
Vecpar – A Framework for Portability and
Parallelization⋆

Georgiana Mania1,2[0000−0001−7536−5336], Nicholas Styles1[0000−0001−6976−9457],
Michael Kuhn3[0000−0001−8167−8574], Andreas Salzburger4[0000−0001−6004−3510],

Beomki Yeo5,6, and Thomas Ludwig2,7

1 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
{georgiana.mania, nicholas.styles}@desy.de
2 University of Hamburg, Hamburg, Germany

3 Otto von Guericke University Magdeburg, Magdeburg, Germany
michael.kuhn@ovgu.de

4 CERN, 1211, Geneva, Switzerland
andreas.salzburger@cern.ch

5 Lawrence Berkeley National Laboratory, CA 94720, Berkeley, USA
6 Department of Physics, University of California, CA 94720, Berkeley, USA

beomki.yeo@berkeley.edu
7 Deutsches Klimarechenzentrum, Bundesstraße 45a 20146 Hamburg, Germany

ludwig@dkrz.de

Abstract. Complex particle reconstruction software used by High En-
ergy Physics experiments already pushes the edges of computing resources
with demanding requirements for speed and memory throughput, but the
future experiments pose an even greater challenge. Although many su-
percomputers have already reached petascale capacities using many-core
architectures and accelerators, numerous scientific applications still need
to be adapted to make use of these new resources. To ensure a smooth
transition to a platform-agnostic code base, we developed a prototype of a
portability and parallelization framework named vecpar. In this paper, we
introduce the technical concepts, the main features and we demonstrate
the framework’s potential by comparing the runtimes of the single-source
vecpar implementation (compiled for different architectures) with native
serial and parallel implementations, which reveal significant speedup over
the former and competitive speedup versus the latter. Further optimiza-
tions and extended portability options are currently investigated and are
therefore the focus of future work.

Keywords: Performance portability · Parallel computing · Heteroge-
neous computing

1 Introduction

High Energy Physics experiments, such as those at the Large Hadron Collider
(LHC) at CERN [2], use complex algorithms to resolve the huge amounts of data
⋆ This work was supported by DASHH under grant number HIDSS-0002.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


2 G. Mania et al.

from their detectors into accurate descriptions of the particles of interest to be
studied. The number of particles traversing the detector within a given time
interval is frequently increasing, resulting in a significant rise in the multiplicity of
discrete measurements. This will be further exacerbated in future, when the High-
Luminosity LHC will provide events containing up to 10 000 charged particles to
be reconstructed.

Multi-threading and accelerator support could be one possibility to alleviate
this challenge. GPUs, many-core CPUs or architectures like ARM are efficient
solutions in terms of FLOPS per watt, which makes them the perfect candidates
for the world’s most powerful supercomputers. As listed in the November 2022
edition of the TOP500, the ten highest-ranked clusters use a variety of processing
units provided by different vendors including AMD, NVIDIA, IBM, Intel and
ARM [23]. This great diversity comes with a major challenge for programmers:
how to ensure code portability and maintainability, when each targeted platform
requires different low-level assembly code that can be generated by a multitude
of programming languages, language extensions, libraries or tools, some of which
are vendor-proprietary.

Furthermore, there is also the question of how much the currently commonly
used particle reconstruction software could benefit from the heterogeneous archi-
tectures, keeping in mind that the parallelization potential is limited in a number
of places by its sequential nature. Thus, we designed vecpar to be an easy-to-use
framework for parallelization targeting CPU and GPU with single-source C++
code, compiled for different platforms. Domain scientists can easily implement
an algorithm without any previous knowledge of dedicated language extensions
and test its performance on heterogeneous architecture, knowing that vecpar
adds minimal overhead to native implementations. In the end, they can choose
to either gradually port more complex algorithms to vecpar abstractions or to
implement a specific native solution based on the performance results obtained
by the prototype vecpar implementation.

This paper is organized as follows. In Section 2 we present an overview of the
state of the art and related work. Then we introduce the vecpar framework in
Section 3. Preliminary performance results are discussed in Section 4, while the
conclusions and future work are summarized in Section 5.

2 State of the Art and Related Work

In the last 15 years, the HPC community has included support for co-processors,
GPUs and FPGAs into existing state-of-the-art parallel programming standards
like OpenMP [18] and developed new ones like OpenACC [17], OpenCL [7],
and SYCL [20]. Even the C++ standard added concepts like parallel execution
policies, polymorphic allocators, increased support for compile-time polymor-
phism and many others in a first step to unify the execution environment on
heterogeneous devices. Additionally, each vendor provides native interfaces and
dedicated compiler tools, which are optimized to ensure the best performance
out of their hardware. Examples include CUDA [16], the parallel computing

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 3

platform for NVIDIA GPUs and Data Parallel C++ [19], the multi-architecture
programming model proposed by Intel to target all their platforms: CPU, GPU
and FPGA.

