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Abstract. Missing data is an issue that can negatively impact any task
performed with the available data and it is often found in real-world do-
mains such as healthcare. One of the most common strategies to address
this issue is to perform imputation, where the missing values are replaced
by estimates. Several approaches based on statistics and machine learning
techniques have been proposed for this purpose, including deep learning
architectures such as generative adversarial networks and autoencoders.
In this work, we propose a novel siamese neural network suitable for miss-
ing data imputation, which we call Siamese Autoencoder-based Approach
for Imputation (SAEI). Besides having a deep autoencoder architecture,
SAEI also has a custom loss function and triplet mining strategy that are
tailored for the missing data issue. The proposed SAEI approach is com-
pared to seven state-of-the-art imputation methods in an experimental
setup that comprises 14 heterogeneous datasets of the healthcare domain
injected with Missing Not At Random values at a rate between 10% and
60%. The results show that SAEI significantly outperforms all the re-
maining imputation methods for all experimented settings, achieving an
average improvement of 35%.

Keywords: Missing Data · Imputation · Siamese Autoencoder · Missing
Not At Random

1 Introduction

Missing data can be described by the absence of values in the instances of a
dataset. It is one of the most common data issues, affecting most real-word
domains. The existence of missing values has a deep impact on the conclusions
that can be drawn from the data [10]. Within machine learning, the majority of
the classification and regression models cannot cope with missing data, or suffer
a decrease in their performance. In domains such as healthcare, missing values
can compromise the results to the point where the study becomes unfeasible [12].
However, different types of missing values may have different impacts. Missing
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data can be classified according to three different mechanisms which are related
to the missingness causes [15, 8]:

– Missing Completely At Random (MCAR), which is described by Eq. 1, where
P (x) is the probability function, R is the binary matrix of the missing values
in Y , Y is a combination of the observed values Yobs and the missing values
Ymis, and ψ are the parameters of the missing data model. In this mechanism
the missingness causes are purely random, and therefore only depended on
ψ. An example would be if someone simply forgot to fill in a field in a
questionnaire.

P (R = 0|Yobs, Ymis, ψ) = P (R = 0|ψ) (1)

– Missing At Random (MAR), which is described by Eq. 2 and the missing-
ness nature is related to observed data in one or more features, therefore
depending on both Yobs and ψ. For example, people may not have results
for a specific medical exam because they are too young to be doing such an
exam.

P (R = 0|Yobs, Ymis, ψ) = P (R = 0|Yobs, ψ) (2)

– Missing Not At Random (MNAR), where the missingness causes are un-
known since the missing values are related with themselves or to external
data not available. As a consequence, the missingness depends on Yobs, Ymis

and ψ. For example, people that drink a lot of alcohol may be apprehensive
about answering how many drinks they have per day.

A solution often used to addressed the missing data issue is imputation, which
consists in the replacing the missing values by estimates [19]. There are several
statistical and machine learning-based methods to perform imputation, and each
one may be more suitable for a specific missing mechanism [10]. However, most
approaches are tailored for MCAR and MAR, while MNAR still is the less
addressed mechanism with few solutions, mostly because of its relation with
unknown data. The proposal of new approaches that perform well under the
MNAR mechanism is an important open challenge when considering that most
real-world contexts suffer from this mechanism, including critical domains such
as healthcare [13].

Recently, several deep learning architectures have been explored to perform
imputation assuming the different mechanisms. The state-of-the-art architec-
tures in this scope are generative adversarial networks (GAN) [21], denoising
autoencoders (DAE) [20, 5] and variational autoencoders (VAE) [11, 13]. In this
work, we explore the use of siamese networks [6] to perform missing data imputa-
tion. We propose a new model called Siamese Autoencoder-based Approach for
Imputation (SAEI), which extends and adapts the vanilla siamese network for
the imputation task by adding a deep autoencoder architecture, a custom loss
function and a custom triplet mining strategy. To the best of our knowledge, this
is the first time siamese networks have been used for this purpose. We compared
our SAEI model with a baseline of seven state-of-the-art imputation methods
in a experimental setup encompassing 14 datasets of the healthcare domain in-
jected with MNAR values at different missingness levels (10% to 60% missing
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rates). The achieved results proved that our SAEI model significantly outper-
formed the remaining baseline methods in all experimented settings, achieving
an average improvement of 35%.

The remainder of the paper is organized in the following way: Section 2
presents related work on the missing data field; Section 3 describes with detail
the proposed SAEI model; Section 4 presents the experimental setup used to
validate the effectiveness of our SAEI model; Section 5 analyzes and discusses
the results obtained from the experiments; and Section 6 presents our conclusions
and the future work.

