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Abstract. In this paper, we consider a model wave equation. We per-
form a sequence of numerical experiments with Physics Informed Neural
Network, considering different activation functions, and different ways of
enforcing the initial and boundary conditions. We show the convergence
of the method and the resulting numerical accuracy for different setups.
We show that, indeed, the PINN methodology can solve the problem
efficiently and accurately the wave-equations without actually solving a
system of linear equations as it happens in traditional numerical meth-
ods like, e.g., finite element or finite difference method. In particular,
we compare the influence of selected activation functions on the con-
vergence of the PINN method. Our PINN code is available on github:
https://github.com/pmaczuga/pinn-comparison/tree/iccs.

Keywords: PINN · wave-equations · activation functions · initial con-
ditions · boundary conditions · deep neural network

1 Introduction

Physics Informed Neural Networks (PINN) was introduced by George Karni-
adakis in 2019 [8]. In PINN, the neural networks represent the solution of PDE

u(x, t) = PINN(x, t) = A1σ(A2σ(A3 . . . σ(An

[
x
t

]
+yn)+ · · ·+y3)+y2)+y1 (1)

where Ak is the weight matrix of layer k and yk are the biases of this layer. In
the training process, PINN learns the residual of the PDE and the residual of
boundary and initial conditions by probing the residuals using sample points.
The PINN can learn the solution of PDE without actually forming and solving
a system of linear equations. The training process is usually performed until we
reach a solution with a loss value less than the prescribed accuracy [4], or for
the fixed number of epochs [6, 8]

The PINN method can also actually fail. For example, the PINN method,
when applied to a problem of advection-diffusion, can only find a solution for
small values of convection coefficients, and it fails when the problem is convection
dominated. In that case, it is necessary to train the PINN first with the solu-
tions for small values of convection and increase it gradually during the training
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process [6]. Difficult problems require hard-coding of the boundary conditions
into the computational model [2].

Using some references in the PINN literature, we can find some guidelines
about the number of layers, the number of neurons per layer, the training rate,
the number of epochs during the training, and the number of points used during
the training. For example, in [1], the authors use a fully-connected neural network
with eight hidden layers and 200 neurons per layer. They also use the training
rate of 0.0001 followed by 0.0005 and 0.001, each for 50 epochs. Low number
of epochs (for PINNs) comes from the fact, that the authors used huge number
of points divided into mini-batches. Usually, increasing the number of points
during the training process improves the convergence of the training, but it
is also necessary to consider the distribution of points, especially for problems
with singularities. From that paper, in different experiment, we can also read an
example the number of collocation points for the training of PDE (7000 for the
residual of the main PDE and 3000 for the zero divergence equation) as well as
for the training of initial and boundary conditions (between 30 to 800 depending
on the kind).

Incorporating initial and boundary conditions into PINN also requires some
special considerations, often leading to difficulties [11]. The initial conditions
and Dirichlet boundary conditions are often enforced in a hard way [10], while
the Neumann boundary conditions are usually enforced in a weak way. It is also
necessary to weigh the loss functions related to the PDE and to the boundary or
initial conditions or use a larger number of samples on the boundary and initial
condition residual terms [12].

As observed in [10], the convergence rate of the training process depends
strongly on the activation function used. The authors observed that the training
rate for the adaptive tanh activation function [3] was much faster than for the
Switch activation function [9]. In the end, the accuracy of the obtained solution
was the same, but the convergence rates were different.

In this paper, we focus on wave equations, and we employ the manufactured
solution technique to check the convergence of the PINN with different activation
functions. We refer to the best habits on how to set up the PINN parameters as
described in the mentioned literature review.

2 Wave Equation

The main goal of this paper is to demonstrate the influence of different activation
functions on the convergence of Physics Informed Neural Networks designed to
solve the wave equation, mainly:

∂u2(x, t)

∂2x
= c2

∂u2(x, t)

∂2t
(2)

for x ∈ [0, 1] and t ∈ [0, 1]. With the definition (1) in mind, relating u(x, t) =
PINN(x, t) with a neural network, we define the loss function based on the
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residual of the PDE.