Unsurprisingly, these developments offer a trade-off between performance and
portability [9], a difficult decision that needs to be made having several factors
in mind: the available hardware for production environment, the programming
skills needed to write the code, the effort to maintain potentially several native
implementations targeting different platforms and last, but certainly not least,
the parallelization potential of the scientific application. Consequently, this led
to the development of several heterogeneous libraries and frameworks which offer
the flexibility of having single-source C++ code compiled for different platforms
while still ensuring good performance. With complex abstractions for memory and
compute layouts, Kokkos [25] and Alpaka [26] deliver top performance but with
some drawbacks in term of productivity considering that application developers
are usually scientific domain experts rather than computer scientists. Other
libraries like GrPPI [11] and SkePU [8] define similar abstractions to vecpar,
but the former does not ensure GPU offloading support, while the latter is
missing some features (like the filter skeleton) to accommodate some steps of the
reconstruction flow (e.g. filtering the measurements above a specific threshold).
Similar to these two libraries, vecpar aims to decouple scientific algorithms from
parallelization strategies while automatically handling memory transfers, which
can increase development productivity significantly.

Particle physicists from major experiments at CERN already started to adapt
algorithms and event data models for parallel execution and GPU offloading
in software frameworks like AthenaMT [13], CMSSW [6], ALICE O2[21] and
Allen [3]. A Common Tracking Software Project (ACTS) is an experiment-
independent toolkit for track8 reconstruction [4], which offers a realistic and
thread-safe test-bed for R&D projects that explore heterogeneous architectures;
these include the following three libraries. Firstly, algebra-plugin [1] is a linear
algebra library with two available heterogeneous backends: cmath, which provides
custom implementations in C++, CUDA and SYCL, and eigen, uses Eigen
library [12] for data types and mathematical functions. Secondly, vecmem [24] is
a heterogeneous memory management library with C++, CUDA, HIP and SYCL
support, which defines several memory resources, iterable containers based on
polymorphic allocators (e.g. vector and jagged_vector) and utility functions
to support vector-related operations similar to the ones provided by the C++
Standard Library but enhanced with GPU-friendly features. Lastly, detray [22] is
a header-only detector surface intersections based on algebra-plugin and vecmem.

While these libraries increase portability to different platforms and vendors
by implementing the core algorithms inline to the GPU’s restrictive requirements
(e.g. no dynamic memory allocations and polymorphism), they move away from
the concept of single-source repository because they provide dedicated backends
for different architectures; this translates into a substantial development effort
for domain scientists to maintain all of them. Moreover, the applications which

8 A track is a charged particle trajectory through a detector.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


4 G. Mania et al.

use these tools, must assemble a reconstruction chain for CPU and a different
one for GPU. Vecpar is intended to close this gap by delivering comparable levels
of performance portability when using a single-source implementation, without
requiring any knowledge of parallelization strategies.

3 Proposed Approach

In this section we first introduce vecpar’s underlying programming concepts and
then we describe the framework’s design, the Application Programming Interface
(API) and associated compiler support.

Vecpar9 is implemented as an open-source header-only library. To address the
most common scenarios in particle reconstruction (but not necessarily limited to
them), a series of abstractions were defined which allow the inversion of control
of the execution flow from the application itself to the framework. This enables
the separation of concerns between the scientific code and the parallelization
strategies which can be extended, modified or replaced with minimum or even
no impact on the invoking code.

Conceptually, vecpar is based on the map-filter-reduce notations and calcu-
lus from functional programming for specifying and manipulating computable
functions over lists[5] and ensures a thread-safe environment by handling im-
mutable data structures protected by const correctness10. It defines the main
operators: parallel_map11, parallel_filter and parallel_reduce, and the
composed versions parallel_map_filter and parallel_map_reduce, which are
implemented by each of the vecpar backends using different languages. Addi-
tionally, a generic parallel_algorithm operator is provided, which dispatches
the execution to the appropriate implementation based on C++20 concepts
and partial specializations, which were chosen because they employ compile-
time polymorphism. The operators apply user-defined functions wrapped in
vecpar::algorithms on C++ vectors allocated either in host, device or CUDA
unified memory using the vecmem library support for heterogeneous resources.
For example, by extending the vecpar::parallelizable_map algorithm class
which is templated on (a) the number of iterable collections and (b) the data
types for input and output, the user has to provide an implementation for
mapping_function, which is called by the framework at run-time by invoking a
wrapper lambda function that will eventually be executed by each parallel thread.
The algorithm classes are stateless and have no virtual functions. This ensures a
straight-forward mapping to the GPU’s memory, if needed. The infrastructure
supports up to five collections of the same length that can be iterated over in
the same time.

Currently, vecpar fully supports two parallel execution backends: CPU using
OpenMP threads and GPU using CUDA threads. An experimental backend based
9 https://github.com/wr-hamburg/vecpar

10 As an exception motivated by performance optimization purposes, the vecpar API
provides a limited number of mutable versions as well.

