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Abstract. Traditionally, the random noise is equally injected when train-
ing with di�erent data instances in the �eld of di�erential privacy (DP).
In this paper, we �rst give sharper excess risk bounds of DP stochastic
gradient descent (SGD) method. Considering most of the previous meth-
ods are under convex conditions, we use Polyak-�ojasiewicz condition to
relax it in this paper. Then, after observing that di�erent training data
instances a�ect the machine learning model to di�erent extent, we con-
sider the heterogeneity of training data and attempt to improve the per-
formance of DP-SGD from a new perspective. Speci�cally, by introducing
the in�uence function (IF), we quantitatively measure the contributions
of various training data on the �nal machine learning model. If the con-
tribution made by a single data instance is so little that attackers cannot
infer anything from the model, we do not add noise when training with
it. Based on this observation, we design a `Performance Improving' DP-
SGD algorithm: PIDP-SGD. Theoretical and experimental results show
that our proposed PIDP-SGD improves the performance signi�cantly.

Keywords: Di�erential privacy ·Machine learning · Data heterogeneity.

1 Introduction

Machine learning has been widely applied to many �elds in recent decades and
tremendous data has been collected. As a result, information disclosure becomes
a huge problem. Except for the original data, model parameters can reveal sen-
sitive information in an undirect way as well [15, 32].

Di�erential privacy (DP) [12, 13] is a theoretically rigorous tool to prevent
sensitive information [10]. It preserves privacy by introducing random noise, to
block adversaries from inferring any single individual included in the dataset
by observing the machine learning model. As such, DP has been applied to
numerous machine learning methods [31, 47, 6, 39, 17, 43, 35, 2, 9, 21, 33, 5, 40, 44,
30, 41, 36] and three main approaches are studied: output perturbation, objective
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perturbation, and gradient perturbation. However, some problems still exist:
First, all data is usually treated equally when training DP model, but in real
scenarios, di�erent training data a�ects the model di�erently, so treating them
all the same lacks `common sense' and is one of the reasons why low accuracy
appears. Meanwhile, previous results always require that the loss function is
convex (or even strongly convex), the application scenario is narrow.

To solve the problems, we make the following contributions in this paper:
First, we introduce the Polyak-�ojasiewicz (PL) condition [20] to relax the con-
vex (or even strongly convex) assumption. We analyze the excess population risk
and give corresponding bounds under PL condition and theoretical results show
that our given excess risk bounds are better than previous convex ones. Second,
motivated by the de�nition of DP, we provide a new perspective to improve the
performance: treating di�erent data instances di�erently. In particular, we in-
troduce the In�uence Function (IF) [22] to measure the contributions made by
di�erent data instances. If the data instance z contributes so little to the ma-
chine learning model that the attacker cannot infer anything (represented by the
privacy budget ε), we do not add noise when training with z, rather than treating
all of the data instances as being the same. In this way, we propose a `Perfor-
mance Improving' algorithm: PIDP-SGD to improve the model performance, by
taking data heterogeneity into account.

The rest of the paper is organized as follows. We introduce some related work
in Section 2. Preliminaries are presented in Section 3. We analyze the excess risk
of DP-SGD and give sharper theoretical bounds in Section 4. The `Performance
Improving' algorithm is given and analyzed in Section 5. In Section 6, we compare
our proposed method with previous methods in detail. The experimental results
are shown in Section 7 and we conclude the paper in Section 8.

2 Related Work

The �rst method on DP machine learning is proposed in [9], in which output
and objective perturbation methods are introduced. Gradient perturbation is
proposed in [33] and DP-SGD is analyzed for the �rst time. The accuracy of the
objective perturbation method is improved by [21]. The excess empirical risk
bounds of the methods proposed in [9] and [21] are improved by [5]. An output
perturbation method is introduced to DP-SGD by [41], in which a novel `2 sen-
sitivity is analyzed and better accuracy is achieved. [40] introduces Prox-SVRG
[42] to DP and proposes DP-SVRG, in which optimal or near-optimal utility
bounds are achieved. Meanwhile, there are also some works concentrated on
non-convex analysis. DP is introduced to deep learning by [1], via gradient per-
turbation method, however, it focuses on the privacy but lacks utility analysis.
An output perturbation method is proposed in [44] under non-convex condition.
The Polyak-�ojasiewicz condition is introduced in [40] and the excess empirical
risk of gradient perturbation method under non-convex condition is analyzed,
however, the excess population risk is not discussed. Aiming to achieve better
performance, in [30], more noise is added to those features less `relevant' to the
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�nal model. A Laplace smooth operator is introduced to DP-SGD and a new
method: DP-LSSGD is proposed in [36], focusing on non-convex analysis. The
excess empirical risk bound and the excess population risk bound of DP model
under non-convex condition are analyzed by [38], via Gradient Langevin Dynam-
ics. For non-convex condition, the theoretical results are always unsatisfactory.