LOSSPDE(x, t) =

(
∂PINN2(x, t)

∂2x
− c2

∂PINN2(x, t)

∂2t

)2

, (3)

where we differentiate the neural network, representing the solution, with respect
to x and t. Now, we will discuss different possible initial and boundary conditions
for the wave equation.

Specifically, we choose one of the following setups:

1) Zero boundary conditions and initial conditions that satisfies the boundary
conditions 

u(x, 0) = A sin(φπx)
∂u(x,0)

∂t = 0

u(0, t) = u(1, t) = 0

(4)

These boundary and initial conditions result in the following family of exact
solutions

uexact(x, t) = A sin(φπx) cos(c φπt), (5)

For these boundary and initial conditions, we define the following loss func-
tions

LOSSIC(x, 0) =

(
∂PINN(x, 0)

∂t
−A sin(φπx)

)2

,

LOSSICdt(x, 0) =

(
∂PINN(0, t)

∂t
− 0.0

)2

,

LOSSBC0(0, t) = (u(0, t) − 0.0)
2
,

LOSSBC1(1, t) = (u(1, t) − 0.0)
2
. (6)

2) Reflective boundary condition and corresponding initial solution
u(x, 0) = Acos(φπx)
∂u(x,0)

∂t = 0
∂u(0,t)

∂x = ∂u(1,t)
∂x = 0

(7)

which results in the following family of exact solutions:

uexact = A cos(φπx) cos(cφπt) (8)

With this alternative boundary and initial conditions, we define the following
loss functions
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LOSSIC(x, 0) =

(
∂PINN(x, 0)

∂t
−A · cos(φπx)

)2

,

LOSSICdt(x, 0) =

(
∂PINN(0, t)

∂t
− 0.0

)2

,

LOSSBC0(0, t) =

(
∂u(0, t)

∂t
− 0.0

)2

,

LOSSBC1(1, t) =

(
∂u(1, t)

∂t
− 0.0

)2

. (9)

The total loss is

LOSS(x, t) = LOSSPDE(x, t)+LOSSIC(x, t)+LOSSICdt(x, t)+LOSSBC0(x, t)+LOSSBC1(x, t)
(10)

Now we can choose one of the above setups of initial and boundary conditions
and select values of the following parameters:

– c - equation constant.
– A - initial amplitude.
– φ - number of ”hills” and ”valleys” in the initial condition.

3 Training

4 Numerical results

In this section, we illustrate the best numerical result obtained from the training
of the PINN solver for the 1D wave equation. Figure 3 compares the exact
solution with the solution obtained after training of PINN. Figure 2 illustrates
how PINN managed to learn the initial condition. Figure 1 shows how the loss
function evolved during 60,000 epochs of training. The difference between the
exact and PINN solution is computed point-wise. We conclude that the PINN can
learn the solution of the wave equation with the accuracy of the order of 0.01. The
question if this accuracy is satisfactory will depend on particular applications.
The details of the model parameters, the architecture of the neural network, the
learning parameters, the loss functions used, and the convergence of the training
for different setups are summarized in the next section.
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Algorithm 1: PINN training

1: Randomly select x ∈ (0, 1)
2: Randomly select t ∈ (0, 1)
3: Compute all loss functions:

LOSSPDE(x, t), LOSSIC(x, t), LOSSICdt(x, t), LOSSBC0(x, t), LOSSBC1(x, t)

4: for Number of epochs do
5: for Coefficients of matrices from neural network

layers{Ap
qr}q=1,...,np;r=1,...,mp;p=1,...,n do

6: Compute the derivatives

∂ LOSSPDE(x, t)(x, t)

∂Ap
qr

∂ LOSSIC(x, t)

∂Ap
qr

∂ LOSSBC0(x, t)

∂Ap
qr

∂ LOSSBC1(x, t)

∂Ap
qr

7: Correct the coefficients of matrices from neural network layers

Ap
qr = Ap

qr + ηPDE
∂ LOSSPDE(x, t)

∂Ap
qr

Ap
qr = Ap

qr + ηIC
∂ LOSSIC(x, t)

∂Ap
qr

Ap
qr = Ap

qr + ηBC0
∂ LOSSBC0(x, t)

∂Ap
qr

Ap
qr = Ap

qr + ηBC1
∂ LOSSBC1(x, t)