11 A parallel_mmap operator which allows mutable data structures is also defined.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://github.com/wr-hamburg/vecpar
https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 5

on OpenMP target was recently implemented, in order to extend portability
to AMD GPUs. Similarly, new backends could be easily added to the generic
dispatch system. The execution flow is summarized in Fig.1. To run a vecpar
algorithm in a parallel (and potentially GPU offloaded) manner, it has to be
passed to a specific API function like vecpar::parallel_map(algorithm,...)
or the generic vecpar::parallel_algorithm(algorithm,...) which would del-
egate the execution to the parallel implementation using OpenMP or CUDA,
respectively. In this case, the decision is made implicitely based on evaluating
internal flags like __CUDA__ or _OPENMP which are set by the compiler based
on information provided either by the user (e.g. through compilation flags)
or inferred at compile/link time (e.g. available support for OpenMP). There
is also the option to invoke a specific backend directly; for example calling
vecpar::cuda::parallel_algorithm(algorithm,...) bypasses the dispatch
system. This could be particularly useful when two imbricated levels of parallelism
are required, for instance when reading multiple event data files from disk in a
CPU multi-threaded environment while offloading the computations associated
with each event to the GPU.

vecpar::backend::
parallel_algorithm
   (algorithm,
    memory-resource,
    data, ...)

Algorithm type

map/mmap
filter
reduce
map/mmap-filter
map/mmap-reduce

Dispatch via
algorithm type

Run with CPU 
threads

Backend
type

CPU

GPU Memory
resource

Run with GPU
threads

CPU/GPU
Unified Memory

Copy data to device

Run with GPU
threads

Copy data to host

CPU Memory

(CUDA /
OpenMP Target*)

(OpenMP)

(optional)

* experimental

Fig. 1: Decision flow in vecpar

If an algorithm doesn’t necessarily fit into one of the map-filter-reduce patterns
or the input data structures are different from the ones expected by the predefined
base classes, vecpar offers a generic vecpar::parallel_map function which can
be invoked with a lambda that defines the behavior, provided by the user. While
this offers more flexibility and ensures that the anonymous function can be
executed as a GPU kernel, it passes the responsibility of data management and
parallelization to the user implementation.

In the case of a GPU parallelization, the framework handles not only the
distribution of independent work items to different threads, but also the required

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


6 G. Mania et al.

memory transfers between host and device, using vecmem library support. Vec-
par’s CUDA backend provides separate implementations for executing parallel
algorithms handling collections stored in managed memory and host memory.
This is an important distinction since the former requires only a retrieval of a
pointer to an unified memory address, while the latter requires explicit memory
copy between host and device for both input and output.

The algorithm chaining functionality simplifies the implementation of a use
case which requires several algorithms as intermediate steps to reach a final result.
As a precondition, these algorithms need to be mathematically composable or
otherwise a compile-time error will be shown. Vecpar’s implementation calls
parallel_algorithm(algorithm,...) on each algorithm, in order, using the
result from the previous one as input for the current one. The execution flow
of the chain is then reduced to the one described above in Fig. 1. To use this
feature, an instance of a vecpar::chain templated on the input and output data
types is needed as a first step. Then the algorithm instances and the input data
associated with the first algorithm are passed to the chain through calls to its
member functions as showed in Listing 1.1.

1 vecpar ::chain <vecmem :: host_memory_resource ,
2 double ,
3 vecmem ::vector <int >> chain(mr);
4
5 chain.with_config(config) // optional
6 .with_algorithms(alg_1 , alg_2 , alg_3)
7 .execute(vecmem_vector , context_object);

Listing 1.1: Algorithm chaining definition example

The user has the option to configure the parallelization by providing a specific
number of workers in a vecpar::config object when invoking a parallel function
or parallel chain. Without passing it or by leaving it empty, a default configuration
is generated based on the problem size for the CUDA backend and the runtime
environment variables for the OpenMP backend. At the moment, the OpenMP
Target backend does not support user configuration and uses a default one for
optimization purposes.

The GNU gcc compiler can be used to compile vecpar code to target x86_64
and aarch64 architectures and when built with offloading capabilities, it can also
target NVIDIA and AMD GPUs through vecpar’s OpenMP target backend. In
addition to what is offered by gcc, LLVM/clang compiler can additionally generate
NVIDIA’s Parallel Thread Execution assembly code (NVPTX) and therefore
target NVIDIA GPUs with native assembly, which makes it more versatile for
building heterogeneous code. ROCm/aomp can also be used to compile for CPU
and AMD GPUs using the OpenMP target backend. An NVIDIA compiler which
supports C++20 is required to build vecpar sources.

