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Abstract. The work reported in this article addresses the challenge of
building models for non-trivial aerobatic aircraft maneuvers in an auto-
mated fashion. It is built using a Behavioural Cloning approach where
human pilots provide a set of example maneuvers used by a Machine
Learning algorithm to induce a control model for each maneuver. The
best examples for each maneuver were selected using a set of objective
evaluation metrics. Using those example sets, robust models were induced
that could replicate (and in some cases outperform) the human pilots
that provided the examples (the clean-up effect). Complete complex ma-
neuvers were performed using a meta-controller capable of sequencing
the basic ones learned by imitation. This endeavor was rewarded by the
results that show several Machine Learning models capable of performing
highly complex aircraft maneuvers.

Keywords: Imitation Learning · Behavioural Cloning · Aviation · Au-
topilot · Aerobatic maneuvers.

1 Introduction

With the increase of robot complexity, manually programming the behaviors and
actions is becoming costly [1]. It requires excellent knowledge about the robot
movement and many resources to develop [15].

In recent years, autonomous driving technologies are improving with Arti-
ficial Intelligence methods. One of the used techniques is Imitation Learning
(IL) and Behaviour Cloning (BC) [8, 24, 25]; these have been used for a few
decades, are based on Supervised Learning and learn the behaviors based on
expert demonstrations through imitation [19,20,22], i.e., learning the mappings
between the environment state (input) and actions (output).

The work reported in this paper concerns the application of such Behavioural
Cloning methodology to an aviation domain. Currently used autopilots are not
helpful in various complex events, being usually only used in specific parts of
the flight [6].
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The commercial aviation industry keeps growing, and according to historical
data, the passenger count doubles roughly every 15 years [26]. In the 2004-2019
period remarkably, it increased by a factor of 2.4. As stated by the International
Air Transport Association in their 20-Year Passenger Forecast, from 2019 to
2040, the global air passenger growth is predicted to be 3.3% annually, which
results in a 90% increase in that interval [13].

Although the global airlines market size was over 800B USD in 2019 [14],
the airlines anticipate problems in keeping up with the demand, such as pilot
shortage [16, 27]. The Federal Aviation Administration (FAA) rule that limits
airlines to hire pilots with a minimum of 1500 flight hours is one of the possible
causes [17]. This rule aggravates the high training cost [17] because it requires
pilot trainees to spend even more money to meet this requirement. The United
States Air Force is also struggling with pilot training [5].

To solve these problems, an intelligent autopilot system can be built to be
responsible for piloting through all phases of a flight or mission and/or help
pilot apprentices improve their training with tips and cues on what they are
doing wrong and how to improve. This system could also define an evaluation
threshold to inform how close to the end one specific trainee is.

Focused on this issue, the first contribution of this work is the implementation
of evaluation metrics for three aerobatic maneuvers: Immelmann, Split-S, and
Half Cuban Eight. For instance, flight instructors can use these metrics to better
understand the eventual difficulties their trainees are having.

These metrics are then used to develop Machine Learning controllers ca-
pable of performing the mentioned aerobatic maneuvers. Previous work uses
Neural Networks (NN) based on Long Short-Term Memory (LSTM), mostly in
autonomous driving [8,24,25] but also in the aerobatics context [18,21,23], where
air vehicles are controlled solely by automated systems.

The final contribution is a high-level controller to perform an aerobatic per-
formance show, similar to a Red Bull Air Race performance. This system se-
quentially invokes the respective controllers to execute the specific maneuvers.

This document is structured as follows: section 2 presents a study and review
of the related work using this technology in other use cases. Section 3 briefly de-
scribes the data and evaluation metrics. Section 4 explains the controller training
process and the results. Section 5 describes the high-level controller for the pre-
viously trained controllers. Finally, section 6 concludes this work with possible
future work evolution.

