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Abstract. A spreading process can be observed when a particular be-
havior, substance, or disease spreads through a population over time in
social and biological systems. It is widely believed that contact interac-
tions among individual entities play an essential role in the spreading
process. Although the contact interactions are often influenced by geo-
metrical conditions, little attention has been paid to understand their ef-
fects especially on contact duration among pedestrians. To examine how
the pedestrian flow setups affect contact duration distribution, we have
analyzed trajectories of pedestrians in contact interactions collected from
pedestrian flow experiments of uni-, bi- and multi-directional setups.
Based on standardized maximal distance, we have classified types of mo-
tions observed in the contact interactions. We have found that almost all
motion in the unidirectional flow setup can be characterized as subdiffu-
sive motion, suggesting that the empirically measured contact duration
tends to be longer than one estimated by ballistic motion assumption.
However, Brownian motion is more frequently observed from other flow
setups, indicating that the contact duration estimated by ballistic motion
assumption shows good agreement with the empirically measured one.
Furthermore, when the difference in relative speed distributions between
the experimental data and ballistic motion assumption is larger, more
subdiffusive motions are observed. This study also has practical impli-
cations. For instance, it highlights that geometrical conditions yielding
smaller difference in the relative speed distributions are preferred when
diseases can be transmitted through face-to-face interactions.

Keywords: Pedestrian flow · Contact interaction · Brownian motion ·
Subdiffusive motion · Contact duration.

1 Introduction

Modeling contact interactions among individual entities is essential to under-
stand spreading processes in social and biological systems, such as information
diffusion in human populations [1, 2] and transmission of infectious disease in
animal and human groups [3, 4]. For the spreading processes in social and bio-
logical systems, one can observe a contact interaction when two individual enti-
ties are within a close distance, so they can exchange substance and information
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or transmit disease from one to the other one. In previous studies, macroscopic
patterns of contact interactions are often estimated based on simple random
walking behaviors including ballistic motion. For example, Rast [5] simulated
continuous-space-time random walks based on ballistic motion of non-interacting
random walkers. Although such random walk models have widely applied to esti-
mate contact duration for human contact networks, little work has been done to
study the influence of pedestrian flow geometrical conditions on the distribution
of contact duration.

To examine how the geometrical conditions of pedestrian flow affect the con-
tact duration distribution, we perform trajectory analysis for the experimental
dataset collected from a series of experiments performed for various pedestrian
flow setups. The trajectory analysis of moving organisms, including proteins
in living cells, animals in nature, and humans, has been a popular research
topic in various fields such as biophysics [6–8], movement ecology [9–11], and
epidemiology [12, 13]. Single particle tracking (SPT) analysis, a popular tra-
jectory analysis approach frequently applied in biophysics and its neighboring
disciplines, characterizes the movement dynamics of individual entities based on
observed trajectories [7, 14]. According to SPT analysis, one can identify differ-
ent types of diffusion, for instance, directed diffusion in which individuals move
in a clear path and confined diffusion in which individuals tend to move around
the initial position. The most common method for identifying diffusion types is
based on the mean-squared displacement (MSD), which reflects the deviation of
an individual’s position with respect to the initial position after time lag [14,
15]. Motion types can be identified based on the diffusion exponent. MSD has
been widely applied for various trajectory analysis studies in biophysics [16, 17].
For pedestrian flow trajectory analysis, Murakami et al. [18, 19] analyzed exper-
imental data of bidirectional pedestrian flow and reported diffusive motion in
individual movements perpendicular to the flow direction. They suggested that
uncertainty in predicting neighbors’ future motion contributes to the appearance
of diffusive motion in pedestrian flow.