4 Evaluation

In this section, we demonstrate the benefits of using vecpar by evaluating it in
comparison to native state-of-the-art parallel solutions like OpenMP (OMP),

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 7

OpenMP Target (OMPT) and CUDA, and to similar approaches like Kokkos, in
several use cases, starting from trivial kernels to more complex scenarios from
particle reconstruction software.

Four environments were used for running the experiments: Env1 – Intel Core
i7-10870H CPU and NVIDIA GeForce RTX 3060 GPU, Env2 (HPC cluster
node) – 20-cores Intel Xeon Gold 5115 CPU and NVIDIA Tesla V100 GPU,
Env3 (Raspberry Pi Cluster node) – 4-cores ARM Cortex A72 CPU, and Env4
– Intel i5-8600K CPU and AMD Radeon RX6750 XT. Clang 14 (with offload
support) was used as default C++ compiler for the Env1 and Env2, gcc 12 was
used for the third one, while aomp 16 was used for Env4. CUDA 11.6 (driver
v.510.47.03), ROCm 5.3.3 and OpenMP 4.5 ensured the support for parallelism.

4.1 BabelStream Benchmark

The BabelStream benchmark [10] defines a framework to evaluate (a) the wall
clock execution times and (b) the memory throughput of simple mathematical
operations when using different parallelization APIs and/or compilers. To achieve
this, different abstractions are required for memory allocations (and GPU transfers
if needed) and kernel execution. This clear separation is not transparent in a
vecpar algorithm implementation since memory handling is a built-in feature of
the library, as previously shown in Fig. 1; nevertheless, vecpar offers a lambda-
based feature, which allows more flexibility to the user by trading off strictly
single-source nature of the implementation. This lambda implementation is used
for the GPU-CUDA benchmark while single-source vecpar algorithms were used
for all the other scenarios. The vecpar branch for BabelStream is available
open-source on github12. For the present results, we used the triad benchmark
which performs ai = bi + scalar × ci, ∀ 0 ≤ i < 225, with double-precision
operands. This kernel is run 100 times and the mean execution time (which does

CPU (OMP) GPU (OMPT) GPU (CUDA)
Platform (API)

0.00

0.01

0.02

0.03

0.04

Ti
m

e 
[s

]

OMP-/OMPT-/CUDA-Stream
KokkosStream
VecparStream

(a) Execution time

CPU (OMP) GPU (OMPT) GPU (CUDA)
Platform (API)

0

50

100

150

200

250

300

M
ax

 B
an

dw
id
th
 [G

B/
s]

(b) Bandwidth

Fig. 2: BabelStream triad kernel, using vectors of 225 FP64, on Env1

12 https://github.com/wr-hamburg/BabelStream/tree/vecpar

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://github.com/wr-hamburg/BabelStream/tree/vecpar
https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


8 G. Mania et al.

not include the necessary time for memory transfers in the case of the GPU)
is computed. The measurements shown in Fig. 2 prove that vecpar achieves
comparable performance with native parallel implementations; for the CPU,
there is a deviation of up to ≈ 10% for both vecpar and kokkos OMP backends,
while the GPU targeting implementations (using OMPT and CUDA) are within
±1% of the other benchmarks.

4.2 Vecpar Internal Benchmark

To evaluate the performance and portability of a single-source vecpar algorithm
compiled for different platforms, we designed a custom benchmark, available in
the vecpar repository. In this case, we include CPU-GPU memory transfer times
in the total execution time of a given scenario. Each test was repeated 20 times.

The Single and Double Precision a×X + Y (SAXPY/DAXPY) benchmarks
provides three implementations: OpenMP, CUDA and vecpar (using different
backends), which perform the same operation: yi = a × xi + yi, xi ∈ X, yi ∈
Y, ∀ 0 ≤ i < N and the code is compiled with clang for the NVIDIA GPU and
with the aomp compiler for the AMD GPU. Fig. 3 shows that the overhead of
vecpar in comparison to the native CUDA implementations on NVIDIA hardware
is up to 0.5%. The vecpar OpenMP target code compiled for AMD GPU seems
to be slower for smaller problem size while showing a 4× speedup for vectors of
one million elements; this is most likely credited to the link-time optimization of
the LLVM compiler.

100 1000 10000 100000 1000000
N

10−4

10−3

Ti
m
e[
s]

CPU-GPU Host-device memory
CUDA
vecpar CUDA
vecpar OMPT (NVIDIA)
vecpar OMPT (AMD)

(a) SAXPY

100 1000 10000 100000 1000000
N

10−5

10−4

10−3

Ti
m
e[
s]

CPU-GPU Host-device memory
CUDA
vecpar CUDA
vecpar OMPT (NVIDIA)
vecpar OMPT (AMD)

(b) DAXPY

Fig. 3: Mean and standard deviation for SAXPY and DAXPY kernels, using
vectors of different sizes N , on Env1 and Env4