2 Related Work

Regarding IL, there are many introductions, studies, and reviews on the subject,
such as [2,12,22]. Despite being generic, it has been recently operated thoroughly
in robots and similar contexts, such as autonomous driving [1, 11].

In particular to aerial vehicles, Müller et al. used a Convolutional Neural
Network (CNN) to learn to control a racing drone [21]. The data was collected
in a simulator, automatically generating stadium racing tracks and three levels
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of expert pilots. Joystick controls and images from the Unmanned Aerial Vehicle
(UAV) point-of-view were recorded. The control output is divided into throttle,
elevator, aileron, and roll. The CNN could fly through the racing tracks at high
speed and even outperform state-of-the-art methods. Several skill levels were
used to compare how data quality influences the learning pipeline. The authors
conclude that better data results in better models and lap times.

Rodriguez-Hernandez at el. also demonstrated how a BC approach could
control a Micro Aerial Vehicle (MAV) [23]. The network consisted of a CNN
to extract features from the input images and return actions to fly the MAV
through gates.

One exciting concept was introduced in [9]: collect drone crashing data to
enable better learning through negative examples. One of the real-world fears of
autonomous UAV systems is that it hits objects due to the low generalization
of the NNs. The authors collected many crashing examples to be used along-
side the positive samples, resulting in a robust policy. The negative data were
demonstrated to be very important, and the results were comparable to humans
in some environments.

As referred above, IL techniques are very used in autonomous driving [8,24,
25]. All authors tried end-to-end trainable models, with some variations of CNN
architecture connected to LSTM units or Fully Connected Networks (FCN).
Curiously, [24] used a UAV to test this approach; nonetheless, the output is
context-agnostic as the steering angle is used in any vehicle navigating the envi-
ronment. Here, the CNN is connected to an LSTM network to ensure a good fit
for the temporal-dependent actions. The environment used in [8] and [25] was a
simulator, and both architectures output values relative to the vehicle’s steering
angle, based on the front-road images. Also, in both essays, CNN’s last layers
were FCN.

On a slightly different effort, [7] focused on a new benchmark to test the
scalability of BC. In an autonomous driving setting, they confirmed, besides
some well-known limitations, such as dataset bias and overfitting, generalization
issues, and training instabilities. The requirement was to further research BC
before putting such models in real-world driving.

Regarding aerobatics, [18] compares a standard FCN and an LSTM-based
NN. Two controllers were developed, one for the ailerons and another for the
elevators. The maneuver performed was an Immelmann turn, and the testing
results revealed that the LSTM-based NN is better generalized, with better
parameterisable values.

A thorough and complete work is [3], presenting a compilation of four pub-
lished works and a subsequent article published later [4]. The general goal is to
have an intelligent autopilot system, composed of a set of small FCNs, divided
into specific flight phases, and a Flight Manager responsible for controlling them
and selecting the appropriate ones based on a behavior tree.

With all applications of such techniques, especially to aerial vehicles, it is
possible to conclude that applying BC in an airplane-control system is feasible.
Also, LSTM-based NNs seem to be a good method to solve this problem.
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3 Data Analysis

The data collection phase counted on 25 amateur volunteers from the academic
community (mainly BSc., MSc., and Ph.D. students, as well as professors associ-
ated with the department), with experience varying from first-time performances
to practiced flight simulator enthusiasts. They were tasked with executing the
aerobatic maneuvers to collect different examples. The idea was to gather a di-
verse dataset without the possible bias if collected from only 1 or 2 people. The
collected values are relative to aircraft position and attitude, as well as environ-
mental values such as atmospheric pressure and temperature; the airplane used
was the aerobatics-capable Extra 300S. Microsoft Flight Simulator X (FSX) was
the chosen flight simulator, used both to collect the data and test the controllers.

The complete dataset was published in Zenodo, on https://zenodo.org/
record/68031934.