All the works mentioned above treat all data instances equally, lack `common
sense' and lead unsatisfactory utility. To solve the problems under both convex
and non-convex conditions, we take data heterogeneity into account and propose
a `Performance Improving' algorithm. In this way, our method improves the
performance of DP model, superior to previous methods in excess risk bounds.

3 Preliminaries

3.1 Notations and Assumptions

The loss function is ` : C ×D → R, where C is the parameter space and D is the
data universe. We assume that the parameter space is bounded, whose radius is
r. Supposing there are n data instances in the dataset D = {z1, · · · , zn} ∈ Dn,
where zi are drawn i.i.d from the underlying distribution P. Besides, for each
z = (x, y), x is the feature and y is the label. We assume ‖x‖2 ≤ 1, i.e. X is
the unit ball. Moreover, for a vector x = [x1, · · · , xd], its `2 norm is de�ned as:

‖x‖2 =
(∑d

i=1 x
2
i

)1/2
, and the ith element is represented by [x]i.

The population risk over the underlying distribution P is de�ned as LP
(
θ
)
=

Ez∼P
[
`
(
θ, z
)]
. However, we cannot achieve P in practice, so our goal is to �nd

the optimal model that minimizes the empirical risk L(θ;D) = 1
n

∑n
i=1 `

(
θ, zi

)
on dataset D, de�ned as: θ∗ = argmin

[
L
(
θ;D

)]
, and L(θ∗;D) is represented

by L∗. For an algorithm A : Dn → Rm, we denote its output as θA. The excess
empirical risk denotes the gap between θA and θ∗, de�ned as: L(θA;D)− L∗;
and the excess population risk represents the gap between θA and the optimal
model over the underlying P, de�ned as: LP(θA) −minθ∈C LP(θ). The gener-
alization error connects the population risk and the empirical risk, de�ned as:
LP(θA)− L(θA;D).

Besides, there are some assumptions on the loss function:

De�nition 1 (G-Lipschitz) Loss ` : C × D → R is G-Lipschitz over θ, if for
some constant G, any z ∈ D and θ, θ′ ∈ C, |`(θ, z)− `(θ′, z)| ≤ G‖θ − θ′‖2.

De�nition 2 (L-smooth) Loss ` : C ×D → R is L-smooth over θ, if for some
constant L, any z ∈ D and θ, θ′ ∈ C, ‖∇θ`(θ, z)−∇θ`(θ′, z)‖2 ≤ L‖θ − θ′‖2.

De�nitions 1 and 2 upper bound the gradient and the second order gradient,
respectively, i.e. ‖∇θ`(θ, z)‖2 ≤ G and ‖∇2

θ`(θ, z)‖2 ≤ L.

3.2 Di�erential Privacy

Two databases D,D′ ∈ Dn di�ering by one single element are denoted as D ∼
D′, called adjacent databases.
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De�nition 3 (Di�erential Privacy [13]) With S ∈ range(A), the random-
ized function A : Dn → Rm is (ε,δ)-di�erential privacy ((ε,δ)-DP) if:

P [A(D) ∈ S] ≤ eεP [A(D′) ∈ S] + δ.

Di�erential privacy requires that adjacent datasets D,D′ lead to similar dis-
tributions on the output of a randomized algorithm A. This implies that an
adversary cannot infer whether an individual participates in the training pro-
cess because essentially the same conclusions about an individual will be drawn
whether or not that individual's data was used. Some kind of attacks, such as
membership inference attack, attribute inference attack, memorization attack,
can be thwarted by di�erential privacy [3, 7, 19].

4 Sharper Utility Bounds for DP-SGD

Considering that SGD naturally �ts the condition measuring each data instances
di�erently, before introducing the `Performance Improving' algorithm in detail,
we �rst analyze the excess risk bounds of DP-SGD.

In DP-SGD, at the tth iteration, we have: θt+1 ← θt − α (∇θ`(θt, zt) + b),
where zt is the chosen data instance at iteration t, α is the learning rate, and
b is the sampled random noise. There is a long list of works to analyze the
privacy guarantees of DP-SGD. To the best of our knowledge, the moments
accountant method proposed by [1] achieves one of the best results. It claimed
that if the Gaussian random noise b ∼ N

(
0, σ2Im

)
is injected, the loss function

is G-Lipschitz, and with

σ ≥ c
G
√
T log(1/δ)

nε
(1)

for some constant c, then the algorithm satis�es (ε, δ)-DP, where T is the total
number of training iterations and n is the size of the training dataset.

Previous works always discuss the empirical risk but seldom consider the
population risk [33, 1, 40, 44, 41]. However, the latter is one of the most concerned
terms in machine learning because it demonstrates the gap between the private
model and the optimal model over the underlying distribution P.

Excess Empirical Risk The excess empirical risk measures the gap between
θpriv and θ∗ over the dataset D, where θpriv denotes the private model. Before
the analysis, we �rst introduce the Polyak-�ojasiewicz (PL) condition [20].

De�nition 4 (Polyak-�ojasiewicz condition) L(θ;D) satis�es the Polyak-
�ojasiewicz (PL) condition if there exists µ > 0 for all θ:

‖∇θL(θ;D)‖22 ≥ 2µ(L(θ;D)− L∗).