4.3 Track Reconstruction Use Cases

In order to establish the position and momentum of charged particles in a magnetic
field, the second order differential equation of motion is integrated to provide a
numerical solution which is later corroborated with detector measurements to
obtain a realistic estimate. The 4th order Runge-Kutta-Nyström (RKN) algorithm
is widely used for its precision but it has the downside of being inherently

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 9

sequential, with each stage depending on the calculations of the previous one.
The detray project features an implementation of an algorithm based on adaptive
RKN methods [14,15] (RKN stepper) which provides estimates for the transport
of track parameters 13 and their covariance matrices, either in global coordinates
(i.e. free parameters) or in local coordinates based on an intersection surface (i.e.
bound parameters) through the detector layers. For each experiment a different
executable is built for every linear algebra backend from algebra-plugin project
and then ran on different platforms. For all the tests, the wall-clock times include
host-device transfers when the data is in host memory and a GPU is used to
compute the results. In case the data is already in managed memory, the time
spent for initialization is not factored in.

Track Parameters Estimation The first case that we explored is a simplified
STEP algorithm which provides estimates for track parameters only (without
computing the Jacobians) and limits the numerical integration to 100 steps in
both forward and backward direction. Moreover, the magnetic field is assumed
constant in z direction. For each test, we simulate 10 000 (free) tracks starting
from the center of the detector, with a negative unit charge and a magnetic field
of (0, 0, 2T).

To evaluate the development productivity, we first look at the implemen-
tation details. The CUDA and vecpar RKN kernels in Listing 1.2 and Listing 1.314

__global__ void rk_stepper_test_kernel (vecmem ::data::
vector_view <free_track_parameters > tracks_data ,
const vector3 B) {

int gid = threadIdx.x + blockIdx.x * blockDim.x;
vecmem :: device_vector <free_track_parameters >

tracks(tracks_data);
// Prevent overflow
if (gid >= tracks.size()) {

return;
}
// Get a track
auto& traj = tracks.at(gid);
// Define RK stepper
rk_stepper_type rk(B);
// Index for stepping
unsigned int i_s =0;
// Forward direction
rk_stepper_type ::state forward_state(traj);
for (i_s=0; i_s <rk_steps; i_s ++) {

rk.step(forward_state);
}
// Backward direction
traj.flip();
rk_stepper_type ::state backward_state(traj);
for (i_s=0; i_s <rk_steps; i_s ++) {

rk.step(backward_state);
}

}

Listing 1.2: CUDA

struct rk_stepper_algorithm :
public vecpar :: algorithm :: parallelizable_mmap <

free_track_parameters , vector3 >{

TARGET free_track_parameters& mapping_function(
free_track_parameters& traj , vector3 B) override
{

// Define RK stepper
rk_stepper_type rk(B);
// Index for stepping
unsigned int i_s=0;
// Forward direction
rk_stepper_type ::state forward_state(traj);
for (i_s=0; i_s <rk_steps; i_s ++) {

rk.step(forward_state);
}
// Backward direction
traj.flip();
rk_stepper_type ::state backward_state(traj);
for (i_s=0; i_s <rk_steps; i_s ++) {

rk.step(backward_state);
}
return traj;

}
};

Listing 1.3: C++/vecpar

show that while the former requires knowledge about accessing the data from
unified memory and thread parallelization based on global index, the latter fits
the code into vecpar’s map abstraction templated on the input and output data
13 A set of parameters describing the helical trajectory followed by a charged particle

moving within a magnetic field.
14 TARGET is a vecpar macro which adds extra qualifiers at compile time.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


10 G. Mania et al.

types and can just focus on the actual hardware-agnostic algorithm which is
identical in both cases, as highlighted in the rectangle. Moreover, the vecpar
implementation can be compiled with clang for x86_64 and NVIDIA GPU plat-
forms without further code changes, which ensures portability and productivity
by avoiding to maintain distinct code sources for CPU and GPU.

In terms of performance, we compared the vecpar single-source implementation
compiled for different platforms (vecpar_cpu and vecpar_gpu) with the initial
sequential version (seq_cpu), a hard-coded OpenMP version (omp_cpu) and a
CUDA version (cuda_nvcc) and we evaluated the impact of different factors
like the problem size, the precision of the operands and the number of parallel
workers on Env1 and Env2. Fig. 4 shows the results for the tests focusing on
single precision; both OpenMP and vecpar versions provide close to ideal strong
scaling performance, when using up to 40 threads, on Env2.

101

102

Ti
m
e 
[m

s]

cmath backend

1 4 8 10 20 40
Thread number

101

102

Ti
m
e 
[m

s]

eigen backend
Ideal scaling
omp
vecpar

Fig. 4: Strong-scaling evaluation: Multi-threading implementations of the RKN
stepper, in single precision, cmath/eigen backends, on Env2

A closer analysis shows that the parallel versions are faster than the sequential
one for double precision operands on both linear algebra backends (cmath and
eigen), for both CPU and GPU, as depicted in the speedup diagrams from Fig. 5.
For the GPU, the advantage of the vecpar solution over the native CUDA is
assumed to be due to NVPTX optimizations done by clang since compiling the
same RKN kernel with clang already shows a slight speedup over the executable
produced by nvcc.