3.1 Maneuvers Description

The three maneuvers are composed of specific segments and must obey some
’rules’ to be considered good; they are all composed of a main vertical component,
upwards for Immelmann and Half Cuban Eight or downwards for Split-S. Figure
1 displays execution diagrams for each one. The Immelmann starts with an
upwards semi-loop, followed by a semi-roll to stabilize the airplane. The Split-S
comprises a semi-roll for the airplane to become upside down, followed by a semi-
loop downwards until straight level flight is achieved. The Half Cuban Eight is
similar to the Immelmann, with a 5/8 loop upwards, a semi-roll with a pitch of
45 degrees downwards, and a final 1/8 loop to level the airplane. A good Half
Cuban Eight should have the exit point at the same altitude as the entry point;
however, as the volunteers are amateurs, this component was not mandatory.

(a) Immelmann (b) Split-S (c) Half Cuban Eight

Fig. 1: Aerobatic maneuvers Diagrams

4 Details on the dataset itself are in the readme.me file in the repository and specifics
on the collection protocol in https://hdl.handle.net/10216/143035
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3.2 Evaluation Metrics

Some metrics were developed to numerically quantify and then sort the collected
examples according to their performance; some are maneuver-specific, while oth-
ers apply to all maneuvers.

Initial and Final Heading (IFH) is the calculated error between the initial
and final heading to establish vertical plane consistency; given the initial heading
h0 and the final heading hf , both in degrees, the difference d is the smaller angle
between both values d = (hf −h0 +180) % 360− 180; normally d should be 180
degrees (opposite direction of entry and exit points), so err = 180− abs(d).

Heading Difference (HD) is the average error of every timeframe heading
compared with initial and final values, a metric also related to vertical plane
consistency that accounts for mid-execution drifts. Considering the same initial
heading h0 and final heading hf , hi is the heading at timeframe i : 0..f ; di0 and
dif are respectively the smaller angle between hi and h0 or hf , calculated as d
from the metric above. Then, from both di0 and dif , we consider the smallest
(closer to one of the values), sum =

∑f
i=0 min( abs(di0), abs(dif )) and finally

err = sum/s, being s the size of the example.

Semi-Loop (S-L) measures how well the semi-loop trajectory fits a semi-
circumference, as intended for the maneuvers; thus, it uses positional data points
to find the best circumference curve5. Only the timeframes with the airplane
pointing upwards (or downwards in Split-S) are considered. After this, the Eu-
clidean distance di, i : 0..f from each data point to the closest circumference
point is calculated; the error for this metric is the average of the distances,
making sum =

∑f
i=0 di and err = sum/s.

Semi-Roll Overshoot (S-RO) is one of the metrics that evaluate how well the
semi-roll is executed, focusing on whether or not there was some overshooting
(more than 180 degrees of rotation). Similar to Semi-Loop error calculation,
only the timeframes in specific conditions can be considered: pitch near zero
and bank value far from straight level flight. This metric works by analyzing
the evolution of bank values, looking for any eventual progression over the zero-
angle bank value. The implementation uses the multiplication of successive bank
values bi, i : 0..f − 1 to find a negative value (when bank goes from positive to
negative or vice-versa). If found, future bank differences between consecutive
frames dbi are summed. The formal definition is

err =

{∑f−1
n=i dbn if ∃i : bi ∗ bi+1 < 0

0 otherwise
5 Calculation based on the Coope method. Library API documentation available online

at https://scikit-guess.readthedocs.io/en/latest/generated/skg.nsphere_
fit.html.
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Semi-Roll Straightness (S-RS) measures the pitch variations during the
semi-roll execution within the Half Cuban Eight maneuver, as it is important to
keep the pitch constant, near 45 degrees downwards. With the same timestamp
restriction as Semi-Roll Overshoot, the values considered in this set are relative
to the pitch value and calculating standard deviation std, finally error = std.

Semi-Roll Altitude Consistency (S-RAC) measures altitude changes dur-
ing the semi-roll part of a maneuver, as altitude should be kept constant. For this
evaluation, all altitudes differences dai

between two consecutive values ai, i : 0..f
are added in the form err =

∑f−1
i=0 abs(ddi

).