PL condition is one of the weakest curvature conditions [26], it does not
assume the loss function to be convex and it is commonly used in non-convex
optimiztion. Many non-convex models satisfy the condition, including deep (lin-
ear) [8] and shallow neural networks [25].
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Remark 1 If L(θ;D) satis�es the PL condition, then it satis�es the Quadratic
Growth (QG) condition [20], i.e., L(θ;D) − L(θ∗;D) ≥ µ

2 ‖θ − θ
∗‖22, where θ∗

denotes the optimal model over dataset D.

Theorem 1 Suppose that `(θ, z) is G-Lipschitz, L-smooth, and satis�es PL con-
dition over θ. With learning rate α = 1

L , σ given in (1) to guarantee (ε, δ)-DP,
and T = O(log(n)), then with the dimensions of the model m:

E [L(θpriv;D)− L∗] ≤ O
(
mG2 log(1/δ) log(n)

n2ε2

)
,

the expectation is taken over the algorithm and dataset D.

Remark 2 Many researchers discussed the excess empirical risk in previous
works. To the best of our knowledge, one of the best results is given by [40],
in which T is multiplied `rudely' to the noise term when summing the loss over

T iterations. As a result, the excess empirical risk bound is O
(mG2 log(1/δ) log2(n)

n2ε2

)
in [40]. However, we solve a geometric sequence when summing the loss, and get
a tighter bound in this paper. As a result, the excess empirical risk bound is
improved by a factor of log(n) overall.

Excess Population Risk To get the excess population risk bound, we �rst
analyze the generalization error, which measures the gap between the perfor-
mance over the underlying distribution and the dataset D of the private model,
connecting the population risk with the empirical risk.

Theorem 2 If the loss function is G-Lipschitz, L-smooth, and satis�es the PL
condition over θ, the generalization error bound of θpriv satis�es:

E [LP(θpriv)− L(θpriv;D)]

≤ inf
τ>0

{
8(τ + L)

µ
E[L(θpriv;D)− L∗] + 16G2(τ + L)

n2µ2
+
LE[L(θpriv;D)]

τ

}
,
(2)

where the expectation is taken over the algorithm.

By Theorem 2, one may observe that the generalization error decreases if the
optimization error (the excess empirical risk) is smaller, which is in line with the
observation in [16, 8, 25]: `optimization helps generalization'.

Now, we give the excess population risk bound.

Theorem 3 If the loss function is G-Lipschitz, L-smooth, and satis�es the PL
condition over θ, with learning rate α = 1

L , the excess population risk of θpriv
satis�es:

E
[
LP (θpriv)−min

θ
LP (θ)

]
≤ (τ + L)

(
(8τ + µ)

µτ
E[L(θpriv;D)− L∗] + 16G2

n2µ2

)
+
L

τ
E[L∗].
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Remark 3 Combining the result given in Theorem 1, if E[L∗] = O(1/n), taking
T = O(log(n)), if we ignore constants and log(·) terms, then for all τ > 0, the
excess population risk bound comes to: O

(
m

τn2ε2 + τm
n2ε2 + 1

τn

)
. If τ = O(1), it is

O
(
m
n2ε2 + 1

n

)
. If τ = O(

√
nε/
√
m), the excess population is is O

( √m
n1.5ε +

m1.5

n2.5ε3

)
.

Thus, we get the upper bound of the excess population risk:

E
[
LP (θpriv)−min

θ
LP (θ)

]
= O

(
min

{
m

n2ε2
+

1

n
,

√
m

n1.5ε
+

m1.5

n2.5ε3

})
.

In Remark 3, to get the better result, we assume E[L∗] = O(1/n). It is a
small value because L∗ is the optimal value over the whole dataset. Besides, it
is common to assume the minimal population risk E[minLP(θ)] ≤ O(1/n) [24,
46, 28, 45, 34]. Moreover, under expectation, considering θ∗P = argminLP(θ) is
independent of dataset, so E[L∗] ≤ E[minLP(θ)] [23]. Thus, the assumption is
reasonable.

All the theorems given above only assume that the loss function `(·) is G-
Lipschitz, L-smooth and satis�es PL inequality, without convex assumption. So
the results are general and can be applied to some of the non-convex conditions.

5 Performance Improving DP-SGD

Motivated by the de�nition of DP, we focus on the contributions made by data
instances on the �nal model. In particular, if the e�ects caused by a data instance
z on the �nal machine learning model is so little that the attacker cannot realize
it (less than eε), there is no need to add noise to z. Now, only one problem is
left: How to measure the impact of the data instances on the model? A classic
technique, In�uence Function (IF), gives us some inspirations.

