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Abstract. The hail cannon has been used to prevent hail storms since
the 19th century. The idea of the hail cannon is to create a sequence of
shock waves to prevent the formation of clouds before the hail storm.
Modern hail cannons employ a mixture of acetylene and oxygen to ig-
nite a sequence of explosions in the lower chamber traveling through the
neck and into the cone of the cannon, creating shock waves. The shock
waves propagate upwards to the cloud, and they are supposed to prevent
the formation of the cloud. According to Wikipedia, there is no scien-
ti�c evidence for the hail cannon, even though it is commonly used in
several countries. In this paper, we propose a numerical simulation to
verify the idea of the hail cannon. We employ isogeometric analysis and
variational splitting methods. We compare our numerical results with
the experimental data. We show that our numerical simulation is indeed
the scienti�c evidence for the hail cannon. We also compare our numer-
ical simulations with the experimental measurements performed with a
drone before and after a sequence of generated shock waves.

Keywords: Hail cannon, Cloud formation, Advection-Di�usion model,
Variational Splitting, Isogeometric Analysis

1 Introduction

A hail cannon is a shock wave generator that is supposed to prevent the formation
of hail storms. Modern hail cannons employ a sequence of explosions with an
acetylene-oxygen mixture in the combustion chamber. The shock wave created by
the explosions travels upward through reversed cone shape pipes. It is supposed
to create a shock wave that travels upwards and causes the cloud vapor particles
to travel up and to the side. Albert Stiger created the �rst modern kind of
hail cannon in 1895. He was a farmer, and he had a large wine plantation in
Austria [6], damaged by local hail storms. The �rst international congress on
hail shooting happened in 1902 in [27]. Despite claims that there is no scienti�c
evidence in favor of hail cannons [30], they are still successfully manufactured
[12]. One claim that there is no physical evidence for the hail cannon to work
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is that a thunderstorm is much stronger than the hail cannon, and it does not
seem to disturb the hailstorms [8].

In this paper, we perform the �rst three-dimensional numerical simulations
of the hail cannon. We employ the advection-di�usion partial di�erential equa-
tion to model the process. The unknown scalar �eld is the concentration of the
cloud vapor. The shock waves generated by the hail cannon are modeled as the
advection vector �eld. We show that a sequence of generated shock waves can
move the cloud vapor up and to the sides (see Figure 1). After �nishing a se-
quence of shock wave generation, the "hole" in the cloud remains intact for a
long time. After that time, if the neighboring clouds are still there, the hole is
�lled with the cloud vapor particles by the di�usion mechanism. In this sense, we
show that generating a sequence of shock waves can produce a hole in the cloud
vapor. The argument that the thunderstorm is not removing the hail storm and,
thus, the hail cannons are not working is not valid since we need to produce a
long sequence of shock waves to obtain the desired e�ect.

In this paper, we apply the isogeometric �nite element method (IGA-FEM)
[7] for three-dimensional simulations of the hail cannon. The IGA-FEM employs
higher-order and continuity basis functions to approximate di�erent physical
phenomena described by Partial Di�erential Equations. Several researchers ap-
plied the IGA-FEM to model di�erent engineering applications. To name a few,
IGA-FEM was applied to deformable shell theory [3], phase �eld modeling [10,
9], phase separation simulations with either Cahn-Hilliard [13] or Navier-Stokes-
Korteweg higher order models [14], wind turbine aerodynamics [16], incompress-
ible hyper-elasticity [11], turbulent �ow simulations [5], transportation of drugs
in arterials [15] or the blood �ow simulations [4]. In our simulations, we use an
explicit dynamics solver, and we employ linear computational cost alternating
directions solver [23]. We will use our C++ IGA-ADS code [24] linking LA-
PACK [2], parallelized into shared-memory multi-core servers using GALOIS
library [26]. We developed an interface into the VTK visualization toolkit [28].
Due to the IGA-ADS solver's ability to run fast and accurate three-dimensional
simulations on a laptop, it was employed to simulate several phenomena. They
include tumor growth [21, 19, 25], non-linear �ow in heterogeneous media with
possible applications to CO2 sequestration process [24, 20], as well as patogen
propagation problem [22].