Semi-Roll Completion (S-RC) When collecting Split-S examples, it was
frequent for the volunteers to start the semi-loop before the semi-roll was com-
plete, resulting in a less-than-180-degree semi-roll. This caused the airplane to
have more significant side drift than supposed; to counteract on and reduce such
wrongful actions, this metric was added, calculated as follows: the bank value
bi is correspondent to timeframe i : 0..f from the semi-loop, di0 and di180 is
the smaller angle between bi and 0 (straight level flight) or 180 (upside down),
respectively. Then, sum =

∑f
i=0 min( abs(di0), abs(di180)) and error = sum/s,

s being the size of the loop timeframes set.

Total Evaluation is calculated as the sum of the singular metrics, using a set
of weights to manipulate the individual error distribution in order to increase the
impact of bigger errors (exponential – ei : i = 1..n) and balance the distributions
of the metrics (multiplication – mi : i = 1..n). Thus, the final score is given by
evaluation =

∑n
i=1 err

ei
i ∗mi.

3.3 Maneuvers Evaluation

Table 1 presents the metrics used for each maneuver, with the respective multi-
plicative weights; the exponential weights are all set to 1, except S-RS for Half
Cuban Eight, which is set to 2.

Besides the two parts that compose the Immelmann (semi-loop and semi-
roll), another thing to consider is the vertical plane consistency and the heading
deviations from this initial plane, which are considered errors; this is common
to the three maneuvers. Figure 2a shows the distribution of the metrics with the
weights for all 162 collected examples.

Split-S is quite similar to the Immelmann maneuver, with the exception of
some key details: the order of the operations and the direction. Figure 2b displays
the metric distribution for the 153 collected examples. We note that Semi-Roll
Completion is the component with the highest error, which is congruent with
the difficulties felt during data collection, also negatively affecting other metrics.

Again, Half Cuban Eight is similar to Immelmann; the metric distribution
for the 157 collected examples is depicted in Fig. 2c.
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Table 1: Multiplicative weights used for each maneuver

Metric Immelmann Split-S Half Cuban Eight

IFH 2 0.6 1
HD 2 1 1
S-L 1 1 1

S-RO 1.4 - 1
S-RAC 0.2 0.5 -
S-RC - 1 -
S-RS - - 0.5

4 Controllers Training

Throughout the development of this work, different feature combinations were
tried until good results were obtained, with some feature engineering required.
Due to space constraints, those experiments are not detailed here.

The used NN configuration is composed of a layer of LSTM cells, with the
same amount of units as the number of features. A dropout layer was used with
a value of 0.175, a learning rate of 0.005, and a batch size of 64. These values
were obtained by a hyperparameter tuning step performed in [18]; also, 15 was
the better window size to observe in the LSTM layer.

Since the examples were all executed with full throttle on the airplane and
the maneuvers do not require rudder control, only controllers for the elevator
and aileron were trained. The specific features for each one are listed in Table 2.

With the evaluation metrics developed, it is possible to select the best ex-
amples for training the models. While using only the best examples for training
is likely to provide for better results, a balance must be obtained between the
quality and the number of samples used for training, as a lower amount of sam-
ples is likely to lead to worst results. For this step, several subsets were chosen to
train the controllers and compare the results. The chosen subsets are as follows:

– 100% or All: the control group with all collected samples;
– Best 90%: removing the worst 10%, as those are likely to include outliers

and bad examples;
– Best 75%: mid value between 90 and 60%;
– Best 60%: for the most restricted subset, we use 60% of the collected data;

considering the variability necessary to train generalizable controllers, any
less than that seemed like a considerable reduction in sample size.