5.1 In�uence Function and Error Analysis

The contribution of data instance z is naturally de�ned as θ∗−z − θ∗, where
θ∗−z = argminθ

∑
zi 6=z `(θ, zi). To measure the gap between them, a straight

method is to train two models: θ∗, θ∗−z. However, retraining a model for each data
instance z is prohibitively slow. To solve the problem, in�uence [22] measures
the contributions on the machine learning model made by data instances:

cz := −
1

n

(
−H−1θ∗ ∇θ` (θ

∗, z)
)
≈ θ∗−z − θ∗, (3)

where Hθ∗ = 1
n

∑n
i=1∇2

θ`(θ
∗, zi), assumed positive de�nite. Via (3), we can

measure how the model changes if we `drop' one data instance, naturally in line
with the de�nition of DP.

The in�uence function cz is got by Taylor expansion [27], in which Taylor
remainders lead an approximation error. However, [22] only gives an approxima-
tion via IF, but not discusses the corresponding error. To �ll the gap, we analyze
the approximation error in this section, via the de�nition given below.
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Algorithm 1 Performance Improving DP-SGD

Require: dataset D, learning rate α, local iteration rounds Tlocal, global update
rounds R

1: function PIDP-SGD(D,α, Tlocal, R)

2: Initialize θ
(g)
0 , θ

(l)
0 ← θ̃.

3: for r = 0 to R− 1 do
4: Get H

θ̃
(g)
r

and compute its inverse.

5: for t = 0 to Tlocal − 1 do
6: Choose data instance zt randomly.
7: Get contribution of zt: c

(o)
t = czt + E, via H

θ̃
(g)
r

.

8: Sample b(c) ∼ N (0, σ2
(c)Im).

9: ct = 2c
(o)
t + b(c), if there exists any i that |[ct]i| ≥ 2reε1δ1

eε1−1
, jump to line 13;

otherwise, jump to line 10.
10: if ln

(
2reε1δ1

2reε1δ1−(eε1−1)sign([ct]i)[ct]i

)
≤ 2ε1 for all i ∈ [1,m], then

11: θ
(l)
t+1 ← θ

(l)
t − α∇θ`(θ

(l)
t , zt).

12: else

13: Sample b ∼ N (0, σ2Im),

14: θ
(l)
t+1 ← θ

(l)
t − α

(
∇θ`(θ(l)t , zt) + b

)
.

15: endif

16: endfor

17: θ
(g)
r+1 = θ

(l)
Tlocal

.
18: endfor

19: return θpriv = θ
(g)
R .

20: end function

De�nition 5 (C-Hessian Lipschitz) A loss function ` : C × D → R is C-
Hessian Lipschitz over θ, if for any z ∈ D and θ, θ′ ∈ C, we have: ‖∇2

θ`(θ, z) −
∇2
θ`(θ

′, z)‖2 ≤ C‖θ − θ′‖2.

Remark 4 C-Hessian Lipschitz means that ‖∇3
θ`(θ, z)‖2 ≤ C. For Mean Squared

Error, ‖∇3
θ`(θ, z)‖2 = 0. For logistic regression, elements in ∇3

θ`(θ, z) are less
than 0.097. The examples above show that the assumption is reasonable.

Theorem 4 If `(θ, z) is G-Lipschitz, L-smooth, C-Hessian Lipschitz over θ,
and ‖Hθ∗‖2 ≥ ζ, then with cz given in (3) the approximation error satis�es:

E := ‖(θ∗−z − θ∗)− cz‖2 ≤
1

ζ2n2

(
2LG+

CG2

ζ

)
.

Remark 5 Theorem 4 gives a O
(
1/n2

)
approximation error when applying cz,

which means that cz is precise. Besiders, in Theorem 4, we assume that ‖Hθ∗‖2 ≥
ζ. Because most of the algorithms are regularized, the assumption is easy to hold.

5.2 Performance Improving DP-SGD

We set a threshold: eε for adding noise by the following observation: the appear-
ance (or absence) of some data a�ects the model so little that attackers cannot
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infer anything from them. Changing those data instances cannot threaten (ε, δ)-
DP of the model. So, we calculate the `contribution' of data by IF, only add
noise to whom contributes more than eε.

Details of the Performance Improving algorithm are given in Algorithm 14.
Di�erent from traditional DP-SGD algorithm, Algorithm 1 applies a decision
process before gradient descent (lines 9 and 10), to decide whether to add random
noise or not. If the e�ect made by the chosen zt is no more than eε, SGD runs;
otherwise, we sample Gaussian noise b and run DP-SGD. In other words, lines
9 and 10 connects the value of IF with the privacy loss of DP. Meanwhile, we
notice that except the training process, the contribution calculating process may

also disclose the sensitive information. So we add noise to the c
(o)
t to guarantee

the claimed DP (line 9). Noting that the contribution given by (3) is based on
Taylor expansion, causing an approximation error (discussed in Section 5.1), we
�x it by adding E to ct in line 7.

It is easy to follow that if the privacy budget ε is higher, the constraint of
adding noise is looser, which means that fewer data instances meet the noise. As
a result, the performance of PIDP-SGD will be better if ε is higher.

Besides, the method given in this paper will inspire other researchers to apply
it to corresponding �elds such as mini-batch gradient descent.