2 Related Work

As previously stated, the missing data problem cannot be neglected, otherwise
it will have a major impact in any tasks performed with the data. An approach
often used to deal with this issue is to remove the missing values, which is called
case deletion. Two different deletion approaches can be applied [10]: listwise
deletion, where all instances containing at least one missing value are eliminated,
which is a very simple procedure but can lead to the lost of a considerable amount
of information, being for that reason only recommended in big data scenarios or
when the instances with missing values are less than 5% of the data; and pairwise
deletion, where only the instances containing missing values for the features of
interest are deleted, which suffers from the same problems of listwise deletion
but reduces the loss of information. To apply any deletion strategies, the missing
mechanism must be considered since deleting data may remove relations between
instances and features, and for that reason this approach should only be applied
with missing values under MCAR [10].

When deleting instances is not a suitable option, imputation tends to be the
preferred strategy [19]. The key idea is to generate plausible new estimates to
replace the missing values. Among the existent methods, the statistical-based
ones are frequently used [8]. A common approach is to use the mean or mode
of the feature containing missing values for numeric and nominal variables, re-
spectively [10]. Another strategy is to use a regression to model one or more
dependent variables (the ones containing missing values) using as independent
variables the remaining features of the dataset [10]. The fitting process must
only consider the instances that are complete for the independent features, and
the type of regression (e.g., linear or non-linear) must be chosen taking in con-
sideration the nature of the data. Both latter approaches are said to be single
imputation strategies, since only one value is used for the imputation of each
missing value. For this reason, the imputation results may be biased since the
uncertainty of the generated values is not accounted for. To address this issue
multiple imputation strategies can be applied. The key idea is to perform the im-
putation M times, generating different but complete results each time (different
imputation methods may be used). The M complete datasets are then analyzed
and combined, being the result of this combination the final dataset [16]. The
state-of-the-art method that uses this approach is the Multiple Imputation by
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Chained Equations (MICE) [4]. It creates a series of regressions where each one
is modeled for a different variable with missing values, meaning that each fea-
ture is modeled conditionally upon the other features. The process is repeated
throughout several iterations until the parameters of the regressions converge to
stable values [1].

Other approaches based on statistical and algebra concepts often used are
matrix completion methods, such as the SoftImpute. The goal is to perform
the imputation by finding a low-rank matrix that is an approximation of the
original one. The process usually relies on matrix factorization, where a matrix
with (m,n) dimensions is decomposed into two matrices with dimensions (m, k)
and (k, n), where k is the rank and must be smaller than m and n. The idea
is to find the latent features that better describe the available values. The low-
rank approximation matrix can finally be obtained by multiplying the resulting
matrices from the decomposition process [18].

The imputation task can also be performed by using machine learning models.
In theory, any algorithm that can be trained to predict new values is suitable for
imputation [8]. Generating new estimates for numerical features may be seen as
a regression problem, or a classification problem for nominal features.

An algorithm often used for this purpose is the k-nearest neighbors (KNN)
[2, 7]. It tries to find the k most similar instances to the one that contains missing
values using only the features that are complete. To calculate this similarity a
distance function is used, and it must be chosen taking in consideration the data
type: the euclidean distance is suitable for numeric data but not for nominal.
For this latter case the data can be transformed through one-hot encoding or
a different distance function must be used (e.g., hamming distance works with
nominal data) [3]. When k > 1 the values of the neighbors’ instances must be
combined to produce the new value. For numerical data a common approach used
is the simple or weighted mean, and for categorical values a vote of majority may
be applied.

Neural networks are also often used for imputation, particularly autoencoders
and generative adversarial networks (GAN). Autoencoders are a type of neural
network that learns a representation of the data from the input layer and tries
to reproduce it at the output layer. Among its variants, the denoising autoen-
coder (DAE) is the one more often used for missing data imputation because
it is designed to recover noisy data, which can exist due to data corruption via
some additive mechanism or by the introduction of missing values [5]. However,
the variational autoencoder (VAE) has recently been used for the same purpose.
This architecture learns the multidimensional parameters of a Gaussian distribu-
tion and generates the estimates to replace the missing values by sampling from
that distribution [13]. Regarding GANs, these are trained through an adversarial
process and are based on a generative model that learns the data distribution
and a discriminative model that outputs the probability of a sample being from
the training data rather than the generative model [9]. GANs are directly ap-
plied to the missing data imputation task through the generative adversarial
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imputation nets (GAIN) [21], where the generator performs the imputation and
the discriminator tries to distinguish between the original and the imputed data.