4.1 Results

To gather results, the test consisted in positioning the same aircraft in similar
conditions in the simulator and having the controllers guide it through a full
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(a) Immelmann

(b) Split-S

(c) Half Cuban Eight

Fig. 2: Metric evaluation distribution for the three maneuvers

execution of the respective maneuver. Hence, five sequential maneuver execu-
tions for each previously mentioned version were collected and evaluated using
the previously developed metrics; the evaluations for each version were com-
pared with the remaining versions and the human-collected examples (shown as
’Examples’ in the graphics).
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Table 2: Features used in each controller

Maneuver Elevator Aileron

Immelmann

Angle of Attack Angle of Attack
Pitch Pitch
Bank Bank

Velocity World y Velocity Rotation Body y
Velocity Body z Elevator

Split-S

Angle of Attack Angle of Attack
Pitch Pitch
Bank Bank

Velocity World y Velocity Rotation Body y
Velocity Body z

Aileron

Half Cuban Eight

Angle of Attack Angle of Attack
Pitch Pitch
Bank Bank

Velocity World y Velocity Rotation Body y
Velocity Body z Elevator

Aileron

Immelmann The results fulfilled the expectations. The graph presents a fa-
vorable evolution with the increase in data quality. The 75% model shows great
maturity and consistency in the results. The best 60% model (less than 100
examples used in training) appears to have suffered from overfitting or low vari-
ability of input examples.

The five examples for each version were grouped and compared in Fig. 3a.
The evaluations are visible in the five markings of each box: minimum value,
first quartile, median, third quartile, and maximum value. The X axis is relative
to the error evaluations – lower is better.

Split-S Similar to Immelmann, it is possible to notice the increase in perfor-
mance, although less significant, when training with better data; however, it is
most noticeable that the examples have more consistent evaluations, as depicted
in Fig. 3b. It is clear the best model is the best 90%, as it gets all five executions
with consistent quality relative to the others and even four within the best 25%
of the collected data.

Half Cuban Eight Observing Fig. 3c, the model trained with the best 60%
examples presented the best results. However, a strange phenomenon arose: it
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only started the maneuver with an airspeed close to 200 knots – it was found
that the minimum speed to perform a complete semi-loop was 140 knots, as
was advised to all volunteers. 200 knots is not an effortless speed to reach in a
straight flight with this particular aircraft since its maximum speed is only 240
knots. Therefore, the best 75% model was the best; the base model (100%) was
close, but the consistency was decisive.

(a) Immelmann Comparative Results.

(b) Split-S Comparative Results.

(c) Half Cuban Eight Comparative Results.

Fig. 3: Maneuvers comparative results. X-axis represents the total evaluation
calculated by the metrics - lower is better
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4.2 Discussion of Results

The results reflect an expected phenomenon, the difficult balance between using
quality data to train the models and the amount and diversity of the data avail-
able for the training process. The Immelmann results showcase this phenomenon
rather well, presenting a threshold when results stop improving with better data
quality and start worsening due to poor amount/diversity.

Unfortunately, the results cannot be directly compared to those obtained by
Medeiros [18], which is the closest work to the one conducted by this study. The
evaluation metrics used are different, as is the aircraft model used. Medeiros
measured the performance by stipulating a required altitude for the Immelmann
controller to finish the action. This was possible because the aircraft used, a
Boeing F/A-18, is capable of maintaining upwards flight without losing speed
– it is very versatile and powerful since it is used in military forces. The Extra
300S, however, does not have enough motor thrust force to perform that ascent,
which means it cannot perform the Immelmann maneuver with any specified
target altitude. Therefore, in the training process, the target altitude was found
not to be accomplished, probably functioning as a noise feature. Despite the
different metrics, both works show promising results, considering that a similar
network configuration was capable of learning piloting controls.

Regarding these results, five examples do not allow any advanced statistics;
therefore, the conclusions may be slightly skewed since the boxes might be dif-
ferent when using 50 examples for each version. This was not possible due to
heavily-manual data collection since it is not easy (or even possible) to fully
automate this process. However, the trained controllers were capable of piloting
the airplane, even though the data was from a non-expert sample. The met-
ric evaluation and consequent examples selection also exhibited partial success,
showing better controllers with better data.