Fig. 6 summarizes these experiments with the conclusion that for this given
scenario, the vecpar single-source implementation ensures a significant speedup
of 28 − 65× over the initial sequential implementation, comparable to native
OpenMP and CUDA implementations.

Extreme Load Use Case We evaluated the performance of the vecpar im-
plementation in an extreme-load test of one million tracks using 16 OpenMP
threads and 3907×256 CUDA threads. The results in Fig. 7 show that the vecpar
implementation is comparable with native ones, showing up to 12× and 70×
speedups for CPU and GPU respectively over the initial sequential one.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 11

cmath eigen
detray backend

0

10

20

30

40
Sp

ee
du

p

seq_cpu
omp_cpu
vecpar_cpu

(a) CPU

cmath eigen
detray backend

0

10

20

30

40

50

Sp
ee

du
p

seq_cpu
cuda_nvcc
vecpar_gpu

(b) GPU

Fig. 5: Speedup factors of the vecpar single-source implementation compiled for
CPU and GPU over other implementations, on Env2

cmath eigen
detray backend

0

10

20

30

40

50

60

Sp
ee

du
p

seq_cpu
vecpar_cpu
vecpar_gpu

(a) Single precision

cmath eigen
detray backend

0

10

20

30

40
Sp

ee
du

p

seq_cpu
vecpar_cpu
vecpar_gpu

(b) Double precision

Fig. 6: Speedup for vecpar implementation over the sequential CPU implementa-
tion, using cmath/eigen math backends, in single/double precision, on Env2

cmath eigen
detray backend

0

10

20

30

40

50

60

70

Sp
ee

du
p

seq_cpu
omp_cpu
vecpar_cpu
cuda_nvcc
vecpar_gpu

Fig. 7: Speedup diagram for simplified RKN stepper using cmath/eigen backends,
in single precision, one million tracks, without fastmath support, on Env1

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


12 G. Mania et al.

Track parameter and its covariance estimation The third set of experiments
is already very close to common operations in track reconstruction and it is based
on a recent implementation of a more realistic RKN stepper which also includes
error-propagation while assuming the same constant magnetic field. This adds
more complexity since it computes partial derivatives of the track parameters.
Since the double precision use case is more realistic for a production environment,
we focus the experiments on this level of precision; this also includes disabling
the fastmath support features offered by some compilers.

Table 1 shows a selection of results obtained by estimating 10 000 free track pa-
rameters (including error propagation) in double precision on different platforms.
The same vecpar C++ source file is compiled for CPU and GPU, and compared
against the initial sequential version and against native parallel solutions (using
OpenMP threads for CPU and CUDA threads for GPU). The measurements
involve using the cmath backend for detray, but similar results were obtained
with the eigen backend, but they are omitted due to space restrictions.

Platform Sequential OpenMP/CUDA Vecpar
ARM aarch64 (Env3) 4.54 ±0.04% 1.16 ±4.11% 1.27 ±9.78%
Intel x86_64 (Env2) 1.69 ±5.51% 0.1058 ±4.75% 0.1052 ±5.41%
NVIDIA V100 (Env2) - 0.004 ±6.32% 0.02 ±1.86%

Table 1: Mean time (in seconds) and standard deviation for estimating 10 000
tracks using sequential, parallel and vecpar implementations on different
CPU/GPU platforms

Firstly, we explored the extended portability to aarch64; the vecpar imple-
mentation is within ±9% of the native implementation and 3.55× faster than
the sequential one. This is close to the maximum theoretical speedup of 4×
which is limited by the number of OpenMP threads (which is 4 in this case). For
the x86_64 platform, the vecpar implementation is within ±3% of the OpenMP
implementation while being 15× faster than the sequential one. Secondly, for the
GPU case, regardless of the storage location, the vecpar implementation takes
longer than native CUDA compiled with nvcc and data in managed memory.
Despite much better memory and computation throughput, there are several un-
coalesced global memory accesses due to unnecessary duplication of the offloaded
algorithmic code. We expect this overhead to be alleviated by using a CUDA
11.7 feature: __grid_constant__; this will store the algorithm object into GPU
constant cache which provides much better latency than global memory. Experi-
mental validation should be possible as soon as LLVM/clang enables support for
it.