Remark 6 The time complexity of Algorithm 1 is O
(
Rnm2+RTlocalm

)
. Under

the worst case Tlocal = 1, it becomes O
(
Rnm2

)
, where R is the total number of

iterations. Fortunately, an e�cient approach to calculate the In�uence Function
was given in [22], and the time complexity can be reduced to O

(
Rnm

)
. For some

other previous performance method, the time complexity also increases, we take
DP-LSSGD as an example here, whose time complexity is O

(
Rm2

)
. Under the

cases n > m, our time complexity is larger, but under high dimension cases, when
n ≤ m, our time complexity is better. However, both theoretical and experimental
results of our method is much better than DP-LSSGD (see Table 1 and Figures 1
and 2). So under low dimension conditions, the sacri�ce on time complexity is
a trade-o� against the model performance; under high dimension conditions, our
method is much better on both the model performance and the time complexity.

5.3 Privacy Guarantees

Theorem 5 For δ1, δ2 > 0 and ε1, ε2 > 0, if `(θ, z) is G-Lipschitz over θ, with

σ ≥ cG
√
T log(1/δ1)

nε1
, σ(c) ≥ c′

GR
√

log(1.25R/δ2)

nζε2
, where T = Tlocal ∗R. Algorithm 1

is (ε1 + ε2, δ1 + δ2)-DP for some constants c, c′.

Theorem 5 shows that the privacy of Algorithm 1 consists of two parts: (1)
computing ct and (2) training model. Speci�cally, ε1, δ1 (σ) are for the privacy
when training the model and ε2, δ2 (σ(c)) are for the privacy when computing ct.

In Algorithm 1, noise is only added when training with a partition of data
instances, which leads better excess risk bounds. In the following, we suppose

4 In Algorithm 1, sign(·) is the signum function, r is the radius of the parameter space.
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that there are k data instances a�ect the model signi�cantly and measure the
improvement brought by our proposed `Performance Improving' algorithm.

5.4 Utility Analysis

We �rst give the excess empirical risk bound.

Theorem 6 Suppose that `(θ, z) is G-Lipschitz, L-smooth, and satis�es PL con-
dition over θ. With learning rate α = 1

L and k data instances a�ect the model
signi�cantly, the excess empirical risk can be improved to:

E [L(θpriv;D)− L∗] ≤ O
(
kmG2 log(1/δ1) log(n)

n3ε21

)
.

Noting that k
n < 1, the excess empirical risk bound brought by Theorem 6 is

better than Theorem 1.
Via Theorem 2, we �nd that the generalization error is only related to ‖θTi −

θT ‖2 and L(θpriv;D), and these terms are only determined by the optimization
process, so the generalization error of Algorithm 1 is the same as which given in
Theorem 2. Then we come to the excess population risk.

Theorem 7 If `(·) is G-Lipschitz, L-smooth, and satis�es the PL condition
over θ. With learning rate α = 1

L , T = O(log(n)) and k data instances a�ect
the model signi�cantly, the excess population risk can be improved to:

O
(
min

{
km

n3ε2
+

1

n
,
km

n2.5ε2
+

1

n1.5
,
(km)1.5

n2ε3
+

ε√
kmn

})
.

The proof is similar to Theorem 3 and the discussion given in Remark 3. The
�rst, second, third and last terms are derived from taking τ = O(1),O(

√
n) and

O(nε/
√
km), respectively. Noting that k

n < 1, the result is better than which
given by Theorem 3.

In Theorem 7, we theoretically prove that the excess risk of DP models can
be better by considering data heterogeneity. It may give new inspirations to the
utility analysis in the future work.

6 Comparison with Related Work

Previous works always discuss the excess empirical risk but seldom analyze the
excess population risk, so we mainly focus on comparing the excess population
risk in this section. Details can be found in Table 1, in which G,L, S.C., C,
PL represent G-Lipschitz, L-smooth, strongly convex, convex and PL inequality,
respectively and EER, EPR denote the Excess Empirical Risk and the Empirical
Population Risk, respectively.

For the excess population risk, the best previous result is O
(
m
n2ε2 +

1
n

)
, given

in [14], under strongly convex condition. As shown in Table 1, our result is better
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Table 1. Comparisons on excess risk bounds between our method and other methods.

G L S.C. C PL EPR

[4] X X × X × O
(√

m
nε

+ 1√
n

)
[14] X × X X × O

(
m
n2ε2

+ 1
n

)
[14] X × × X × O

(√
m
nε

+ 1√
n

)
Ours X X × × X O

(
min

{
m
n2ε2

+ 1
n
,
√
m

n1.5ε
+ m1.5

n2.5ε3

})
Ours (PIDP-SGD) X X × × X O

(
min

{
km
n3ε2

+ 1
n
, km
n2.5ε2

+ 1
n1.5 ,

(km)1.5

n2ε3
+ ε√

kmn

})

by a factor up to O
(

1√
n

)
. When it comes to our proposed PIDP-SGD method,

the result is further improved by a factor up to O
(
k
n

)
. Noting that the best

result given in [14] requires the loss function to be strongly convex, which means
that our result is not only better but also strictly more general than which given

in [14]. For the best results under convex condition [4, 14]: O
(√m
nε + 1√

n

)
, our

results (both the original one and the one given by PIDP-SGD) are much better.
Although it is hard to compare convexity with the PL condition, our results can
be applied to some of the non-convex models (shown in De�nition 4).