Previous studies have demonstrated usefulness of SPT analysis in examining
movement of individuals. However, SPT analysis does not explicitly consider
relative motions among individuals in contact, suggesting that analyzing the rel-
ative motions can reveal patterns that might not be noticeable from the SPT
analysis approach. For example, if two nearby individuals are walking in par-
allel directions together with a similar speed, one might be able to see various
shapes of relative motion trajectories although the individual trajectories are
nearly straight lines. For contact interaction analysis, the analysis of relative
motion trajectories can be utilized to predict the length of contact duration and
identify contact interaction characteristics such as when the interacting individ-
uals change walking direction significantly. Regarding the spreading processes,
understanding of relative motion trajectory can be applied to identify optimal
geometrical conditions that can minimize contract duration when diseases can
be transmitted through face-to-face interactions.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-35995-8_2

https://dx.doi.org/10.1007/978-3-031-35995-8_2
https://dx.doi.org/10.1007/978-3-031-35995-8_2


Characterization of pedestrian contact interaction trajectories 3

Although MSD is simple to apply, MSD has limitations. Refs. [20–22] pointed
out that MSD might not be suitable for short trajectories to extract meaningful
information. Additionally, due to its power-law form, the estimation of the dif-
fusion exponent in MSD is prone to estimation errors [23, 24]. As an alternative
to MSD, various approaches have been proposed, including the statistical test
approach [20, 21, 25, 26] and machine learning approach [27].

In this work, we analyze trajectories collected from different experiment se-
tups including uni-, bi-, and multi-directional flow for pedestrian contact interac-
tions. Rather than using individual trajectories, we analyze the relative motion
of interactions to understand pedestrian contact interactions. We identify dif-
ferent types of motion observed in pedestrian contact interactions based on a
statistical test procedure. For the statistical test procedure, we measured a stan-
dardized value of largest distance traveled by an individual from their starting
point during the contact interaction. Our results demonstrate that examining
the interactions in this way can provide important insights regarding contact
duration, and hence help estimate transmission risk in different pedestrian flow
conditions.

The remainder of this paper is organized as follows. Section 2 describes the
datasets including pedestrian flow experiment setups and some descriptive statis-
tics. The statistical test procedure and trajectory classification results are pre-
sented in Section 3. We discuss the findings of our analysis in Section 4.

2 Datasets

Figure 1 shows the sketches of various experiment setup: uni-directional flow,
bi-directional flow, 2-way crossing flow, 3-way crossing flow, and 4-way crossing
flow. In the uni-directional flow setup, pedestrians were walking to the right in
a straight corridor of 5 m wide and 18 m long. In a bi-directional flow, two
groups of pedestrians were entering a straight corridor of 4 m wide and 10 m
long through 4 m wide entrance and then walking opposite directions. They
left the corridor through the open passage once they reached the other side
of the corridor. In 2-way, 3-way, and 4-way crossing flows, different groups of
pedestrians were entering the corridor through 4 m wide entrance and walked
5 m before and after passing through an intersection (4 m by 4 m rectangle
in 2-way crossing and 4-way crossing flows, and 4 m wide equilateral triangle
in 3-way crossing flow). Similar to the setup of bi-directional flow, pedestrian
groups left the corridor through the open passage after they reached the end of
corridors. A more detailed description of the experiment setups can be found in
Refs. [28–30].

From the experimental data, we extracted pairs of individuals in contact
and their relative motion trajectories. We considered a pair of individuals is
in contact when the two individuals are within a contact radius. The contact
radius rc would depend on the form of transmission in question. In this paper,
we assume a 2 m radius based on previous studies [12, 31–33]. For the analysis,
we considered trajectories with at least 10 data points based on literature [21,
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Fig. 1. Schematic representation of experiment setups: (a) unidirectional flow (scenario
name: uni-05), (b) bidirectional flow (scenario name: bi-b01), (c) 2-way crossing flow
(scenario name: crossing-90-d08), (d) 3-way crossing flow (scenario name: crossing-
120-b01), and (e) 4-way crossing flow crossing flow (scenario name: crossing-90-a10).
Here, blue thick arrows show the walking direction of incoming pedestrians entering the
corridors and red thin arrows indicates the walking direction of outgoing pedestrians
leaving the corridors. A pair of gray rectangles is placed to set up an entrance of
pedestrian group entering the corridor.
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Fig. 2. Histogram of the number of data points per contact interaction trajectory (a)
unidirectional flow (scenario name: uni-05), (b) bidirectional flow (scenario name: bi-
b01), (c) 2-way crossing flow (scenario name: crossing-90-d08), (d) 3-way crossing flow
(scenario name: crossing-120-b01), and (e) 4-way crossing flow crossing flow (scenario
name: crossing-90-a10).
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Table 1. Basic descriptive statistics of representative scenarios.

