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Abstract. Modeling large datasets through Multivariate Functional Ap-
proximations (MFA) plays a critical role in scientific analysis and vi-
sualization workflows. However, this requires scalable data partitioning
approaches to compute MFA representations in a reasonable amount of
time. We propose a fully parallel and efficient method for computing
MFA with B-spline bases without sacrificing the reconstructed solution
accuracy or continuity. Our approach reduces the total work per task
and uses a restricted Additive Schwarz (RAS) method to converge con-
trol point data across subdomain boundaries. We also provide a detailed
analysis of the parallel approach with domain decomposition solvers to
minimize subdomain error residuals and recover high-order continuity
with optimal communication cost determined by the overlap regions in
the RAS implementation. In contrast to previous methods that gener-
ally only recover C'' continuity for arbitrary B-spline order p or required
post-processing to blend discontinuities in the reconstructed data, the
accuracy of the MFA remains bounded as the number of subdomains is
increased. We demonstrate the effectiveness of our approach using ana-
lytical and scientific datasets in 1, 2, and 3 dimensions and show that it is
highly scalable (due to bounded outer iteration counts) and that the par-
allel performance at scale is directly proportional to the nearest-neighbor
communication implementations.

Keywords: functional approximation, domain decomposition, B-spline
representations, additive Schwarz solvers

1 Introduction

Large-scale discrete data analysis of various scientific computational simulations
often require high-order continuous functional representations that have to be
evaluated anywhere in the domain. Such expansions described as Multivariate
Functional Approximations (MFA) [4] in arbitrary dimensions allow the original
discrete data to be modeled, and expressed in a compact form, in addition to sup-
porting higher-order derivative queries (without further approximations such as
finite differences) for complex data analysis tasks. MFA utilizes approximations
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of the raw discrete data using a hypervolume of piecewise continuous functions.
One particular option is to use the variations of the B-Spline or NURBS bases
[24,23] for the MFA encoding of scientific data. The reconstructed data in MFA
retains the spatiotemporal contiguity, and statistical distributions, with lesser
storage requirements. Due to the potentially large datasets that need to be en-
coded into MFA, the need for computationally efficient algorithms (in both time
and memory) to parallelize the work is critically important. It is also essen-
tial to guarantee that the solution smoothness in the reconstructed (or decoded)
dataset is consistently preserved when transitioning from a single MFA domain
to multiple domains during parallelization.

Achieving improved performance without sacrificing discretization accuracy
requires an infrastructure that is consistent in the error metrics of the decoded
data and an algorithm that remains efficient in the limit of large number of par-
allel tasks. In this paper, we will utilize domain decomposition (DD) techniques
[26] with data partitioning strategies to produce scalable MFA computation algo-
rithms that minimize the reconstruction error when reproducing a given dataset.
In such partitioned analysis, it is imperative to ensure that the continuity of the
encoded and decoded data across subdomain interfaces is maintained, and re-
mains consistent with the degree of underlying expansion bases used in MFA
[23]. This is due to the fact that independently computing MFA approximations
in individual subdomains do not guarantee even C° regularity in either the MFA
space or in the reconstructed data. In order to tackle this issue, we rely on an
iterative Schwarz-type DD scheme to ensure that continuity is enforced, and the
overall error stays bounded as the number of subdomains are increased (or as
the subdomain size decreases).

In addition to remaining efficient, we also require the devised algorithms to
extend naturally to arbitrary dimensional settings and to handle large datasets.
We next discuss some of the related work in the literature that have been ex-
plored for reconstruction of scattered data, and approaches to make these algo-
rithms scalable in order to motivate the ideas presented in the paper.

1.1 Related Work

Domain decomposition (DD) techniques in general rely on the idea of splitting
a larger domain of interest into smaller partitions or subdomains, which results
in coupled Degrees-of-Freedom (DoF) at their common interfaces. Combining
the application of DD schemes and NURBS bases with isogeometric analysis
(IGA) [6,7] for high-fidelity modeling of nonlinear Partial Differential Equa-
tions (PDEs) [10,19,8] has enjoyed recent success at scale. However, many of
these implementations lack full support to handle multiple geometric patches
in a distributed memory setting due to non-trivial requirements on continuity
constraints at patch boundaries. Directly imposing higher-order geometric con-
tinuity in IGA requires specialized parameterizations in order to preserve the
approximation properties [16], which can be difficult to parallelize [15] generally.