A type of neural network that has not yet been used for missing data im-
putation is the siamese network. This architecture is based on two or more
sub-networks that share the same architecture and parameters. The goal is to
output embedding representations in a way that similar concepts would have
a similar latent space embedding [6, 17]. In this work, we propose an extension
to the siamese network tailored for missing data imputation, which is, to the
best of our knowledge, the first time that such architecture is being used for this
purpose. Since this network uses a triplet loss function, which is based on dis-
tances between anchor, positive and negative samples, it can learn from reduced
quantities of data (especially when compared to other neural network-based ap-
proaches). This quality makes this type of network feasible to be used with both
lower and higher missing rates. Furthermore, the number of complete samples
(i.e., without containing missing values) needed to train the model can be rather
small when compared to other network-based imputation models. We leverage
these characteristics of the siamese networks and propose an adapted method
for missing data imputation with a novel deep autoencoder architecture, custom
loss function and custom triplet mining strategy.

3 Siamese Autoencoder-based Approach for Imputation

The Siamese Autoencoder-based Approach for Imputation (SAEI) is an exten-
sion of a vanilla siamese network, and it is tailored for missing data imputation
by comprising three adaptations:

– A deep autoencoder architecture that allows the network to reproduce the
input data at the output layer in an unsupervised fashion;

– A custom loss function that includes both the distance-based triplet loss and
the reconstruction error of the autoencoder component of the network;

– A custom triplet mining strategy that was designed specifically for the miss-
ing data issue by creating hard triplets based on the existing missing values.

These three adaptations are independently described in the next subsections.

3.1 Deep Autoencoder Architecture

The architecture of our SAEI model is roughly inspired in the well-know ZFNet
[22], although it presents several changes motivated by it being aimed at tabular
data. Fig. 1 and Fig. 2 depict graphical descriptions of the encoder and decoder
networks, respectively. The encoder network is composed of two one-dimensional
convolutional layers with 16 filters, ReLU as the activation function, and ker-
nel sizes of five and three. Such layers are followed by max-pooling layers with
two strides, which are then followed by two regularization layers that perform
batch normalization and dropout at a rate of 25%. Moreover, a residual con-
nection is also used two skip the second convolutional layer. Finally, the output
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Fig. 1. SAEI encoder architecture. Is represents the input shape. The encoder net-
work is composed of two one-dimensional convolutional layers with 16 filters followed
by max-pooling layers with two strides. Regularization is performed through batch
normalization and dropout at a rate of 25%. A residual connection is also used two
skip the second convolutional layer. The latent output is obtained from a dense layer
with 128 units.
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Fig. 2. SAEI decoder architecture. Os represents the output shape. The decoder net-
work is symmetric to the encoder. Therefore, it has the same layers and regularization
but in reserve order. The residual connection is not applied by the decoder.

from the last pooling layer is flattened and passed through a hyperbolic tan-
gent activation function, and the latent output is obtained from a final dense
layer with 128 units and the latter activation function. The decoder network is
symmetric to the encoder, presenting the same architecture but in reserve order
(without the residual connection). To perform the deconvolution operation, the
one-dimensional convolutional and the max pooling layers are replaced by one-
dimensional transposed convolutional layers with two strides. The output dense
layer uses the sigmoid activation function so that the data can be normalized
within [0, 1].

Convolutional layers operate based on the spatial positioning of the data. In
other words, the position where each value is placed is relevant for the feature
extraction process. Tabular data does not present this behavior because the
features’ positions are irrelevant. To surpass this limitation, the SAEI model
feeds the input data to a dense layer with 1024 units and without activation
function. The purpose of this layer is to learn an abstract representation of
the input data where the spatial relation between the new abstract features is
meaningful. Therefore, our SAEI model delegates the task of learning the spatial
structure of the features to the network. The first convolutional layer is then fed
with the output of the mentioned dense layer.
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3.2 Custom Loss Function

One of the original loss functions proposed to train a siamese network was the
triplet loss. It tries to minimize the distance between an anchor and a positive
sample which represent the same concept, while maximizing the distance between
that same anchor and a negative sample of a different concept. The formulation is
presented in Eq. 3, where f(x) is a function of the embedding representation, N
is the number of triples composed by an anchor (xai ), a positive sample (xpi ) and
a negative one (xni ) [17]. Furthermore, α is a margin used to ensure a minimum
distance between positive and negative samples.

TLi =

N∑
i

[
‖f(xai )− f(x

p
i )‖

2
2 − ‖f(x

a
i )− f(xni )‖

2
2 + α

]
(3)

Using the triplet loss function is ideal for a vanilla siamese network since
the goal is for the model to distinguish between positive and negative concepts
in comparison to the anchor, while outputting embedding representations that
incorporate such differences. However, our SAEI model relies on an autoencoder
architecture that outputs a reconstruction of the input data based on the an-
chor latent representation. Therefore, this reconstruction component must also
be reflected in the loss function of the model. Eq. 4 presents our custom loss
function, where the triplet loss (TLi) from Eq. 3 is added to the mean squared
error between the anchor and positive sample, similarly to what would happen in
a denoising autoencoder (i.e., the anchor is the corrupted version of the ground
truth represented by the positive sample).