The structure of the paper is the following. We start with detailed description
of the hail cannon and our experimental veri�cation of the cloud vapor reduction
by using a drone measurements in Section 2. Next, Section 3 introduces the
Partial Di�erential Equations modeling the phenomena, together with IGA-FEM
discretizations. Section 4 describes details of our simulations of the hail cannon
generating a sequence of the shock-waves into the hail cloud. Finally, we conclude
the paper in Section 5.
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Fig. 1: The idea of using shock waves to mix and lift cloud vapor particles.

2 Experimental veri�cation

In the technological experiments we use the the Inopower anti-hail cannon [17],
shown in Fig. 2. The device consists of a container with dimensions of 6.00m
x 2.45m x 2.60m with a combustion chamber of 150 dm3, three fuel inlets and
a control panel. The shock wave created by the ignition of the acetylene-air
mixture is directed upward through the conical outlet pipe. On the other side of
the container there are acetylene cylinders and a gas pressure reduction system.

During our experiments, the gauge of the acetylene fed into the explosion
chamber was 2.9 bar. During the explosion of the mixture of acetylene and air, a
pressure of about 1 MPa was reached. During the experiment, about 300 shock
waves were generated in half an hour.

For the experimental veri�cation we measured the temperature, the humid-
ity, and the particular matter concentration in the vertical pro�le using the
equipment placed on the DJI Matrice 200 V2 drone. For each test, a �ight was
performed immediately before and after the generator was started and 20 min-
utes after its completion. During the test, measurements with the drone were
made before the experiment and several times after the experiment, in partic-
ular, the �ight was made 15 and 5 minutes before starting the generator, 5, 15
and 30 and 40 minutes after its completion. Fig. 3 shows the measurement data
of the altitude pro�le from 0 m to 130 m.

From the experimental data, we can read the two times reduction of the
cloud vapor (possibly with pollution particles) around 15 minutes after we start
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Fig. 2: Hail cannon: Container with acetylene cylinders and control panel. Com-
bustion chamber with the conical outlet pipe.
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Fig. 3: Reduction of cloud vapor particles after a sequence of shots.

the sequence of shock wave generation, and the signi�cant reduction around 30
minutes of the shock wave generation. Finally, 40 minutes from the beginning
of the sequence, 10 minutes after we �nish the sequence, we can still see around
�ve times reduction of the cloud vaport. We can conclude that the long sequence
of shots can signi�cantly reduce the cloud vapor concentration.

3 Numerical simulations

We employ advection-di�usion-reaction equations to model the concentration of
the water vapor forming a cloud. The equations in the strong form are

∂u

∂t
+ (b · ∇)u−∇ · (K∇u) = 0 in Ω × (0, T ],

∇u · n = 0 in Ω × (0, T ],

u = u0 in Ω × 0,

(1)
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where u is the concentration scalar �eld, b = (bx, by, bz) is the assumed "wind"
velocity vector �eld,

K =

K1100
0K220
00K33

 , (2)

is the isotropic di�usion matrix. The scalar concentration �eld u represents cloud
vapor particles. The initial conditions on the vertical cross-section of the domain
are presented in Figure 4.

In the atmospheric modeling [1, 29, 18] there are two types of di�usion: molec-
ular di�usion and turbulent di�usion (also known as eddy di�usion). In the air,
turbulent di�usion is quicker than molecular di�usion. The turbulent di�usion
is not isotropic. For example, in a stable atmosphere (all air masses are strat-
i�ed where the lower ones are denser and less warm than the upper ones that
are lighter and warmer), the horizontal turbulence di�usion is greater than the
vertical di�usion (there is no transfer between layers). However, when the atmo-
sphere is unstable (some lighter masses are going up through denser ones), the
vertical turbulent di�usion can be quicker than the horizontal.

In our model, the di�usion is assumed to be ten times smaller in the vertical
direction Kx = Ky = 1.0, and Kz = 0.1. The advection term models the air
movement. We do not investigate the in�uence of the wind in this simulation.
Instead, the advection term will be employed to model the air movement as en-
forced by the shock-wave generator, according to equation (15). We will generate
a sequence of shock waves to remove the cloud. Of course, it is possible to add
the wind to the model and check how the shock wave generator works if we have
a strong wind moving the cloud vapor.