To overcome some of these issues with discontinuities along NURBS or B-
spline patches, Zhang et al. [28] proposed to use a gradient projection scheme
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to constrain the value (C°), the gradient (C*), and the Hessian (C?) at a small
number of test points for optimal shape recovery. Such a constrained projection
yields coupled systems of equations for control point data for local patches, and
results in a global minimization problem that needs to be solved.

Alternatively, it is possible to create a constrained recovery during the actual
post-processing stage i.e., during the decoding stage of the MFA through stan-
dard blending techniques [14], in order to recover continuity in the decoded data.
However, the underlying MFA representation remains discontinuous, and would
become more so with increasing number of subdomains without the ability to
recover higher-order derivatives along these boundaries. Moreover, selecting the
amount of overlap and resulting width of the blending region relies strongly on
a heuristic, which can be problematic for general problem settings.

In contrast, we propose extensions to the constrained solvers used by Zhang
et al. [28], and introduce a two-level, DD-based, parallel iterative scheme to en-
force the true degree of continuity, independent of the basis function polynomial
degree p, unlike the low-order constraints used previously. The outer iteration
utilizes the restricted Additive Schwarz (RAS) method [13], with efficient inner
subdomain solvers that can handle linear Least-Squares systems to minimize the
decoded residual within acceptable error tolerances. Such an iterative solver has
low memory requirements that scales with growing number of subdomains, and
necessitates only nearest-neighbor communication of the interface data once per
outer iteration to converge towards consistent MFA solutions.

2 Approach

With motivations to accelerate the computation of an accurate MFA represen-
tation scalably, we utilize a data decomposition approach with overlapping sub-
domains to create shared layers of piecewise accurate functional reconstructions.
This is similar to a multipatch approach typically taken in IGA computations
[6,8]. However, in order to ensure that higher-order continuity across domain
boundaries are preserved, an outer iteration loop is inevitable to converge the
shared unknowns across the interfaces. These global iterations guarantee consis-
tent MFA encodings in parallel, without which the representations will not even
ensure C° regularity.

In this section, we first provide an illustrative example by formulating the
constrained minimization problem to be solved in each subdomain and explain
the iterative methodology used in the current work to converge the shared DoFs.

2.1 Numerical Background

A p-th degree NURBS or B-spline curve [24] is defined using the Cox-deBoor
functions for each subdomain as
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n

C(u) = Z Ri,(u)P(i), Yue 2 (1)

Ni’p(u)Wi

Rip(u) = 2
)p(U) Z;:o Ni,p(u)Wi

(2)

where R; ,(u) are the piecewise rational functions with P control points of
size n, W; are the control point weights, with the p-th degree B-spline bases
N, p(u) defined on a knot vector w.

Given a set of input points @ that need to be encoded into a MFA, with
the weights W = 1 (B-spline representations) for simplicity, the unconstrained
minimization problem to compute the optimal set of control point locations
within a subdomain can be posed as a solution to a linear Least-SQuares (LSQ)
system that minimizes the net error of the B-spline approximation.

argmin £ = ||Q — RP|, ,
PeR?
where R e R™" | Q € R™ (3)

An appropriate LSQ solver such as the one based on Cholesky decomposi-
tion or the more efficient ¢-BFGS scheme [29] can compute the control point
solution P that minimizes the residual error E for the given input data @ and
MFA representation of degree p. Note that the minimization procedure can be
performed independently on each subdomain without dependencies as there are
no constraints explicitly specified in Equation (3). However, in order to recover
high-order continuity across subdomain interfaces, computing the unconstrained
solution is insufficient. At the minimum, the shared DoF's on subdomain bound-
aries have to match to recover C° continuity in the decoded data (RP).