TLi +

N∑
i

(x̂ai − x
p
i )

2 (4)

3.3 Custom Triplet Mining

The triplet selection is a key step for successfully training a siamese network. To
ensure that the network is able to learn how to distinguish between the positive
and negative concepts, it is imperative to select triplets that the network is
unable to differentiate before being trained. These triplets are composed by the
so-called hard positives and hard negatives, which are samples that violate the
constraint of the triplet loss, presented in Eq. 5 [17]. If the network is trained with
easy triples where the triplet loss constraint is already satisfied before training,
it would not gain the capacity of distinguishing between positive and negative
concepts.

‖f(xai )− f(x
p
i )‖

2
2 + α < ‖f(xai )− f(xni )‖22 (5)

When extending this type of network and its respective training procedure to
address missing data imputation, the definitions of anchor, negative and positive
samples must be redefined within the missing data scope. Our SAEI model
proposes the following definitions:
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– Anchors are the samples containing missing values, which are pre-imputed
with the mean of the available values in each feature (or the mode in cate-
gorical features). This pre-imputation step is required since neural networks
are unable to be trained with data containing missing values.

– Positives are the original samples without containing missing values (i.e.,
the ground truth of the anchor samples). This implies that we must have a
portion of complete data to train the SAEI model, but such assumption is
common to all deep learning-based imputation methods. Furthermore, the
anchor samples are created by artificially generating missing values in the
positive samples, according to a pre-established missing data mechanism.

– Negatives are the same as anchor samples but with the missing values being
replaced by Gaussian noise sampled according to Eq. 6, where D represents
the entire dataset and λ represents the variance of the noise domain.

N
(
max(D)−min(D)

2
, λ

)
(6)

The rational behind the mean value is to use the midpoint within the domain
of the data, therefore keeping the Gaussian noise centered on that domain.
Such strategy works specially well when the data is normalized within a
specific range (e.g., [0, 1]). Moreover, the λ parameter acts as a control vari-
able to define how hard or easy should the triplets be: a low λ value leads
to Gaussian noise mostly or completely contained within the data domain,
therefore leading to harder triplets since the negative sample is likely to
be partially overlapped with the positive one; on the other hand, a high λ
value increases the noise domain and creates a negative sample that is more
dissimilar to the positive, therefore creating easier triplets where the nega-
tive and positive samples are immediately distinguishable by the model. As
a consequence, this parameter should be defined aiming to generate hard
triplets while considering for the data domain.

4 Experimental Setup

The quality of the imputation results achieved by the SAEI model was assessed
by comparing it with a baseline of seven state-of-the-art imputation methods
introduced in Section 2: kNN with k = 5, Mean/Mode, MICE with 100 iter-
ations, SoftImpute with 100 iterations, DAE, VAE and GAIN. The DAE and
VAE were defined according to the following architecture and hyperparameters:
a hidden layer with half of the input dimension and ReLU as the activation
function (although VAE has two additional layers for the Gaussian distribution
parameters), Adam as the optimizer with a learning rate of 0.001, Sigmoid as the
activation function of the output layer (forcing the data to be normalized within
[0, 1]), batches of 64 samples, 200 training epochs, a dropout rate of 10% for reg-
ularization, Mean Squared Error as the reconstruction loss, and early stop and
learning rate reduction by 80% if the validation loss does not improve over 100
epochs. The VAE loss function also includes the Kullback–Leibler divergence for
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regularization. Furthermore, both DAE and VAE require pre-imputation, which
is performed with the mean/mode of the features. The GAIN method was used
with the hyperparameters proposed by its authors. Our SAEI model follows the
architecture described in Section 3.1 while all the remaining hyperparameters are
the same used by the DAE and VAE. Moreover, the Gaussian noise of the neg-
ative instances was sampled from N (0.5, 0.050.5), and the margin of the triplet
loss function was set to α = 0.2 as the original authors proposed. With the
exception of GAIN, the described hyperparameters of all methods were defined
through a grid search process. This is a standard procedure that aims to achieve
hyperparameters that conform to common use cases. Moreover, the DAE and
VAE were implemented with the Keras library, the GAIN implementation was
obtained from its original authors3, and the remaining methods were obtained
and used from the Scikit-learn library. Our SAEI model was also coded with the
Keras library and is available on GitHub4.

The experiments were conducted over 14 datasets of the healthcare domain
which cover different types of clinical data that was collected for several patholo-
gies. We chose to cover this medical domain since it often suffers from the missing
data issue, particularly missing values under the MNAR mechanism, which cre-
ates deep challenges to any subsequent analysis or task performed with the data
[12]. In this health context, each instance usually represents a group of values
collected for a patient, and each value belongs to a feature that could be a mea-
surement, an exam result, or any other medical input. The missing values may
appear at any feature and/or instance. All the 14 datasets are public and avail-
able at the UC Irvine Machine Learning5 and Kaggle6 repositories, and they
present heterogeneous characteristics as seen in Table 1.

