-layer semantic encoder, we

remove the cross-layer message passing mechanism in the encoder and set the
number of layers to 1. Therefore, the DHG-CLshallow can only preserve shallow
graph information and cannot capture higher-order semantics.

– DHG-CLnoise. To verify the effectiveness of contrasting learning strategy in DHG-
CL, we introduce other common data augmentation techniques. In specific, we
maintain our negative sampling strategy, and then we sample positive sample
from the new graph constructed by removing a portion of the edges [31].

We use the same parameters for them and conduct comparison between them and
DHG-CL on ACM and DBLP. The comparison results of 20 labeled nodes per class are
shown in Fig. 5. Obviously, DHG-CL significantly outperforms their variants. DHG-CL
performs better than DHG-CLshallow , indicating that it is necessary to preserve both
shallow and implicit higher-order semantics and some helpful information is also in
higher-order semantics. DHG-CL performs better than DHG-CLnoise, which proves
that dropout mask as a novel method is more robust than data augmentation technique
which modifies (e.g. add, remove nodes/edges) the inherent structure of the graph.

5.6 Parameter Analysis

In this section, we investigate the sensitivity of parameters and report the Macro-F1
values of node classification on ACM dataset with different parameters.
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Fig. 5. The comparison of DHG-CL and its variants.

Number of layersL.L describes the depth of the heterogeneous graph, which de-
termines the high-order proximity of the nodes. We vary the value of it and report the
results in Fig. 6(a). We can see that with the increase of the number of layers, the per-
formance of DHG-CL firstly goes up and then decreases drastically when L is higher
than 2. This is because as the number of layers increases, the unhelpful information
will bring more negative gains.

Threshold Tneg . Tneg describes the minimum number of meta-paths between
nodes, which affects the number of negative samples. We explore the performance
of DHG-CL with various thresholds. From Fig.6(b), we can see that with the growth of
the threshold, the performance increases first and then starts to decrease when we set
Tneg = 5. The reason is that the larger the threshold is, the more negative samples are
selected, which will include some semantically similar samples as negative samples.
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Fig. 6. Parameter sensitivity of DHG-CL w.r.t. number of layers L and threshold Tneg .

6 CONCLUSION AND FUTUREWORK

In this work, we propose a novel self-supervised deep heterogeneous graph neural
networks with contrastive learning, named DHG-CL. DHG-CL employs a cross-layer
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semantic encoder and the graph-based contrastive learning to preserve the informa-
tion of implicitly valuable neighbors and further enhance the distinguishability of rep-
resentations. In cross-layer semantic encoder, we design a semantic-aware attention
mechanism and a cross-layer message passing mechanism to capture deep implicit se-
mantics. In graph-based contrastive learning, we innovatively introduce dropout mask
and semantic based negative sampling strategy to further obtain discriminative repre-
sentation. Experimental results on four real-world heterogeneous graphs demonstrate
the effectiveness of DHG-CL.
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