A straightforward approach to achieve C° continuity in the recovered solution
is by ensuring that the common control point data P at subdomain interfaces
are clamped with repeated knots, in addition to using clamping at the global
domain boundaries. In this scheme, the control points exactly interpolate (are
clamped to) input data points at the subdomain interface boundaries. Such an
approach requires in general a good spatial distribution of @, and yields only
low-order continuous approximations (CY) when the solution remains smooth
across the subdomain interfaces. It should also be noted that as the number
of subdomains increases, the global solution being computed becomes further
constrained, and more interpolatory due to clamped DoF's. Moreover, the MFA
solution computed becomes dependent on the number of subdomains used to
decompose the problem; i.e., the global control point data P recovers different
reconstructions as a function of number of subdomains (A) used.

While the implementation of the domain decomposed MFA can be much
simpler with clamped knots on all subdomain boundaries, ensuring higher-order
continuity would require that all p — 1 derivatives of the approximation match
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as well. As a continuous extension, one could relax the interpolatory behavior of
clamped knot boundaries by reducing the number of repeated knots, and instead
use unclamped knots at internal subdomain boundary interfaces by sharing knot
spans between subdomains.

More generally, the constrained minimization problem to recover continuity
[24] can be formulated as

RP=Q | CP=G, (4)

where C is the constraint matrix imposing continuity restrictions on the con-
trol points P along with its derivatives, with data exchanged from neighboring
domains stored in G, around the neighborhood of the interface (2; ; shared by
subdomains 7 and j. With the use of penalized constraints (C) and Lagrange mul-
tipliers [12,22], the solution to the constrained LSQ problem can recover optimal
control point values. This modification allows us to recover fully consistent (C°
to CP~1) continuous MFA reconstructions using the solution procedure detailed
for the global constrained minimization problem Equation (4).

2.2 Shared Knot Spans at Subdomain Interfaces

In the current work, in contrast to using clamped knots, we utilize unclamped
(floating), shared knot spans at all interior subdomain boundaries such that
the high-order continuity and consistency of the decoded solution are recovered,
independent of N.

T~
6,
Q a0y, o2

(o}t

(a) Even degree p = 2 (b) Odd degree p =3

Fig. 1: Tllustration: 1D parallel partitioned domain with unclamped interior knots
and augmented spans (|0] = 2)

For the purpose of illustration and to explain the proposed solver methodol-
ogy, let us consider a simple one dimensional domain ({2) with two subdomains
(N =2) as shown in Fig. (1), where £2; and {25 represent the subdomains that
share an interface 021 2. In Fig. (1), the layout of the knot spans for both an
even degree (p = 2) and odd degree (p = 3) are shown. For generality, we also in-
troduce here an overlap layer A; and As on each subdomain that represents the
set of shared knot spans with its adjacent subdomain (for internal boundaries),
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and an optional augmented layer §; and J, that has a connotation similar to that
of an overlap region in traditional DD schemes [26]. Note that in order to recon-
struct the input data in £2;,Vi € [1,2], the knot spans must mandatorily include
A; regions. This A; overlap region is required by definition to maintain partition
of unity of a B-spline curve in order to evaluate Equation (2). For generality,
A; represents the repeated knots along clamped global domain boundaries, and
the shared knots between two subdomains in the unclamped interior boundaries.
For arbitrary degree p, the number of knot spans in 4; is given by L%J, where
|.| represents the floor operator. In multidimensional tensor product expansions,
these shared spans are replaced by shared layers of knot spans along the subdo-
main interfaces. The §; regions are additional, and optional, shared knot spans
that can help improve error convergence in a manner similar to overlap regions
in DD methods used for PDE solvers [13,26].

Note that the control point DoF vector can be represented by three separate
parts based on the local support of the basis expansion. The control point vector
is in general given as P(2U AU J) = [P(2); P(A); P(J)]. However, the owned
DoFs represented by P({2) is the only component computed through the LSQ
subdomain solver, while the other components, P(A) and P(J), are only used
to impose the constraints to recover continuity.

Now, the constrained minimization problem for the two subdomain case can
be written as

Rl(Ql) /\172(A1U51):| |:P1(.91UA1 U§1):| _ |:Q1:| (5)
)\2’1(A2 U (52)‘ RQ(QQ) PQ(QQ UAyU (52) Q2

where the diagonal operators R; and R, are the piecewise rational func-
tions that minimize the local subdomain residuals in §2;,Vj € [1,2], while the
off-diagonal blocks Aj 2 and Ay ; represent the coupling terms between the sub-
domains near the interface 0f2; 2. This coupling term provides the constraints on
the shared control point data, and higher-order derivatives as needed to recover
smoothness and enforce continuity along subdomain boundaries. For higher di-
mensional problems, the constraints on the control points must include both
face neighbor and diagonal neighbor contributions to accurately determine the
globally consistent minimization problem.