We employ the explicit time integration scheme, where we approximate the

time derivative with ∂u
∂t = ut+1−ut

dt , where dt is the time step size. We also assume
that we evaluate the remaining terms in the previous time step. As the result
we get the explicit Euler time integration scheme

ut+1 − ut

dt
= ∇ · (K∇ut)− (b · ∇)ut = 0. (3)

The weak formulation is obtained by testing with B-spline basis functions(
ut+1, v

)
=
(
ut, v

)
− dt

(
K∇ut,∇v

)
− dt

(
b · ∇ut, v

)
+
(
cut, v

)
∀v ∈ V . (4)

We discretize with B-spline basis functions de�ned over the cube shape domain
Ω = [0, 1]3

ut+1 =
∑

i=1,...,Nx;j=1,...,Ny ;k=1,...,Nz

ut+1
ij Bx

i B
y
jB

z
k ,

ut =
∑

i=1,...,Nx;j=1,...,Ny ;k=1,...,Nz

ut
ijB

x
i B

y
jB

z
k , (5)
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and we test with B-spline basis functions∑
ijk

ut+1
ijk

(
Bx

i B
y
jB

z
k , B

x
l B

y
mBz

n

)
=
∑
ij

ut
ijk

(
Bx

i B
y
jB

z
k , B

x
l B

y
mBz

n

)
−

dt
∑
ijk

ut
ijk

(
Kx

∂Bx
i

∂x
By

jB
z
k ,

∂Bx
l

∂x
By

mBz
n

)
−

dt
∑
ijk

ut
ijk

(
KyB

x
i

∂By
j

∂y
Bz

k , B
x
l

∂By
m

∂y
Bz

n

)
−

dt
∑
ijk

ut
ijk

(
KzB

x
i B

y
j

∂Bz
k

∂z
,Bx

l B
y
m

∂Bz
n

∂z

)
−

dt
∑
ij

ut
ijk

(
bx(x, y, z)

∂Bx
i

∂x
By

jB
z
k , B

x
l B

y
mBz

n

)
+

dt
∑
ijk

ut
ijk

(
by(x, y, z)B

x
i

∂By
j

∂y
Bz

k , B
x
l B

y
mBz

n

)
+

dt
∑
ijk

ut
ijk

(
bz(x, y, z)B

x
i B

y
j

∂Bz
k

∂z
,Bx

l B
y
mBz

n

)
l = 1, ..., Nx;m = 1, ..., Ny;n = 1, ..., Nz,

(6)

where (u, v) =
∫
Ω
u(x, y, z)v(x, y, z)dxdydz.

We separate directions∑
ijk

ut+1
ijl (Bx

i , B
x
l )x

(
By

j , B
y
m

)
y
(Bz

k , B
z
n)z =

∑
ij

ut
ijk (B

x
i , B

x
l )x

(
By

j , B
y
m

)
y
(Bz

k , B
z
n)z −

dt
∑
ijk

ut
ijk

(
Kx

∂Bx
i

∂x
,
∂Bx

l

∂x

)
x

(
KyB

y
j , B

y
m

)
y

(
KzB

z
j , B

z
n

)
z
−

dt
∑
ijk

ut
ijk (KxB

x
i , B

x
l )x

(
Ky

∂By
j

∂y
,
∂By

m

∂y

)
y

(KzB
z
k , B

z
n)z −

dt
∑
ijk

ut
ijk (KxB

x
i , B

x
l )x

(
KyB

y
j , B

y
m

)
y

(
Kz

∂Bz
k

∂z
,
∂Bz

n

∂z

)
z

+

dt
∑
ijk

ut
ijk

(
bx

∂Bx
i

∂x
,Bx

l

)
x

(
byB

y
j , B

y
m

)
y
(bzB

z
k , B

z
n)z +

dt
∑
ijk

ut
ijk (bxB

x
i , B

x
l )x

(
by

∂By
j

∂y
,By

m

)
(bzB

z
k , B

z
n)z +

dt
∑
ijk

ut
ijk (bxB

x
i , B

x
l )x

(
byB

y
j , B

y
m
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y
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k