Nevertheless, there is still a benefit of having a single parallel implementation
which can be executed on different platforms as it is shown in Fig. 8. Speedups
up to 19× and 108× can be observed for CPU and GPU respectively.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 13

cmath eigen
detray backend

0

20

40

60

80

100

Sp
ee

du
p

seq_cpu
vecpar_cpu
vecpar_gpu

Fig. 8: Speedup of the vecpar implementation for RKN stepper (with error
propagation) for 10 000 tracks over the sequential implementation for cmath and
eigen backends, in double precision, on Env2

5 Conclusions and Future Work

In this paper, we presented a new framework for efficient parallelized execution
of charged particle tracking15. It relies on new C++ features, OpenMP and
CUDA to ensure improved performance and portability while decoupling the
scientific algorithms from the parallelization strategies. Although vecpar is still
in an early development phase, it was successfully used to port a simplified step
of the track reconstruction flow and demonstrated its potential by obtaining
speedups up to 108× over sequential implementations using single-source C++
code. Moreover, it provides speedups competitive with those obtained by both
native and related APIs, while being easier to implement and port to different
architectures. We showed its portability by testing it on different platforms like
x86_64, ARM, NVIDIA Volta and Ampere, and AMD Radeon.

In future versions, we plan to improve the memory access patterns for the
CUDA backend, to finalize the development of the OpenMP target backend
and to extend the abstractions to allow more complex patterns like hierarchical
parallelism and uneven distributed workloads.

Acknowledgment

We acknowledge the support by DASHH (Data Science in Hamburg - HELMHOLTZ
Graduate School for the Structure of Matter) with the Grant-No. HIDSS-0002.
The National Analysis Facility (NAF) at Deutsches Elektronen-Synchrotron
(DESY), the University of Hamburg (UHH) and Deutsche Klimarechenzentrum
(DKRZ) provided the hardware resources for the experiments.

15 While the initial goal was to contribute to the increase of the performance portability
of open-source track reconstruction software, other scientific use cases are welcome
in the future.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


14 G. Mania et al.

References

1. Algebra-plugin, https://github.com/acts-project/algebra-plugins/, Last accessed: 8
Dec 2022

2. European Organization for Nuclear Research (CERN). Nature 184(4702), 1844–1844
(Dec 1959). https://doi.org/10.1038/1841844b0

3. Aaij, R., Albrecht, J., Belous, M., Billoir, P., Boettcher, T., et al.: Allen: A High-
Level Trigger on GPUs for LHCb. Computing and Software for Big Science 4(1)
(apr 2020). https://doi.org/10.1007/s41781-020-00039-7

4. Ai, X., Allaire, C., Calace, N., Czirkos, A., Ene, I., Elsing, M., et al.: A Com-
mon Tracking Software Project. Computing and Software for Big Science (2022).
https://doi.org/https://doi.org/10.1007/s41781-021-00078-8

5. Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of
Programming and Calculi of Discrete Design. pp. 5–42. Springer Berlin Heidelberg,
Berlin, Heidelberg (1987). https://doi.org/10.1007/978-3-642-87374-4_1

6. Bocci, A., Kortelainen, M., Innocente, V., Pantaleo, F., Rovere, M.: Heterogeneous
reconstruction of tracks and primary vertices with the CMS pixel tracker (2020).
https://doi.org/10.48550/ARXIV.2008.13461, https://arxiv.org/abs/2008.13461

7. Breitbart, J., Fohry, C.: OpenCL - An effective programming model for data
parallel computations at the Cell Broadband Engine. In: 24th IEEE Interna-
tional Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta,
Georgia, USA, 19-23 April 2010 - Workshop Proceedings. pp. 1–8. IEEE (2010).
https://doi.org/10.1109/IPDPSW.2010.5470823

8. Dastgeer, U.: Skeleton Programming for Heterogeneous GPU-based Systems (2011)
9. Deakin, T., Poenaru, A., Lin, T., McIntosh-Smith, S.: Tracking Performance Porta-

bility on the Yellow Brick Road to Exascale. In: 2020 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC). pp.
1–13 (2020). https://doi.org/10.1109/P3HPC51967.2020.00006

10. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: Evaluating attainable
memory bandwidth of parallel programming models via BabelStream. Interna-
tional Journal of Computational Science and Engineering 17(3), 247–262 (2018).
https://doi.org/10.1504/IJCSE.2018.095847, special Issue on Novel Strategies for
Programming Accelerators

11. del Rio Astorga, D., Dolz, M.F., Fernández, J., García, J.D.: A generic
parallel pattern interface for stream and data processing. Concur-
rency and Computation: Practice and Experience 29(24), e4175 (2017).
https://doi.org/https://doi.org/10.1002/cpe.4175, https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.4175

12. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
13. Leggett, C., Baines, J., Bold, T., Calafiura, P., Farrell, S., van Gemmeren, P., et al.:

AthenaMT: upgrading the ATLAS software framework for the many-core world
with multi-threading. Journal of Physics: Conference Series 898, 042009 (oct 2017).
https://doi.org/10.1088/1742-6596/898/4/042009

14. Lund, E., Bugge, L., Gavrilenko, I., A., S.: Track parameter propagation through
the application of a new adaptive Runge-Kutta-Nystrom method in the AT-
LAS experiment. Tech. rep. (Jan 2009), https://cds.cern.ch/record/1113528/files/
ATL-SOFT-PUB-2009-001.pdf