The coupling blocks \; ; can be viewed as Lagrange multipliers that explicitly
couple the control point DoF's across a subdomain interface (P1 (2 UA;Ud;p)N
Py (25 U As U d2)) such that continuity is preserved in a weak sense [24]. Using
appropriate Schur complements to eliminate the coupled DoF contributions in
each subdomain, with A; ; evaluated at lagged iterates of adjacent subdomains,
the set of coupled constrained equations in Equation (5) can be completely
decoupled for each subdomain. This modified system resembles a block-Jacobi
operator of the global system. The scheme illustrated in this section follows ideas
similar to the Jacobi-Schwarz method [13] and the overlapping RAS method [27].

In the above description, the coupled control point patches, P;(4;) and
P;(As3) belonging to adjacent subdomains near 0f2; o are exchanged simultane-
ously between (27 and {2, before the local domain solves are computed indepen-
dently. One key advantage with such a DD scheme is that only nearest neighbor

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-35995-8_7 |



https://dx.doi.org/10.1007/978-3-031-35995-8_7
https://dx.doi.org/10.1007/978-3-031-35995-8_7

Domain Decomposition for Multivariate Functional Approximations 7

exchange of data is required, which keeps communication costs bounded as the
number of subdomains A increase [27], while providing opportunities to inter-
lace recomputation of the constrained control point solution. Note that in such
an iterative scheme, nearest neighbor exchanges can be performed compactly
per dimension and direction, thereby minimizing communication costs and elim-
inating expensive global collectives.

Augmenting Knot Spans with Overlap: One of the key metrics of interest
is that the parallel solver infrastructure does not amplify any approximation
errors unresolved by the tensor product B-spline mesh. Since the local decou-
pled subdomain solution is encoded accurately to satisfy Equation (3) in each
individual subdomain without any data communication (i.e., embarassingly par-
allel), imposing the constraints for the shared DoF's in A should ensure the error
change is bounded. However, as the control point data across subdomains be-
come synchronized, numerical artifacts, especially for high-degree (p > 2) basis
reconstructions at subdomain interfaces can become dominant sources of error.
A key validation metric is to compare the error profiles from the multiple sub-
domain cases to the single subdomain case, in order to ensure convergence of
the solvers to the same unique solution, independent of N.

For many problem domains, overlapping Schwarz solvers [18,13] have been
proven to be more stable, efficient and scalable compared to non-overlapping
variants [3,27]. We utilize the concept of overlap regions by sharing additional
knot spans between subdomains in order to produce better MFA reconstruc-
tions of the underlying data. This user-specified, additional overlap is described
by 6;,Vj € [1,2] in Fig. (1). The amount of data overlap utilized for computing
the functional approximation can directly affect the accuracy of the subdomain
solver, and the scalability of the algorithm. Additionally, the presence of the
augmented knot spans in § keep the residual errors E bounded as the number
of subdomain increase with appropriate overlap regions. Note that the optimal
range of 0 depends on the gradient of the input data near the subdomain inter-
faces, i.e., |§| = 0 may suffice for reconstructing smoother solution profiles, while
strong gradient reconstructions may require |§| = p or |6| = 2p in general.

2.3 Solver Workflow

Computing the functional approximation of large datasets require efficient solvers
at two levels: first, the local decoupled subdomain problem in Equation (3), and
next, the constrained minimization problem in Equation (4). Hence, the global
problem reduces to a series of minimization problems in each subdomain.

Subdomain Solvers: For the linear LSQ solvers that can be used to compute
local subdomain control point solution P, there are a variety of choices available.
Direct methods like Singular Value decomposition or Cholesky decomposition
operating on the normal equations [2] can compute optimal values. Alternatively,
the iterative LSQ solvers such as orthogonal decomposition methods based on
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QR and QZ factorizations are more stable, especially when the normal form of
the operator, R R, is ill-conditioned.