∂Ap
qr

8: end for
9: for Coefficients of bias vectors from neural network layers{bpq}q=1,...,np;p=1,...,n

do
10: Compute the derivatives

∂ LOSSPDE(x, t)

∂bpq

∂ LOSSIC(x, t)

∂bpq

∂ LOSSBC0(x, t)

∂bpq

∂ LOSSBC1(x, t)

∂bpq

11: Correct the coefficients of matrices from neural network layers

yp
q = yp

q + ηPDE
∂ LOSSPDE(x, t)

∂yp
q

yp
q = yp

q + ηIC
∂ LOSSIC(x, t)

∂yp
q

yp
q = yp

q + ηBC0
∂ LOSSBC0(x, t)

∂yp
q

yp
q = yp

q + ηBC1
∂ LOSSBC1(x, t)

∂yp
q

{Where ηPDE, ηIC, ηBC0, ηBC1 are training rates for different loss functions.}
12: end for
13: end for
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Fig. 1: Convergence of loss function during PINN training.

Fig. 2: Learning the initial condition by PINN.
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(a) Exact solution. (b) PINN solution.

(c) Difference between solutions.

Fig. 3: Comparison of exact and PINN solution to the wave equation.
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5 Experiments

The experiments are divided into two parts. In the first set of numerical ex-
periments, we created the PINN architecture and trained it to solve the wave
equation with various boundary conditions and parameters. The goal of these
experiments was to find three sets of parameters where the PINN is converging
well to the exact solution and use these setups to test the convergence rate of
PINN with different activation functions.

5.1 Parameters tuning

In our numerical experiments, we referred to setups introduced by authors of
six research papers [1, 2, 6, 8, 10, 11]. Table 1 presents the literature review (the
number of layers, the number of neurons per layer, different activation functions,
the learning rate (LR), the number of epochs for training (unspecified in some
papers) as well as the number of collocation points used for probing the loss
functions of the PDE, the initial and boundary conditions).

Table 1: Review of PINN architectures. LR - learning rate, Nr, Ni, Nb are num-
ber of collocation points for residual, initial condition and boundary condition
respectively. Dash represents data that was not specified in the referenced arti-
cle.

Reference Layers Neurons Activation LR epochs Collocation points

[10] 3 20 Swish (β = 1) - - -

[2] 5 100 tanh 10−3 -

Nr = 20, 000
Ni = 50
Nb = 50

[6] 4 50 tanh 10−4 - -

[8] 5 100 tanh 10−3 -

Nr = 20, 000
Ni = 50
Nb = 50

[1] 8 200 sin

1 × 10−3

5 × 10−4

1 × 10−4 150 Nr = 3 × 106

[1] 6 60 tanh 6 × 10−4 3 × 105 Nr = 7, 000

[11] 4 50 tanh 10−3 adaptive 40, 000 -

We chose the PINN architecture, and we solved the wave equation with PINN.
The architecture stays the same for all the experiments; only the parameters of
the equation change. Namely, following Table 1, we selected the following PINN
architecture and the training parameters:

– Feed-Forward fully connected network.
– 4 layers.
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– 80 neurons per layer.
– learning rate = 0.002.
– 50 000 epochs.
– Equally spaced collocation points.

• For residual Nr = 222 500 = 150 · 150.
• For initial conditions Ni = 150.
• For boundary conditions Nb = 150.

– tanh activation function.

We train the above PINN with the sets of parameters:

– c ∈ {0.3, 0.5, 1.0, 2.0, 3.0}.
– A ∈ {0.5, 1.0, 2.0}.
– φ ∈ {2, 4, 6}.

We employed boundary conditions - zero and reflective.

5.2 Activation functions

The second set of numerical experiments concerns the investigation of the in-
fluence of different loss functions on the convergence of the training. We chose
a couple of sets of parameters that yielded interesting results and trained the
network again using the different activation functions. The rest of the network
architecture stays exactly the same.

For activation functions we choose

– tanh, the most commonly used function in PINNs [2, 6, 8, 11] and indeed it
yields very good results.

– sin in [8].
– sigmoid, rarely seen along PINNs.
– swish is adaptive activation function with the following formula: swish =

x · sigmoid(β x) introduced in [9]. β is an adaptive parameter, that changes
during training, similar to weights. In the context of PINNs it was used
in [10], but with constant β.