The datasets were normalized within [0, 1] and split into train and test sets
with 70% and 30% of the instances, respectively. The scaler learns the minimum
and maximum values from the train set and transforms both sets. This strat-
egy ensures the test data is not biased with information from the training data.
However, in the presence of high missing rates (usually above 50%), the test
set may contain values unseen by the scaler, which leads to the normalization
boundaries being slightly extended from the expected [0, 1] domain. Also, the
autoencoder-based methods use 20% of the train set as the validation set. Fur-
thermore, the categorical nominal features were transformed through the one-hot
encoding procedure so that they can be supported by all imputation methods.
Finally, in order to be able to calculate the imputation error of the experimented
methods, the datasets must be complete and the test set must be injected with
artificially generated missing values so that we can compare the estimated values
with the original ones (i.e., ground truth). We choose to generate MNAR values
since it is the hardest mechanism to address and the one more often found in
real-world contexts such as healthcare [12, 13]. Our generation strategy is based

3 https://github.com/jsyoon0823/GAIN
4 https://github.com/ricardodcpereira/SAEI
5 https://archive.ics.uci.edu/ml
6 https://www.kaggle.com/datasets
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Table 1. Datasets characteristics.

Dataset # Instances
# Features

Categorical Continuous

diabetic-retinopathy 1151 4 16
ecoli 336 1 7
ctg-2c 2126 1 21

new-thyroid-N-vs-HH 215 1 5
kala-azar 68 2 5

immunotherapy 90 3 5
saheart 462 2 8

bc-coimbra 116 1 9
cleveland-0-vs-4 173 1 13
newthyroid-v1 185 1 5

biomed 194 1 5
cryotherapy 90 3 4

thyroid-3-vs-2 703 1 21
pima 768 1 8

on removing the smaller values of several features at once (upon a certain missing
rate) in a multivariate procedure. Therefore, the missing rate is defined for the
entire dataset and the imputation is performed on all features simultaneously.
The obtained results were evaluated with the Mean Absolute Error (MAE) be-
tween the estimates and the ground truth values. Regarding the missing rate,
we considered four levels of missingness: 10%, 20%, 40% and 60%.

To avoid the impact of stochastic behaviors in the results, the experiment
was executed 30 independent times, with the train/test split being randomly
performed in every run. The MAE results of the experiment are the average of
the 30 runs. Moreover, each run was executed in a computer with the following
specifications: Windows 11, CPU AMD Ryzen 5600X, 16GB RAM, and GPU
NVIDIA GeForce GTX 1060 6GB. The time complexity of each imputation
method was not measured, but all methods were computed in a feasible amount
of time.

5 Results

The imputation results obtained from the experimental setup are displayed with
detail in Table 2. The MAE results (average and standard deviation of the 30
independent runs) are individually displayed for each dataset and missing rate.
Furthermore, the overall results for each imputation method and per missing
rate (i.e., considering all datasets) are displayed in Fig. 3.

In an overall analysis, our SAEI model clearly outperforms all the remain-
ing imputation methods, achieving smaller MAE values for every dataset and
missing rate considered, as seen in Table 2. In fact, the average improvement
of the SAEI model in comparison to the remaining baseline methods is 35%,
peaking at the 20% missing rate with an improvement of 42%. For the lower
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Table 2. Experimental results per dataset and missing rate (average ± standard de-
viation of MAE). The best results are bolded and highlighted.

Dataset MR (%) kNN Mean/Mode MICE SoftImpute DAE VAE GAIN SAEI

diabetic-retinopathy

10 0.133 ± 0.02 0.194 ± 0.01 0.119 ± 0.02 0.165 ± 0.02 0.152 ± 0.01 0.178 ± 0.01 0.192 ± 0.02 0.109 ± 0.01
20 0.157 ± 0.02 0.213 ± 0.02 0.128 ± 0.02 0.185 ± 0.03 0.164 ± 0.02 0.175 ± 0.01 0.216 ± 0.03 0.100 ± 0.01
40 0.207 ± 0.03 0.252 ± 0.03 0.179 ± 0.03 0.236 ± 0.03 0.199 ± 0.02 0.163 ± 0.01 0.264 ± 0.04 0.131 ± 0.01
60 0.324 ± 0.05 0.358 ± 0.05 0.292 ± 0.05 0.354 ± 0.04 0.298 ± 0.05 0.242 ± 0.04 0.367 ± 0.06 0.231 ± 0.04