Restricted Additive-Schwarz Solvers: The outer RAS iterations work to-
gether with nearest neighbor communication procedures to exchange shared DoF
data between adjacent subdomains. This is an important step to ensure that
P computed through the LSQ procedure is consistent and high-order continu-
ous across subdomain boundaries. The final minimized control point solution is
achieved when the interface solutions P(A) match on all 942; ; € (2.

It is also important to note that unlike the blending approaches that can be
directly applied on decoded data [14], the numerical error with the constrained
iterative scheme is not bounded by the original partitioned, unconstrained least-
squares solution; i,e., imposing subdomain boundary constraints can create ar-
tificial numerical peaks (non-monotonic) in reconstructed data as we converge
towards continuity recovery. To address this issue, we can increase the subdomain
overlap § to ensure uniform convergence to the true single-subdomain solution
error, in the limit of AV — oo.

2.4 Implementation

The DD techniques presented here for MFA computation are primarily imple-
mented in Python-3, with main dependencies on SciPy for B-spline bases evalu-
ations and linear algebra routines. Additionally, the drivers utilize Python bind-
ings (PyDIY) for the DIY [20] C++ library. DIY is a programming model and
runtime for block-parallel analytics on distributed-memory machines, built on
MPI-3.Rather than programming for process parallelism directly in MPI, the pro-
gramming model in DIY is based on block parallelism. In DIY, data are decom-
posed into subdomains called blocks. One or more of these blocks are assigned
to processing elements (processes or threads) and the computation is described
over these blocks, and communication between blocks is defined by reusable pat-
terns. PyDIY utilizes PyBind11' to expose the C++ library in a Pythonic way.
In our implementation, PyDIY is exclusively used to manage the data decompo-
sition, including specifications to share an interface 0f2; ; and ghost layers that
represent the A U § overlapping domains.

The implementation of non-overlapping and overlapping RAS schemes ap-
plied to the computation of MFA exhibits scalable convergence properties in
the limit of decreasing subdomain size (i.e., as N' — oo). This is a favorable
property for strong scaling, especially when tackling large datasets, as the net
computational cost always remains bounded. This behavior can be explained by
the nature of how the RAS iterative procedure resolves the shared DoF's.

! PyBind11: https://github.com/pybind/pybind11 (last accessed 01/24/2023)
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3 Results

To demonstrate the effectiveness of the iterative algorithm for MFA computation,
we devised a series of analytical closed form functionals and utilized real-world
scientific datasets in both 2 and 3 dimensions obtained from high-fidelity simula-
tions. We also define a compression ratio (1), which gives the ratio of total input
points in the dataset (dim Q) to the total control points (dim P) used in the
MFA B-spline representation. Note that as n — 1, one can achieve smaller error
residuals compared with the reference data for a given degree p, while n > 1
produces smoother approximations with potentially larger pointwise errors.

3.1 Error Convergence Analysis

For a domain §2(z,y,z) = [—4,4]3, we define closed-form synthetic datasets
shown in Equation (6), Equation (7) and Equation (8) for 1D, 2D and 3D re-
spectively to verify error convergence and to demonstrate the parallel scalability
of MFA computation.

F(z) = S(z +1) + S(z — 1),¥z € 2 = [-4,4], (6)
F(z,y) = S(V2? +y2) + S2(x — 2) + 2(y + 2)*), (7)
F(a,y,2) =S(Va? +y2 +22) + 82z = 2)° + (y +2)* + (2 - 2)*),  (8)

where S(z) = 2@

First, to determine the effect of using augmented or overlapped knot span
regions (&) as the number of subdomains N are increased, we use the 1D function
in Equation (6) on a single subdomain as the reference solution (Fig. (2a)). The
error profiles for A/ = 5 using non-overlapping spans (|§| = 0) and augmented
spans (|d] = 3) are also shown in Fig. (2¢) and Fig. (2d) respectively.