15. Lund, E., Bugge, L., Gavrilenko, I., A., S.: Transport of covariance matrices in the
inhomogeneous magnetic field of the ATLAS experiment by the application of a
semi-analytical method. Tech. rep. (Jan 2009), https://cds.cern.ch/record/1114177/
files/ATL-SOFT-PUB-2009-002.pdf

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://github.com/acts-project/algebra-plugins/
https://doi.org/10.1038/1841844b0
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/https://doi.org/10.1007/s41781-021-00078-8
https://doi.org/10.1007/978-3-642-87374-4_1
https://doi.org/10.48550/ARXIV.2008.13461
https://arxiv.org/abs/2008.13461
https://doi.org/10.1109/IPDPSW.2010.5470823
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1504/IJCSE.2018.095847
https://doi.org/https://doi.org/10.1002/cpe.4175
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4175
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4175
https://doi.org/10.1088/1742-6596/898/4/042009
https://cds.cern.ch/record/1113528/files/ATL-SOFT-PUB-2009-001.pdf
https://cds.cern.ch/record/1113528/files/ATL-SOFT-PUB-2009-001.pdf
https://cds.cern.ch/record/1114177/files/ATL-SOFT-PUB-2009-002.pdf
https://cds.cern.ch/record/1114177/files/ATL-SOFT-PUB-2009-002.pdf
https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18


Vecpar – A Framework for Portability and Parallelization 15

16. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. In: International Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2008, Los Angeles, California, USA, August 11-15, 2008,
Classes. pp. 16:1–16:14. ACM (2008). https://doi.org/10.1145/1401132.1401152

17. Organization, O.: The OpenACC Application Programming Interface, Ver-
sion 3.2, https://www.openacc.org/sites/default/files/inline-images/Specification/
OpenACC-3.2-final.pdf

18. van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP - The Next Step: Affinity,
Accelerators, Tasking, and SIMD. MIT Press (2017), https://mitpress.mit.edu/
books/using-openmp-next-step

19. Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Penny-
cook, J., Tian, X.: Data Parallel C++. Apress Berkeley, CA (2021).
https://doi.org/https://doi.org/10.1007/978-1-4842-5574-2

20. Reyes, R., Lomüller, V.: SYCL: Single-source C++ accelerator programming. In:
Joubert, G.R., Leather, H., Parsons, M., Peters, F.J., Sawyer, M. (eds.) Parallel
Computing: On the Road to Exascale, Proceedings of the International Conference
on Parallel Computing, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland,
UK. Advances in Parallel Computing, vol. 27, pp. 673–682. IOS Press (2015).
https://doi.org/10.3233/978-1-61499-621-7-673

21. Rohr, D., Gorbunov, S., Schmidt, M.O., Shahoyan, R.: Track Recon-
struction in the ALICE TPC using GPUs for LHC Run 3 (2018).
https://doi.org/10.48550/ARXIV.1811.11481, https://arxiv.org/abs/1811.11481

22. Salzburger, A., Niermann, J., Yeo, B., Krasznahorkay, A.: Detray: a compile time
polymorphic tracking geometry description. Journal of Physics: Conference Series
2438(1), 012026 (feb 2023). https://doi.org/10.1088/1742-6596/2438/1/012026

23. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Top500 List. https://www.
top500.org, accessed: 2022-12-01

24. Swatman, S.N., Krasznahorkay, A., Gessinger, P.: Managing heterogeneous device
memory using C++17 memory resources. Journal of Physics: Conference Series
2438(1), 012050 (feb 2023). https://doi.org/10.1088/1742-6596/2438/1/012050

25. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., et al.:
Kokkos 3: Programming Model Extensions for the Exascale Era. IEEE
Transactions on Parallel and Distributed Systems 33(4), 805–817 (2022).
https://doi.org/10.1109/TPDS.2021.3097283

26. Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel,
W.E., Bussmann, M.: Alpaka - An Abstraction Library for Parallel Kernel Acceler-
ation. IEEE Computer Society (May 2016), http://arxiv.org/abs/1602.08477

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_18

https://doi.org/10.1145/1401132.1401152
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://mitpress.mit.edu/books/using-openmp-next-step
https://mitpress.mit.edu/books/using-openmp-next-step
https://doi.org/https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.3233/978-1-61499-621-7-673
https://doi.org/10.48550/ARXIV.1811.11481
https://arxiv.org/abs/1811.11481
https://doi.org/10.1088/1742-6596/2438/1/012026
https://www.top500.org
https://www.top500.org
https://doi.org/10.1088/1742-6596/2438/1/012050
https://doi.org/10.1109/TPDS.2021.3097283
http://arxiv.org/abs/1602.08477
https://dx.doi.org/10.1007/978-3-031-35995-8_18
https://dx.doi.org/10.1007/978-3-031-35995-8_18