ecoli

10 0.213 ± 0.03 0.304 ± 0.04 0.229 ± 0.03 0.286 ± 0.04 0.265 ± 0.03 0.328 ± 0.03 0.337 ± 0.06 0.173 ± 0.03
20 0.224 ± 0.04 0.309 ± 0.04 0.236 ± 0.04 0.297 ± 0.04 0.257 ± 0.03 0.306 ± 0.03 0.327 ± 0.06 0.151 ± 0.03
40 0.363 ± 0.08 0.413 ± 0.07 0.363 ± 0.08 0.367 ± 0.05 0.347 ± 0.07 0.352 ± 0.05 0.456 ± 0.08 0.229 ± 0.06
60 0.750 ± 0.21 0.759 ± 0.20 0.730 ± 0.20 0.703 ± 0.18 0.674 ± 0.21 0.672 ± 0.20 0.800 ± 0.22 0.589 ± 0.20

ctg-2c

10 0.151 ± 0.02 0.288 ± 0.03 0.137 ± 0.02 0.155 ± 0.02 0.188 ± 0.02 0.255 ± 0.02 0.261 ± 0.02 0.121 ± 0.02
20 0.191 ± 0.02 0.296 ± 0.02 0.161 ± 0.01 0.167 ± 0.01 0.201 ± 0.02 0.227 ± 0.01 0.271 ± 0.02 0.116 ± 0.01
40 0.318 ± 0.03 0.362 ± 0.03 0.286 ± 0.04 0.233 ± 0.02 0.293 ± 0.04 0.205 ± 0.02 0.347 ± 0.03 0.191 ± 0.03
60 0.498 ± 0.05 0.526 ± 0.05 0.488 ± 0.05 0.399 ± 0.05 0.508 ± 0.11 0.356 ± 0.06 0.511 ± 0.06 0.354 ± 0.06

new-thyroid-N-vs-HH

10 0.264 ± 0.07 0.270 ± 0.05 0.266 ± 0.08 0.258 ± 0.05 0.272 ± 0.06 0.413 ± 0.04 0.361 ± 0.08 0.124 ± 0.04
20 0.273 ± 0.04 0.264 ± 0.04 0.256 ± 0.05 0.227 ± 0.04 0.238 ± 0.04 0.408 ± 0.04 0.369 ± 0.08 0.143 ± 0.03
40 0.269 ± 0.04 0.296 ± 0.04 0.269 ± 0.04 0.204 ± 0.03 0.247 ± 0.04 0.427 ± 0.04 0.392 ± 0.09 0.156 ± 0.03
60 0.355 ± 0.10 0.432 ± 0.09 0.391 ± 0.09 0.257 ± 0.07 0.374 ± 0.11 0.502 ± 0.07 0.532 ± 0.11 0.239 ± 0.12

kala-azar

10 0.317 ± 0.07 0.358 ± 0.07 0.288 ± 0.06 0.300 ± 0.07 0.356 ± 0.06 0.488 ± 0.09 0.398 ± 0.08 0.217 ± 0.06
20 0.409 ± 0.05 0.401 ± 0.05 0.369 ± 0.04 0.357 ± 0.05 0.404 ± 0.07 0.508 ± 0.05 0.455 ± 0.07 0.232 ± 0.05
40 0.468 ± 0.07 0.472 ± 0.07 0.468 ± 0.08 0.408 ± 0.04 0.441 ± 0.09 0.589 ± 0.07 0.540 ± 0.12 0.277 ± 0.05
60 0.951 ± 0.35 0.952 ± 0.35 0.953 ± 0.35 0.805 ± 0.31 0.908 ± 0.35 1.025 ± 0.34 0.983 ± 0.35 0.796 ± 0.36

immunotherapy

10 0.346 ± 0.08 0.384 ± 0.08 0.341 ± 0.09 0.362 ± 0.08 0.348 ± 0.08 0.433 ± 0.09 0.388 ± 0.09 0.285 ± 0.08
20 0.370 ± 0.07 0.372 ± 0.07 0.349 ± 0.07 0.384 ± 0.06 0.337 ± 0.06 0.447 ± 0.06 0.386 ± 0.07 0.268 ± 0.06
40 0.463 ± 0.08 0.463 ± 0.08 0.460 ± 0.09 0.469 ± 0.07 0.396 ± 0.08 0.524 ± 0.07 0.498 ± 0.08 0.345 ± 0.08
60 1.026 ± 0.38 1.028 ± 0.38 1.015 ± 0.36 0.958 ± 0.36 0.929 ± 0.36 1.084 ± 0.36 1.027 ± 0.38 0.871 ± 0.36