8

(b) Error: N =1andp=3

(c) Error: N =5,p=3and 6| =0 (d) Error: N =5,p=3and |§| =p

Fig. 2: Demonstration of error convergence, and effect of the overlapping spans
to minimize numerical artifacts

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-031-35995-8_7 |



https://dx.doi.org/10.1007/978-3-031-35995-8_7
https://dx.doi.org/10.1007/978-3-031-35995-8_7

10 V.S. Mahadevan, D. Lenz, I. Grindeanu, T. Peterka

It is evident from Fig. (2¢) that in the non-overlapping case, the recon-
structed data at subdomain boundaries are influenced by contributions from
both adjacent domain DoFs, which are enforced to be CP~! continuous by the
constrained minimization solver. However, as we increase the number of overlap
regions in terms of both the underlying data and the local bases support spans,
the error profiles as shown in Fig. (2d) approaches the reference profile (with
N = 1) shown in Fig. (2b). Heuristically, for many of the problems tested, using
|6| = p provides optimal error convergence as number of subdomains increase,
even though increasing this parameter to |6| = 2p or higher will in general al-
ways improve the numerical accuracy at the cost of higher communication costs
between neighboring subdomains.

3.2 Real Simulation Datasets

Next, we apply the parallel MFA algorithm to some real world examples cases.

Computational Fluid Dynamics Dataset: In this study, we utilized a 3D
dataset from the large-eddy simulation of Navier-Stokes equations for validation
of MAX experiments [25] using Nek5000 [11]. The velocity field data is represen-
tative of turbulent mixing and thermal striping that occurs in the upper plenum
of liquid sodium fast reactors. For the 2D analysis, a slice of the velocity mag-
nitude was resampled onto a 200 x 200 regular grid [23]. The reference solution
and the converged, reconstructed solution with A" = 5 x 5 = 25 subdomains
with p = 6 and |6| = 2p is shown in Fig. (3) for different 7. Depending on the
use case for MFA reconstruction, the converged error norms with 20 floating
control points per subdomain yielding 1 = 4 is sufficient to evaluate continuous
derivatives everywhere in the domain (2. The decoded MFA representation (with
7 = 1) is also shown in Fig. (3¢), which can fully reconstruct the sharp features
in the input dataset in contrast to a lossy smoothing shown in Fig. (3b) (n = 4).

-{\m 1@\\?

Fig. 3: Velocity profile: reference solution (left), B-spline MFA with p = 6, ' =
5 x 5, |0] = p for n =4 (middle), and n = 1 (right).
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Turbulent Combustion Dataset: S3D is a turbulent fuel jet combustion
dataset generated from a simulation in the presence of an external cross-flow [5].
The 3D domain has the span 2| = 704 x 540 x 550, containing three components
of the vector field. The magnitude of the velocity field is shown below in Fig. (4a)
with 209M points. The converged MFA reconstruction is shown in Fig. (4b) with
83 = 512 subdomains and n = 62 per direction in each subdomain yields n =
W ~ 1.72. While uniform knot refinement does yield sufficient error
reductions in most subdomains, adaptive knot insertion with the DeCasteljau
algorithm [24] can reduce the relatively large errors (as shown in Fig. (4c¢)) to
provide better reconstructions everywhere. This was demonstrated on a single
subdomain previously [21], but with minor modifications to the communication
routines, we can naturally extend the algorithm to handle adaptive knot spans
with high-order continuity.

vvvvvv
uuuuuuuuuu

(a) S3D dataset profile  (b) Converged solution  (c¢) Final error profile

Fig. 4: Volume rendered S3D dataset with n = 1.72: reference profile (left), con-
verged MFA decoded profile (middle) and the corresponding reconstruction error
(right) with N =8 x8 x8=512, p=3 and [0]=2p =6

3.3 Parallel Scalability

The strong scaling studies using Equation (7) for 2D and Equation (8) for 3D
were performed on the Theta Cray XC40 supercomputer operated by the Ar-
gonne Leadership Computing Facility (ALCF), which provides 4,392 KNL com-
pute nodes with 64 compute cores and 192 GB DDR4 RAM per node. The strong
scaling tests in Fig. (5) were performed on 1 to 16,384 tasks in 2D, increasing
by a factor of 22 = 4, and the 3D tests were executed on 1 to 32,768 tasks, in-
creasing by a factor of 23 = 8. Note that the 2D studies used 400M input points
with 7 = 4 and 3D cases used 1.331B points with n = 1.25 for all runs. In order
to better understand the effects of using augmented overlaps (4) on scalability,
two cases with |§| = 0 and |§| = p were also tested. A breakdown of the timings
for each task in computing the parallel MFA representation is plotted for all
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cases. This task-wise breakdown helps us clearly visualize the operations that
scale optimally and the ones that do not.