Setup Scenario name N Period (s) No. contacts
Uni-directional uni-05 905 157.68 25390
Bi-directional bi-b10 736 324.56 57126
2-way crossing crossing-90-d08 592 147.88 41648
3-way crossing crossing-120-b01 769 215.63 93156
4-way crossing crossing-90-a10 324 94.08 9270

25]. Table 1 shows the basic statistics of representative scenarios including the
number of individuals N , experiment period, and the number of contacts. The
number of contacts was given as the number of interacting individual pairs.
Figure 2 presents histograms of trajectory length which is given in terms of the
number of data points per contact interaction trajectory.

3 Data Analysis

Based on previous studies [20–22, 25], we evaluate a standardized value of max-
imal distance Tn for a trajectory containing n data points of position:

Tn =
Dn√

(tn − t0)σ̂2
, (1)

where Dn is the maximal distance traveled from the initial position during the
contact interaction, t0 and tn are the start and end time of contact interaction,
and σ̂ is the consistent estimator of the standard deviation of Dn. The maximal
distance Dn is defined as

Dn = max
i=1,2,..,n

‖X(ti)−X(t0)‖ . (2)

Here, X(ti) denotes the position at time instance i and X(t0) for the position
at the start of contact interaction. The consistent estimator σ̂ is given as

σ̂2 =
1

2n∆t

n∑
j=1

‖X(tj)−X(tj−1)‖2 , (3)

where ∆t is the time step size.
We can characterize different pedestrian contact interactions based on the

value of Tn. A small Tn indicates that the individuals stay close to their initial
position during the contact interaction, implying subdiffusive motion in Fig. 3(a).
On the other hand, when individuals travel far away from their initial position
during the contact interaction, one can observe large Tn, hinting at the possibil-
ity of Brownian motion. As can be seen from Fig 3(b), individual j is entering
and leaving the contact circle without changing walking direction significantly. It
should be noted that subdiffusive motion in contact interaction trajectories does
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Fig. 3. Representative types of pedestrian contact interaction trajectories characterized
based on the value of Tn. Small Tn implies subdiffusive motion while large Tn suggests
Brownian motion: (a) Subdiffusive motion with Tn = 0.525 (individual id 25 and id
46 in unidirectional flow scenario uni-05) and (b) Brownian motion with Tn = 2.5
(individual id 65 and id 99 in 4-way crossing scenario crossing-90-a10). The position of
focal individuals (id 25 in (a) and id 65 in (b)) is indicated at (0, 0) by a black cross
symbol ×. Blue dashed circles show contact range of a focal individual (rc = 2 m). The
relative motion of pedestrians interacting with the focal individuals (id 46 in (a) and
id 99 in (b)) denoted by red solid lines. In the lower panels, blue dashed lines indicate
the ground truth trajectories of focal individuals (id 25 in (c) and id 65 in (d)), and red
solid lines for pedestrians interacting with the focal individuals (id 46 in (c) and id 99
in (d)). Arrows are guide for the eyes, indicating the walking direction of individuals.

not necessarily suggest that ground truth trajectories display subdiffusive mo-
tions. In the case of subdiffusive motion (see Fig. 3(c)), the selected individuals
move in parallel along a straight line, showing directed motions.