∂z
,Bz
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)
z

l = 1, ..., Nx;m = 1, ..., Ny;n = 1, ..., Nz.
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We introduce

Mx = {(Bx
i , B

x
l )x}il = {

∫
Bx

i B
x
l dx}il, (7)

My = {(By
j , B

y
m)y}jm = {

∫
By

jB
y
mdy}jm, (8)

Mz = {(Bz
k , B

z
n)y}kn = {

∫
Bz

kB
z
ndz}kn. (9)

In general, Kronecker product matrix M = Ax ⊗ By ⊗ Cz over 3D domain
Ω = Ωx ×Ωy ×Ωz is de�ned as

Mijklmn = Ax
ilB

y
jmCz

kn. (10)

Due to the fact, that one-dimensional matrices discretized with B-spline func-
tions are banded and they have 2p + 1 diagonals (where p stands for the order
of B-splines), since

(M)
−1

= (Ax ⊗ By ⊗ Cz)
−1

= (Ax)
−1 ⊗ (By)

−1 ⊗ (Cz)
−1

. (11)

we can solve our system in a linear computational cost. The Kronecker product
decomposition on the right-hand-side can also help in developing fast integration
algorithms.

4 IGA-ADS simulation of the hail cannon

We perform three-dimensional computer simulations of the hail cannon using our
IGA-ADS code [24], employing isogeometic �nite element method and linear
computational cost solver. In our simulation, the scalar �eld u represents the
water vapor forming a cloud (possibly mixed with the pollution particles). Our
initial con�guration is the cloud "�xed" at the height of 3/4 of the domain. We
formulate the problem in the domain, with Ω = [0, 100m]× [0, 100m]× [0, 100m].
The initial state is presented in Figure 4. The vertical axis on the left-hand side
of the picture represents the vertical dimension of the domain. The vertical axis
on the right-hand side represents the cloud vapor concentration �eld. The display
scale is �xed from 0 to 10,000, on all the plots.
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Fig. 4: Initial con�guration for the cloud.

We employ the advection-di�usion equations,

∂u(x, y, z; t)

∂t
+ bx(x, y, z; t)

∂u(x, y, z; t)

∂x

+by(x, y, z; t)
∂u(x, y, z; t)

∂y

+bz(x, y, z; t)
∂u(x, y, z; t)

∂z

−Kx
∂2u(x, y, z; t)

∂x2
−Ky

∂2u(x, y, z; t)

∂y2
−Kz

∂2u(x, y, z; t)

∂z2
= 0,

(x, y, z; t) in Ω × (0, T ], (12)

∇u(x, y, z; t) · n(x, y, z) = 0, (x, y, z; t) in Ω × (0, T ], (13)

u(x, y, z; 0) = u0 in Ω × 0, (14)

where u is the concentration scalar �eld, where the shock-waves are modeled
by the advection �eld, namely (bx(x, y, z; t), by(x, y, z; t), bz(x, y, z; t)) = (0, 0,
cannon(x, y, z; t)) (given by equation (15)), Kx = Ky = 1.0 are the horizontal
di�usion coe�cients, and Kz = 0.1 is the vertical di�usion.

We employ the implementation of the linear computational cost Kronecker
product structure solver as described in [24]. The explicit method formulation is
implemented in the compute_rhs routine

void compute_rhs(int iter)
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Fig. 5: Reduction of the cloud vapor by generated shock waves. Side view.
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Fig. 6: Reduction of the cloud vapor by generated shock waves. Top view.
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1 auto& rhs = u;

2 zero(rhs);

3 for(auto e:elements()) {

4 auto U = element_rhs();

5 double J = jacobian(e);

6 for (auto q : quad_points()) {

7 double w = weight(q);

8 for (auto a : dofs_on_element(e)) {

9 auto aa = dof_global_to_local(e, a);

10 value_type v = eval_basis(e, q, a);

11 value_type u = eval_fun(u_prev, e, q);