– adaptive tanh with the formula atanh = tanh(α x), where α is trainable
parameter. Used in [3].

A very popular function for other neural networks other than PINNs is ReLU,
which is not present in the points above. That is because, in this (and many
other) equations, we need to calculate the second derivative of the neural net-
work. However, ReLU is basically two linear functions merged together, and so
its second derivative is always 0, and that, in turn, prevents learning.
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6 Results

As seen in Figures 4, 5 and 6, PINN with that architecture is able to learn simple
cases very well. However, it struggles with more difficult ones. The reflective
boundary condition is usually harder to learn, but that is not always the case.
There are also strange spikes for reflective BC, where increasing A or ϕ actually
decreases loss. Figures 7-9 shows the influence of different activation functions.
The main issue is usually a very large loss connected to the initial condition.
This means that PINN is able to learn the equation itself quite well, but for a
slightly different initial condition. It is illustrated in Figure 10.

Fig. 4: Influence of equation parameter c on loss function. Other parameters are:
A = 1, phi = 4.

Fig. 5: Influence of initial condition amplitude on loss function. Other parameters
are: c = 1, phi = 4. Strangely loss actually decreases as φ grows. Which means
that somehow increasing it makes the equation easier to learn by the neural
network. However more experiments are required in order to pin the exact reason,
which is outside scope of this work.
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Fig. 6: Influence of phi parameter in initial condition on loss function. Other
parameters are: c = 1, A = 1.

(a) Zero boundary condition. (b) Reflective boundary condition.

Fig. 7: Loss for different activation functions for zero boundary condition. Pa-
rameters are: c = 3, A = 1, ϕ = 4.
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(a) Zero boundary condition with larger c.
(b) Reflective boundary condition with
larger c.

Fig. 8: Loss for different activation functions, where one performs significantly
worse than the others parameters: c = 2, A = 1, ϕ = 4.

(a) Reflective boundary condition with larger
amplitude - A.

Fig. 9: Loss for different activation functions, where one performs significantly
worse than the others parameters: c = 1, A = 2, ϕ = 4.
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7 Conclusions and future work

Surprisingly one of the best result is achieved by the sigmoid function, which is
very rarely used for PINNs. As shown in Figures 8-9, there are cases where atanh,
sin, and swish achieve much worse results than other activation functions. In
the experiment, we performed, it was never the case for either tanh or sigmoid.
Their effectiveness is as well bound to the specific problem, and there are cases
where one or the other achieves better results. Interestingly the same can not
be said about adaptive tanh, as it has huge downgrades in performance in some
cases. In this case, the problem is connected to a very large loss for the initial
condition, and the other two losses are rather low. Both sin and swish failed to
learn the equation itself.

Although results in this paper are produced by solving a single PDE they
can be in fact generalized to other PDEs as well. The approach is always the
same regardless of the specific PDE that the network is trying to solve. That is
the minimization of the equation’s residual.

The PINNs themselves are likely the future of numerical simulations and
worth exploring further. However, they do have some limitations at the moment.
Specifically, PINNs are still achieving slightly worse results than state of the art
finite element method. Furthermore, there still needs to be a complete theory
concerning the Physics Informed Neural Networks. As seen in the results of this
paper, there are aspects of PDE that are difficult to learn, most notably the
initial condition and more difficult sets of equation parameters. There are ways
to mitigate or even eliminate some of them. The most notable are:

– Enforcing the initial condition in a hard way [7].
– Using Variational PINNs (VPINNs), which vastly improves convergence [5].
– Pretraining the PINN for the easier set of parameters and then fine-tuning

it using the proper ones [6].

Our future work can be divided in two parts. Firstly we will further explore
the three aforementioned ideas and use that to solve 2D problems. Afterwards
we plan to use PINNs to solve a real life problem, such as the simulation of
tsunami wave caused by underwater earthquake.
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(a) Initial condition. (b) t = 0.11.

(c) t = 0.31. (d) t = 0.48.

(e) t = 0.69.

Fig. 10: Properly behaving wave, that failed to learned imposed initial condition.
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