saheart

10 0.289 ± 0.03 0.367 ± 0.03 0.295 ± 0.03 0.245 ± 0.03 0.315 ± 0.03 0.344 ± 0.03 0.387 ± 0.05 0.231 ± 0.03
20 0.335 ± 0.04 0.389 ± 0.04 0.336 ± 0.03 0.268 ± 0.03 0.336 ± 0.04 0.332 ± 0.02 0.410 ± 0.05 0.216 ± 0.03
40 0.464 ± 0.07 0.486 ± 0.06 0.464 ± 0.07 0.366 ± 0.05 0.442 ± 0.07 0.361 ± 0.04 0.531 ± 0.07 0.296 ± 0.06
60 0.876 ± 0.28 0.884 ± 0.28 0.869 ± 0.28 0.732 ± 0.27 0.854 ± 0.29 0.729 ± 0.29 0.934 ± 0.29 0.677 ± 0.26

bc-coimbra

10 0.232 ± 0.04 0.300 ± 0.05 0.232 ± 0.04 0.209 ± 0.03 0.328 ± 0.04 0.464 ± 0.04 0.326 ± 0.06 0.177 ± 0.05
20 0.277 ± 0.03 0.317 ± 0.03 0.269 ± 0.03 0.226 ± 0.02 0.319 ± 0.06 0.482 ± 0.02 0.357 ± 0.05 0.175 ± 0.03
40 0.391 ± 0.06 0.411 ± 0.06 0.390 ± 0.07 0.293 ± 0.05 0.363 ± 0.08 0.559 ± 0.05 0.427 ± 0.08 0.221 ± 0.05
60 0.661 ± 0.15 0.691 ± 0.16 0.656 ± 0.14 0.499 ± 0.13 0.675 ± 0.14 0.799 ± 0.14 0.697 ± 0.17 0.459 ± 0.15

cleveland-0-vs-4

10 0.340 ± 0.04 0.381 ± 0.04 0.346 ± 0.04 0.273 ± 0.04 0.332 ± 0.04 0.406 ± 0.04 0.347 ± 0.05 0.255 ± 0.05
20 0.358 ± 0.04 0.401 ± 0.04 0.364 ± 0.03 0.280 ± 0.03 0.305 ± 0.03 0.399 ± 0.02 0.383 ± 0.04 0.224 ± 0.03
40 0.526 ± 0.08 0.550 ± 0.08 0.526 ± 0.08 0.412 ± 0.08 0.434 ± 0.11 0.499 ± 0.09 0.524 ± 0.09 0.303 ± 0.09
60 0.917 ± 0.17 0.931 ± 0.16 0.919 ± 0.17 0.761 ± 0.17 0.884 ± 0.18 0.922 ± 0.19 0.920 ± 0.17 0.733 ± 0.22

newthyroid-v1

10 0.250 ± 0.05 0.303 ± 0.05 0.249 ± 0.06 0.271 ± 0.06 0.295 ± 0.06 0.408 ± 0.04 0.368 ± 0.09 0.157 ± 0.04
20 0.268 ± 0.05 0.300 ± 0.04 0.257 ± 0.05 0.302 ± 0.05 0.254 ± 0.05 0.409 ± 0.05 0.396 ± 0.11 0.155 ± 0.03
40 0.299 ± 0.05 0.327 ± 0.05 0.311 ± 0.05 0.335 ± 0.05 0.240 ± 0.04 0.434 ± 0.04 0.449 ± 0.13 0.161 ± 0.03
60 0.444 ± 0.15 0.494 ± 0.15 0.468 ± 0.15 0.437 ± 0.10 0.351 ± 0.12 0.554 ± 0.12 0.571 ± 0.19 0.290 ± 0.12

biomed

10 0.210 ± 0.05 0.288 ± 0.04 0.208 ± 0.05 0.277 ± 0.07 0.232 ± 0.04 0.409 ± 0.04 0.379 ± 0.10 0.159 ± 0.03
20 0.228 ± 0.04 0.299 ± 0.03 0.211 ± 0.04 0.255 ± 0.04 0.217 ± 0.04 0.418 ± 0.03 0.381 ± 0.10 0.149 ± 0.02
40 0.283 ± 0.04 0.343 ± 0.04 0.261 ± 0.04 0.274 ± 0.04 0.257 ± 0.05 0.448 ± 0.04 0.424 ± 0.08 0.179 ± 0.03
60 0.474 ± 0.11 0.513 ± 0.11 0.448 ± 0.11 0.383 ± 0.10 0.399 ± 0.14 0.573 ± 0.12 0.572 ± 0.14 0.335 ± 0.14