Besides, for the excess empirical risk, our analyzed bound is better than which
proposed by [5, 41, 37, 4] and achieves the best result O

(
m
n2ε2

)
. For our proposed

`performance improving' method: PIDP-SGD, our analyzed excess empirical risk
bound is further tighter by a factor of O

(
k
n

)
. It is worth emphasizing that most of

the methods proposed previously assume that the loss function is convex, which
is not required in our method. Under this circumstance, we achieve a better
result, which is attractive. Additionally, for the non-convex analysis given in
[40], the excess empirical risk bound of our analyzed DP-SGD method is better
by a factor of O

(
log(n)

)
(as discussed in Remark 2) and the PIDP-SGD method

is better by a factor of O
(k log(n)

n

)
.

7 Experimental Results

Experiments on several real datasets are performed on the classi�cation task.
Since our method is based on SGD, we compare our method with previous
DP-SGD methods. Speci�cally, we compare our method with the gradient per-
turbation method proposed in [1], the output perturbation method proposed in
[41] and the DP-LSSGD method proposed in [36]. The performance is measured
in terms of classi�cation accuracy and the optimality gap. The accuracy rep-
resents the performance on the testing set, and the optimality gap represents
the excess empirical risk on the training set. The optimality gap is denoted by
L(θpriv;D)− L∗.

We use both logistic regression model and deep learning model on the datasets
KDDCup99 [18], Adult [11] and Bank [29], where the total number of data in-
stances are 70000, 45222, and 41188, respectively. In the experiments, to make

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_9

https://dx.doi.org/10.1007/978-3-031-35995-8_9
https://dx.doi.org/10.1007/978-3-031-35995-8_9


Data Heterogeneity Di�erential Privacy: From Theory to Algorithm 11

(a) KDDCup99 (LR) (b) Adult (LR) (c) Bank (LR)

(d) KDDCup99 (MLP) (e) Adult (MLP) (f) Bank (MLP)

Fig. 1. Accuracy over ε, LR denotes logistic regression model and MLP denotes the
deep learning model.

the model satis�es the assumptions (such as PL condition) mentioned in the
theoretical part, the deep learning model is denoted by Multi-layer Perceptron
(MLP) with one hidden layer whose size is the same as the input layer. Training
and testing datasets are chosen randomly. In all the experiments, total iteration
rounds T is chosen by cross-validation. For PIDP-SGD, we set RTlocal = T .
We evaluate the performance of our proposed PIDP-SGD method and some of
previous algorithms over the di�erential privacy budget ε. For ε, we set it from
0.01 to 3, and in the PIDP-SGD method, we set ε1 = 3ε2 = 3ε/4 to guarantee
ε1 + ε2 = ε. The results are shown in Figure 1 and Figure 2.

Figure 1 shows that as the privacy budget ε increases, so does the accu-
racy, which follows the intuition. When applying the PIDP-SGD algorithm, the
accuracy rises on most datasets, which means that our proposed `performance
improving' method is e�ective. Meanwhile, when ε is small, the di�erence (on
accuracy) between traditional methods and `performance improving' method is
also small. However, as ε increases, the `performance improving' method becomes
more and more competitive. The reason is that larger ε means that more data
instances `escape' the injected noise, leading to better accuracies.

Figure 2 shows that on some datasets, by applying PIDP-SGD algorithm, the
optimality gap of our method is almost 0, which means that it achieves almost
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(a) KDDCup99 (LR) (b) Adult (LR) (c) Bank (LR)

(d) KDDCup99 (MLP) (e) Adult (MLP) (f) Bank (MLP)

Fig. 2. Optimality gap over ε, LR denotes logistic regression model and MLP denotes
the deep learning model.

the same performance as the model without privacy in some scenarios5. Besides,
similar to the accuracy in Figure 1, the optimality gap decreases as ε increases,
which follows our intuition. Moreover, on some datasets, the performance of
some of the methods �uctuates. The reason is that in the setting of di�erential
privacy, random noise is injected into the model, so it is a common phenomenon.

Additionally, on some datasets, the performance of our `performance improv-
ing' method is worse when ε is small, the reason is that part of the privacy budget
is allocated to ct, which means `pure privacy budget' on the model is smaller.
Thus, with the increase of ε, the `performance improving' method becomes more
competitive, which has been analyzed before in Section 5. Experimental results
show that our proposed PIDP-SGD algorithm signi�cantly improves the perfor-
mance under most circumstances.