12 double grad = 1.*u.dx * v.dx +

1.*u.dy * v.dy +

0.1*u.dz * v.dz;

13 double val = u.val * v.val - steps.dt * grad+

steps.dt*cannon(e[1])*u.dz*v.val;

14 U(aa[0], aa[1]) += val * w * J;

15 }

16 }

17 update_global_rhs(rhs, U, e);

18 }

In order to simulate the atmospheric cannon, we introduce the shock wave
as the the advection function in a separable way as

cannon(x, y, z; t) =const ∗ (1− z)∗
sin(10 ∗ π ∗ x) ∗ sin(10 ∗ π ∗ y)∗
max(0, sin(π ∗ t/10)),

(15)

for t = s− 100, where s is the time step size. In other words we run the cannon
from time step 100, and we shoot for 10 time steps with a function (1 − z) ∗
sin(10 ∗ π ∗ x) ∗ sin(10 ∗ π ∗ y) that runs in time like max(0, sin(π ∗ t/10)).

1 double cannon(double x, double y, double z, int iter) {

2 x=x/40.; y=y/40.; z=z/40.

3 double t=iter;

4 if(x>0.3 && x<0.6 && y>0.3 && y<0.6 &&t>0 && t<1000)

5 return 200.*(1.-z)*

max(sin(10*PI*x),0) *max(sin(10*PI*y),0)*

max(0,sin(PI*t/10));

6 else

7 return 0.;

We add this cannon function to the right-hand-side computing routine
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void compute_rhs(int iter)

...

13 double val = u.val * v.val - steps.dt * grad+

steps.dt*(delta_T(e[1])-

cannon(e[0],e[1],e[2], iter))*u.dz*v.val;

...

The simulations are executed on a laptop. The whole simulation takes around
1 hour on Corsair Vengeance LPX, DDR4, 64 GB (2x32GB), 3200MHz, CL16
with processor AMD Ryzen 9 - 3900X with 12 physical cores, and a total of
24 virtual cores. We run fully three-dimensional simulations, and we present a
horizontal cross-section along OXZ in the middle of the domain in Figure 5, and
the vertical cross-section along OXY in the middle height of the domain in Figure
6. We start generating the shock waves at time step t = 100. The con�guration
at time step t = 200, 100-time steps after the start of the sequence is presented in
the �rst panel in Figures 5-6. We maintain the sequence of generated shock waves,
and we present the next con�guration at time step t = 400 in the second panel in
Figures 5-6. We can read from this simulation that generating a sequence of shock
waves results in a local mixing of the layers and a reduction of the cloud vapor
(possibly mixed with the pollution particles). We continue this sequence of shock
waves until time step t = 1000 presented in the third panel in Figures 5-6. At
this moment, we can observe the maximum reduction of the cloud vapor. Then,
we stop the sequence and observe the behavior of the cloud. The "hole" in clouds
remains there for another 2000 time steps (two times longer than the generation
of a sequence of shock waves) until the time moment t = 3000 illustrated in
the fourth panel. At this moment, the neighboring cloud vapor particles return
slowly to the center by the di�usion mechanism. This is illustrated in the �fth
and sixth panels (time moments t = 4000 and t = 6000) in Figures 5-6. We
conclude that this local water vapor reduction maintains if the cannon creates
shocking waves over a repeated period and stays for a signi�cant period. The
repetition of the shock waves for a long time is a critical phenomenon for reducing
water vapor concentration.

5 Conclusion and future work

We claim that the numerical results presented in this paper are the �rst three-
dimensional simulational veri�cation of the hail cannon. We showed that repeat-
ing a sequence of shock waves for a long time signi�cantly reduces cloud vapor.
Our model is simple and may require several improvements, like computing the
real shape of the cannon force modeled by the advection. This will require a
solution of the three-dimensional Navier-Stokes equations. This computed �eld
can be introduced into the advection-di�usion model. We can also include dif-
ferent cloud components and the reaction terms between them. The thermal
e�ects that consider the additional movement of the cloud particles can also be
incorporated by considering the Navier-Stokes-Boussinesq model. Nevertheless,
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the presented numerical results are very interesting, and they also con�rm our
experimental �ndings.
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