cryotherapy

10 0.302 ± 0.08 0.371 ± 0.10 0.317 ± 0.09 0.295 ± 0.09 0.354 ± 0.10 0.453 ± 0.08 0.412 ± 0.11 0.267 ± 0.09
20 0.347 ± 0.09 0.415 ± 0.07 0.339 ± 0.08 0.361 ± 0.07 0.401 ± 0.07 0.465 ± 0.08 0.425 ± 0.10 0.284 ± 0.06
40 0.497 ± 0.10 0.521 ± 0.10 0.477 ± 0.10 0.455 ± 0.09 0.464 ± 0.09 0.573 ± 0.10 0.547 ± 0.11 0.390 ± 0.10
60 1.373 ± 1.05 1.396 ± 1.05 1.371 ± 1.05 1.252 ± 1.02 1.352 ± 1.07 1.419 ± 1.06 1.392 ± 1.06 1.218 ± 1.03

thyroid-3-vs-2

10 0.094 ± 0.01 0.099 ± 0.01 0.085 ± 0.01 0.059 ± 0.01 0.068 ± 0.01 0.095 ± 0.01 0.111 ± 0.03 0.045 ± 0.01
20 0.106 ± 0.02 0.109 ± 0.02 0.099 ± 0.02 0.062 ± 0.01 0.072 ± 0.02 0.092 ± 0.01 0.119 ± 0.03 0.041 ± 0.01
40 0.137 ± 0.02 0.135 ± 0.02 0.138 ± 0.02 0.069 ± 0.01 0.093 ± 0.02 0.086 ± 0.01 0.145 ± 0.03 0.051 ± 0.01
60 0.226 ± 0.04 0.224 ± 0.04 0.222 ± 0.04 0.112 ± 0.04 0.170 ± 0.06 0.119 ± 0.04 0.234 ± 0.05 0.110 ± 0.04

pima

10 0.266 ± 0.03 0.338 ± 0.03 0.273 ± 0.02 0.239 ± 0.02 0.297 ± 0.03 0.306 ± 0.03 0.384 ± 0.07 0.207 ± 0.03
20 0.275 ± 0.02 0.336 ± 0.03 0.279 ± 0.02 0.234 ± 0.02 0.290 ± 0.03 0.269 ± 0.02 0.368 ± 0.06 0.168 ± 0.02
40 0.360 ± 0.03 0.391 ± 0.04 0.354 ± 0.04 0.281 ± 0.03 0.341 ± 0.04 0.261 ± 0.03 0.452 ± 0.08 0.199 ± 0.03
60 0.569 ± 0.12 0.575 ± 0.12 0.558 ± 0.12 0.435 ± 0.10 0.526 ± 0.13 0.406 ± 0.09 0.628 ± 0.14 0.392 ± 0.13

missing rate (10%) the improvement is 36%. For the higher missing rates (40%
and 60%), the improvement rates are 39% and 24%, respectively. Such results
show the consistency of our SAEI model with different levels of missingness and
with data presenting different characteristics.

In order to validate if the obtained results were statistically significant, we
applied the Three-Way ANOVA on ranks test with a significance level of 5%. We
considered as factors the dataset, the missing rate and the imputation method,
while the MAE was set as the dependent variable. The normality assumptions
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Fig. 3. Overall Mean Absolute Error of all imputation methods per missing rate. Our
SAEI model significantly outperforms the remaining methods in all settings.

were not met, so the data was transformed into rankings using the Ordered
Quantile normalization [14]. Such assumptions were also ensured for the data
subgroups. The obtained p-values show that the results are statistically signifi-
cant for all factors, with p < 0.001. Additionally, to validate if our SAEI model
outperformed the remaining methods with a statistical significance of 5%, the
post-hoc Tukey’s HSD test was applied to this factor. The obtained p-values
show that the SAEI model significantly outperformed all the baseline of impu-
tation methods, with p < 0.001 in all scenarios.

6 Conclusions

In this work we propose a new model for missing data imputation called Siamese
Autoencoder-based Approach for Imputation (SAEI), which is an extension of
the vanilla siamese networks adapted for this imputation task. The model incor-
porates three main adaptations: a deep autoencoder architecture that is tailored
for missing data reconstruction, a custom loss function that encompasses both
the triplet and reconstruction losses, and a triplet mining strategy tailored for the
missing data issue that is capable of generating hard triplets that are meaningful
for the training procedure. To the best of our knowledge, this is the first time a
siamese architecture is being used and adapted for missing data imputation. We
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compared our SAEI model with seven state-of-the-art imputation methods from
both statistical and machine learning backgrounds, in an experimental setup
that used 14 datasets of the healthcare domain injected with MNAR values in a
multivariate fashion at 10%, 20%, 40% and 60% missing rates. Our SAEI model
significantly outperformed all the baseline methods used for comparison in all
the datasets and missing rates, with a statistical significance of 5%, achieving
an average improvement of 35%.

In the future we want to extend this work to test other missing data mecha-
nisms, and we want to explore automatic approaches to evolve our deep autoen-
coder architecture so it can be even further optimized.
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