5 Circuit Controller

The set of controllers proved to execute well the respective maneuvers, which is
enough to develop a high-level controller. To perform an aerobatic performance,
it needs to select the correct maneuver, detect when each execution is over, and
proceed to the next one.

The idea behind this phase is to automate an aerobatic performance that
could be performed by a real-world airplane. Although this is an experimental
step, the focus is to reach an advanced high-level controller that can correctly
choose the best maneuver suited for the specific flight.

The main execution of the Circuit Controller (CC) was the state machine,
where it iterates through the maneuvers’ controllers’ actions until it finishes all
of them. Between maneuvers, the airplane flies in a straight line for 10 seconds,
using FSX built-in autopilot capabilities, so that the maneuvers can be easily iso-
lated and identified, and the aircraft can gain some speed for the next maneuver.
For the conducted tests, the order of execution was as follows:
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1. Immelmann: best 75% trained controller;
2. Straight Level Flight: FSX autopilot;
3. Half Cuban Eight: best 75% trained controller;
4. Straight Level Flight;
5. Split-S: best 90% trained controller;
6. Straight Level Flight.

Figure 4 shows the trajectory completed when performing the circuit in two
different views. The circuit starts at point A, followed by B and C, marking
the beginning and end of the Immelmann maneuver. Until point D, the FSX
autopilot controlled the airplane in a straight level flight, where the Half Cuban
Eight controller started piloting. With E indicating the end, a small deviation
is noticeable in heading, both in the semi-loop (curve closer to D) and in the
semi-roll (curve closer to E). The Split-S goes from F to G, and it is also showing
some signs of deviations when executing the semi-roll, right after point F.

Fig. 4: Circuit views: The top part shows a top (YX) view, while the bottom
part shows a side (YZ) view

This system could be evolved and used in automated air vehicle performance
shows (something like Automated Red Bull Air Race or Automated Drone Rac-
ing League). From what is possible to understand of Baomar’s Flight Man-
ager [3], which is the most similar work found, CC is a similar system with an
also similar use case, only differing in context: Flight Manager is used in a regular
commercial flight, while CC is focused on more complex aerobatic maneuvers.
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6 Conclusion

With this work, it is possible to conclude that with better demonstration data
the controllers’ performance also improves with IL. The technique developed
by Medeiros [18] was expanded into other aerobatic maneuvers and a different
airplane, showing consistency in the aerial environment.

It was interesting to use non-expert data and still successfully train con-
trollers; besides, after excluding the worst examples by evaluating the amateur
data, the controllers’ performance also benefited.

We also present the Circuit Controller, an automated system that iterates
through the different maneuvers, composing an aerobatic performance show.
This system selects between the trained controllers and the built-in autopilot
functionalities present in FSX.

This work can be extended or tuned in several ways. Regarding the evalua-
tion metrics, some deeper study about the maneuvers is advised, such as better
implementations or relations between the metrics – the multiplicative and expo-
nential weights. Also, normalizing the values used by the metrics is a great way
to reduce the impact of example scales.

Another idea is to encapsulate each individual low-level controller in an agent
responsible for detecting maneuver completion and bad execution, ensuring fail-
safe actions, and guaranteeing operational security [10].

The extension or adaptation of CC usage is expected to be the main focus
in future research, with the goal of extending its use cases; one possibility is to
have a simple user interface that receives waypoint or mission information, and
the system decides which is the better route or actions, be it in the context of
military operations, or simply when using a more maneuverable aircraft.

Instead of training individual maneuvers, a more scalable solution might
be to train a generalized controller that can act on any required change. The
maneuvers can be divided into smaller steps, such as 100 consecutive waypoints
with coordinates, heading, pitch, and bank target information.
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