~ —— Setup ~ —— Setup
~ —v— Solve ~ —+— Solve
~ —8— NN-Exchange
N =+ Decode
<< —4— Total
~ —— ideal

~ —m— NN-Exchange
~ =+ Decode

L —&— Total

~ —— ideal

Computational Time (sec)
Computational Time (sec)

100 10! 10? 10° 10* 100 10! 102 10° 10*
Number of Processes Number of Processes

(a) 2D strong scaling: 6| =0 (b) 2D strong scaling: [§| = p

~ —— Setup ~ —— Setup

~ —+— Solve N —+— Solve

~ —8— NN-Exchange 104 ~. —8— NN-Exchange

~ —+— Decode N —+ Decode
Mg —4— Total N —— Total

S == Ideal &y == Ideal

Computational Time (sec)
Computational Time (sec)

100 10! 102 10° 10* 100 10! 10? 10° 104
Number of Processes Number of Processes

(c) 3D strong scaling: [6| =0 (d) 3D strong scaling: |6| = p

Fig. 5: Strong scaling performance with p = 3 and one subdomain per task for
non-overlapping (left) and overrlapping (right) RAS schemes

The data partitioned RAS iterative scheme shows good strong scalability for
the large dataset experiments, and overall time to compute the MFA in parallel
is reduced at a nearly ideal rate up to 8192 MPI tasks in 3D as A increases,
while ensuring CP~! continuity in the subdomain interfaces. It is important to
note that the dominant computational time is usually driven by the decoupled
LSQ solution computation and the decoding operations, which are embarrass-
ingly parallel as the size of the subdomains decreases in direct proportion to
the tasks. Given that the scalability of the linear algebraic LSQ solvers [1,9]
and Sparse Matrix Vector (SpMV) products used in the decode tasks are well
understood, the bottlenecks potentially occur primarily due to nearest neighbor
communication for constraint data exchange between adjacent subdomains. The
overall scalability of the algorithm becomes sub-linear when the cost of nearest
neighbor exchange cross over the cost of the subdomain solve.
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The overall strong scaling efficiency of RAS for MFA remains around 50%
for both overlapping and non-overlapping 2D problem cases at 16,384 tasks.
However, the added setup cost and sub-optimally scaling nearest neighbor com-
munications reduce the 3D problem efficiency for the overlapping subdomain
cases to 25% at 32,768 tasks from 70% in comparison to the non-overlapping
cases. The results confirm that the communication cost at scale is driven by the
size of the messages being transferred (determined by |d]) between subdomains.

4 Summary

We have presented a scalable DD approach to tackle the issue of discontinuous
B-spline based MFA representations when performing the computations in par-
allel. The Restricted Additive Schwarz (RAS) method is a natural algorithmic
fit for data analysis problems to reconstruct MFA representations in a scalable
workflow. Through the use of overlapping Schwarz-based iterative schemes, com-
bined with constrained local subdomain solvers, the two-level iterative technique
has been shown to be robust in converging to the functional representation of
the given data, without deviating from the single subdomain accuracy metrics.

We have demonstrated that the use of overlap layers § does preserve the over-
all MFA accuracy in comparison to the single subdomain case. We determined
that for all the problems tested, including real datasets, |0] = p to |d] = 2p is
nearly optimal in terms of error recovery and computational cost even for 3D
problems up to 32,768 tasks. A stronger theory for deriving an optimal |§| mea-
sure will be part of the future work. The MFA-DD scheme applied to both 2D
and 3D problems show good parallel scalability and degrades only when the cost
of nearest neighbor subdomain data exchanges start to creep up beyond the cost
of the locally constrained subdomain solves. Given that scaling characteristics of
these sub-processes are well understood in the literature, the parallel speedups
behave predictably well at scale on the large computing machines tested.

Another natural extension to improve the accuracy is to utilize a hierarchy of
control lattices (multilevel B-spline approximations [17]) to generate a sequence
of MFA, the sum of which produces better approximations to datasets with
strong gradients. Note that Replacing B-spline bases with NURBS bases (W # 1)
only requires imposing the constraints on the P; W, data instead of P;, and will
be explored in the future.
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