We classify different motion types in line with the statistical test procedure
presented in previous studies [20, 21, 25]. We set Brownian motion as the null
hypothesis H0 and subdiffusive motion as the alternative hypothesis H1. In the
context of the disease spreading processes, quantifying the motion types is useful
to determine whether the contact interaction is brief or long-lived, suggesting risk
of virus exposure in human face-to-face interactions. In this study, subdiffusive
motion is characterized by small Tn, implying that the risk level is high, while
Brownian motion yields high Tn, indicating that the risk level is lower. We define
a critical region based on the knowledge of Tn distribution under the hypothesis
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H0

qα ≤ Tn, (4)

where qα is the quantile of Tn distribution, indicating that Tn lies in the critical
region with the probability 1 − α. We use qα = 0.785 for α = 2.5 % according
to Refs. [20, 21, 25].

Table 2. Summary of motion type classification results.

Setup Scenario name No. contacts Subdiffusive motion Brownian motion
Uni-directional uni-05 25390 20848 (82.11%) 4542 (17.89%)
Bi-directional bi-b10 57126 14465 (25.32%) 42661 (74.68%)
2-way crossing crossing-90-d08 41648 12540 (30.11%) 29108 (69.89%)
3-way crossing crossing-120-b01 93156 14492 (15.56%) 78664 (84.44%)
4-way crossing crossing-90-a10 9270 532 (5.74%) 8738 (94.26%)

Figure 4 shows histograms of the standardized maximal distance Tn for rep-
resentative experiment scenarios. The summary of motion type classification re-
sults can be found from Table 2. We can observe that Brownian motion is more
frequently observed in most of the experiment scenarios, the exception being the
unidirectional setup (scenario name uni-05). In contrast, almost all the motion
in the unidirectional setup are categorized as subdiffusive motion, hinting at the
possibility that the actual contact duration is much longer than one estimated
based on the ballistic motion assumption. Similar to previous studies [1, 2, 5], we
estimated the contact duration of ballistic motion assumption tc,b as

tc,b =
2rc |cos θi − cos θj |
v0(1− cos θij)

, (5)

where rc = 2 m is the contact radius and v0 is the initial value of relative speed
between individuals i and j measured at the beginning of contact interaction.
The heading of individuals i and j are denoted by θi and θj respectively, and the
contact angle between the individuals is given as θij = |θi − θj |. Similar to v0,
the heading of individuals and the contact angle between them (i.e., θi, θj , and
θij) are measured at the beginning of contact interaction. Figure 5 illustrates the
histograms of contact duration that measured from the experimental datasets tc
and the estimated contact duration under the ballistic motion assumption tc,b.
In the case of the unidirectional setup, one can see a striking difference between
the distributions of tc and that of tc,b. In other setups, the distribution of tc,b
shows good agreement with that of tc.

To examine the reasons for the discrepancies in contact duration distributions
in Fig. 5, we compared the distributions of relative speed of pedestrians in contact
interactions measured from experimental data and those generated based on the
ballistic motion assumption, see Fig. 6. Note that the average value of relative
speed during contact interaction is used for the distribution of experimental data
and the initial value of relative speed v0 measured at the beginning of contact
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Fig. 4. Histogram of the standardized maximal distance Tn in trajectories (a) unidirec-
tional flow (scenario name: uni-05), (b) bidirectional flow (scenario name: bi-b01), (c)
2-way crossing flow (scenario name: crossing-90-d08), (d) 3-way crossing flow (scenario
name: crossing-120-b01), and (e) 4-way crossing flow crossing flow (scenario name:
crossing-90-a10). The red dashed vertical lines indicate α = 2.5 % quantile of Tn dis-
tribution suggested in the previous studies [20, 21].
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Fig. 5. Histogram of the contact duration. Light blue areas indicate the histogram of
actual contact duration measured from the presented experimental datasets, i.e., tc.
Orange lines show the histogram of the contact duration estimated based on ballistic
motion assumption, i.e., tc,b (see Eq. 5). (a) unidirectional flow (scenario name: uni-05),
(b) bidirectional flow (scenario name: bi-b01), (c) 2-way crossing flow (scenario name:
crossing-90-d08), (d) 3-way crossing flow (scenario name: crossing-120-b01), and (e)
4-way crossing flow crossing flow (scenario name: crossing-90-a10).
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Fig. 6. Histogram of the relative speed of pedestrians in contact interactions. Light
blue areas indicate the histogram of actual relative speed measured from the presented
experimental datasets. Orange lines are for the relative speed of contact interaction
estimated based on ballistic motion assumption (v0 in Eq. 5). Note that the average
value of relative speed during contact interaction is used for the distribution of ex-
perimental data and the initial value of relative speed v0 measured at the beginning
of contact interaction is used for the distribution of ballistic motion assumption. (a)
unidirectional flow (scenario name: uni-05), (b) bidirectional flow (scenario name: bi-
b01), (c) 2-way crossing flow (scenario name: crossing-90-d08), (d) 3-way crossing flow
(scenario name: crossing-120-b01), and (e) 4-way crossing flow crossing flow (scenario
name: crossing-90-a10).
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interaction is used for the distribution of ballistic motion assumption. As can
be seen from Fig. 6, difference in the relative frequency distribution of relative
speed is significant for the case of the unidirectional flow setup, but it is less
significant for other experiment setups.