8 Conclusions

In this paper, we give sharper excess risk empirical and population risk bounds
of traditional DP-SGD paradigm. Theoretical results show that our given ex-
cess risk bounds are better than previous methods under both convex and non-
convex conditions. Meanwhile, based on DP-SGD, we attempt to improve the

5 The optimal model (derives L∗) is trained, rather than numerical solutions, and
random noise may make the model escape from local minima, so negative optimality
gaps appear.
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performance from a new perspective: considering data heterogeneity, rather than
treating all data the same. In particular, we introduce the in�uence function
(IF) to analyze the contribution of each data instance to the �nal model, and
the approximation error analysis shows that IF is reasonable to approximate the
contribution. In this way, we propose PIDP-SGD: only adding noise to the data
demonstrating signi�cant contributions (more than eε) when training. Detailed
theoretical analysis and experimental results show that our proposed PIDP-SGD
achieves better performance, without the convexity assumption. Moreover, the
new perspective of treating di�erent data instances di�erently may give new in-
spirations to future work, including the privacy analysis and the utility analysis.
In future work, we will focus on improving the time complexity of PIDP-SGD
and applying the algorithm to larger datasets.

Acknowledgements This work was supported in part by the Excellent Talents
Program of IIE, CAS, the Special Research Assistant Project of CAS, the Beijing
Outstanding Young Scientist Program (No. BJJWZYJH012019100020098), Bei-
jing Natural Science Foundation (No. 4222029), and National Natural Science
Foundation of China (No. 62076234, No. 62106257).

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with di�erential privacy. In: ACM SIGSAC Conference
on Computer and Communications Security. pp. 308�318 (2016)

2. Arora, R., Upadhyay, J.: On di�erentially private graph sparsi�cation and appli-
cations. In: Advances in Neural Information Processing Systems. pp. 13378�13389
(2019)

3. Backes, M., Berrang, P., Humbert, M., Manoharan, P.: Membership privacy in
microrna-based studies. In: ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 319�330 (2016)

4. Bassily, R., Feldman, V., Talwar, K., Guha Thakurta, A.: Private stochastic convex
optimization with optimal rates. In: Advances in Neural Information Processing
Systems. pp. 11279�11288 (2019)

5. Bassily, R., Smith, A., Thakurta, A.: Private empirical risk minimization: E�cient
algorithms and tight error bounds. In: IEEE Annual Symposium on Foundations
of Computer Science. pp. 464�473 (2014)

6. Bernstein, G., Sheldon, D.R.: Di�erentially private bayesian linear regression. In:
Advances in Neural Information Processing Systems. pp. 523�533 (2019)

7. Carlini, N., Liu, C., Erlingsson, U., Kos, J., Song, D.: The secret sharer: Evaluating
and testing unintended memorization in neural networks. In: USENIX Conference
on Security Symposium. p. 267�284 (2019)

8. Charles, Z., Papailiopoulos, D.: Stability and generalization of learning algorithms
that converge to global optima. In: International Conference on Machine Learning.
pp. 745�754 (2018)

9. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Di�erentially private empirical risk
minimization. Journal of Machine Learning Research pp. 1069�1109 (2011)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_9

https://dx.doi.org/10.1007/978-3-031-35995-8_9
https://dx.doi.org/10.1007/978-3-031-35995-8_9


14 Kang et al.

10. Chen, Z., Ni, T., Zhong, H., Zhang, S., Cui, J.: Di�erentially private double spec-
trum auction with approximate social welfare maximization. IEEE Transactions
on Information Forensics and Security pp. 2805�2818 (2019)

11. Dua, D., Gra�, C.: UCI machine learning repository (2017)
12. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in

private data analysis. In: Theory of Cryptography Conference. pp. 265�284 (2006)
13. Dwork, C., Roth, A., et al.: The algorithmic foundations of di�erential privacy.

Foundations and Trends R© in Theoretical Computer Science pp. 211�407 (2014)
14. Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: Op-

timal rates in linear time. In: Annual ACM SIGACT Symposium on Theory of
Computing. p. 439�449 (2020)

15. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In:
USENIX Conference on Security Symposium. pp. 17�32 (2014)

16. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: Stability of stochas-
tic gradient descent. In: International Conference on Machine Learning. pp. 1225�
1234 (2016)

17. Heikkilä, M., Jälkö, J., Dikmen, O., Honkela, A.: Di�erentially private markov
chain monte carlo. In: Advances in Neural Information Processing Systems, pp.
4115�4125 (2019)

18. Hettich, S., Bay, S.D.: The uci kdd archive (1999)
19. Jayaraman, B., Evans, D.: Evaluating di�erentially private machine learning in

practice. In: USENIX Conference on Security Symposium. pp. 1895�1912 (2019)
20. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-

gradient methods under the polyak-ªojasiewicz condition. In: Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. pp. 795�811
(2016)

21. Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and
high-dimensional regression. In: Conference on Learning Theory. pp. 25�1 (2012)

22. Koh, P.W., Liang, P.: Understanding black-box predictions via in�uence functions.
In: International Conference on Machine Learning. pp. 1885�1894 (2017)

23. Lei, Y., Ledent, A., Kloft, M.: Sharper generalization bounds for pairwise learning.
Advances in Neural Information Processing Systems (2020)

24. Lei, Y., Ying, Y.: Fine-grained analysis of stability and generalization for stochastic
gradient descent. In: International Conference on Machine Learning. pp. 5809�5819
(2020)

25. Lei, Y., Ying, Y.: Sharper generalization bounds for learning with gradient-
dominated objective functions. In: International Conference on Learning Repre-
sentations (2021)

26. Li, S., Liu, Y.: Improved learning rates for stochastic optimization: Two theoretical
viewpoints (2021)

27. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer-
ical Mathematics pp. 146�160 (1976)

28. Liu, M., Zhang, X., Zhang, L., Jin, R., Yang, T.: Fast rates of ERM and stochas-
tic approximation: Adaptive to error bound conditions. In: Advances in Neural
Information Processing Systems. pp. 4683�4694 (2018)

29. Moro, S., Cortez, P., Rita, P.: A data-driven approach to predict the success of
bank telemarketing. Decision Support Systems pp. 22�31 (2014)

30. Phan, N., Wu, X., Hu, H., Dou, D.: Adaptive laplace mechanism: Di�erential pri-
vacy preservation in deep learning. In: IEEE International Conference on Data
Mining. pp. 385�394 (2017)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_9

https://dx.doi.org/10.1007/978-3-031-35995-8_9
https://dx.doi.org/10.1007/978-3-031-35995-8_9


Data Heterogeneity Di�erential Privacy: From Theory to Algorithm 15

31. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: ACM SIGSAC
Conference on Computer and Communications Security. pp. 1310�1321 (2015)

32. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: IEEE Symposium on Security and Privacy.
pp. 3�18 (2017)

33. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with di�er-
entially private updates. In: IEEE Global Conference on Signal and Information
Processing. pp. 245�248 (2013)

34. Srebro, N., Sridharan, K., Tewari, A.: Optimistic rates for learning with a smooth
loss. arXiv preprint arXiv:1009.3896 (2010)

35. Ullman, J., Sealfon, A.: E�ciently estimating erdos-renyi graphs with node di�er-
ential privacy. In: Advances in Neural Information Processing Systems. pp. 3765�
3775 (2019)

36. Wang, B., Gu, Q., Boedihardjo, M., Barekat, F., Osher, S.J.: Dp-lssgd: A stochastic
optimization method to lift the utility in privacy-preserving erm. arXiv preprint
arXiv:1906.12056 (2019)

37. Wang, B., Gu, Q., Boedihardjo, M., Barekat, F., Osher, S.J.: Dp-lssgd: A stochastic
optimization method to lift the utility in privacy-preserving erm. CoRR (2019)

38. Wang, D., Chen, C., Xu, J.: Di�erentially private empirical risk minimization with
non-convex loss functions. In: International Conference on Machine Learning. pp.
6526�6535 (2019)

39. Wang, D., Xu, J.: Principal component analysis in the local di�erential privacy
model. Theoretical Computer Science (2019)

40. Wang, D., Ye, M., Xu, J.: Di�erentially private empirical risk minimization re-
visited: Faster and more general. In: Advances in Neural Information Processing
Systems. pp. 2722�2731 (2017)

41. Wu, X., Li, F., Kumar, A., Chaudhuri, K., Jha, S., Naughton, J.: Bolt-on di�er-
ential privacy for scalable stochastic gradient descent-based analytics. In: ACM
International Conference on Management of Data. pp. 1307�1322 (2017)

42. Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive vari-
ance reduction. SIAM Journal on Optimization pp. 2057�2075 (2014)

43. Xu, C., Ren, J., Zhang, D., Zhang, Y., Qin, Z., Ren, K.: Ganobfuscator: Mitigat-
ing information leakage under gan via di�erential privacy. IEEE Transactions on
Information Forensics and Security pp. 2358�2371 (2019)

44. Zhang, J., Zheng, K., Mou, W., Wang, L.: E�cient private erm for smooth objec-
tives. arXiv preprint arXiv:1703.09947 (2017)

45. Zhang, L., Yang, T., Jin, R.: Empirical risk minimization for stochastic convex
optimization: o(1/n)-and o(1/n2)-type of risk bounds. In: Conference on Learning
Theory. pp. 1954�1979 (2017)

46. Zhang, L., Zhou, Z.H.: Stochastic approximation of smooth and strongly convex
functions: Beyond the o(1/t) convergence rate. In: Conference on Learning Theory.
pp. 3160�3179 (2019)

47. Zhao, L., Ni, L., Hu, S., Chen, Y., Zhou, P., Xiao, F., Wu, L.: Inprivate digging:
Enabling tree-based distributed data mining with di�erential privacy. In: IEEE
INFOCOM Conference on Computer Communications. pp. 2087�2095 (2018)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_9

https://dx.doi.org/10.1007/978-3-031-35995-8_9
https://dx.doi.org/10.1007/978-3-031-35995-8_9