Table 3. Wasserstein distance metric between relative speed distributions presented
in Fig. 6.

Setup Scenario % Subdiffusive Wasserstein
name motion distance

Uni-directional uni-05 82.11% 0.0742
Bi-directional bi-b10 25.32% 0.0145
2-way crossing crossing-90-d08 30.11% 0.0155
3-way crossing crossing-120-b01 15.56% 0.0065
4-way crossing crossing-90-a10 5.74% 0.0036

Analogous to Refs. [34, 35], we quantify the difference in the relative fre-
quency distributions shown in Fig. 6 by means of the Wasserstein distance. We
use the 1-Wasserstein distance W1 which is given as

W1 =
∑
k

|F (k)− Fb(k)| . (6)

Here, F (k) and Fb(k) are the cumulative distribution of relative speed rela-
tive frequency from the experimental data and the one based on the ballistic
motion assumption, respectively. We compute the cumulative distribution as
F (k) =

∑
k′≤k f(k

′), where f(k′) is the the relative frequency of relative speed
measured for histogram bin k′. Table 3 presents the Wasserstein distance mea-
sured for the presented experiment scenarios. The results show a general ten-
dency that a higher proportion of subdiffusive motion are observed for larger
values of Wasserstein distance. That is, the difference in relative speed distri-
butions of experimental data and the ballistic motion assumption contributes
considerably to the discrepancies in contact duration distributions.

Our analysis results suggest that random walk models based on ballistic mo-
tion have limitations in accounting for the influence of pedestrian flow geomet-
rical conditions on contact duration distributions. In the case of unidirectional
flow setup, the relative speed distribution of ballistic motion assumption shows
a notable difference with that of experimental data. This results in an unrealis-
tic contact duration distribution. Furthermore, geometrical conditions yielding
larger difference in the relative speed distributions tend to generate more subd-
iffusive motions, suggesting higher risk of disease spreading. Thus, it is desirable
to have smaller difference in the relative speed distributions especially for lower
relative speed.
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4 Conclusion

To examine the influence of pedestrian flow geometrical conditions on the contact
duration distribution, we have analyzed pedestrian contact interaction trajecto-
ries of uni-, bi- and multi-directional flow setups in experimental data [28–30].
We have classified types of motions observed in the contact interactions based on
standardized maximal distance Tn. In the unidirectional flow setup, most con-
tact interaction trajectories have small Tn values. That is, the individuals stay
close to their initial position during the contact interactions, thus subdiffusive
motion is frequently observed. In contrast, other experiment setups yield higher
Tn values. This indicates that individuals travel far away from their initial po-
sitions during the contact interactions, so Brownian motion is more frequently
observed. It is noted that random walk models based on ballistic motion might
not be able to generate realistic contact duration distributions depending on the
geometrical conditions, especially for the case of unidirectional flow setup. This
study also highlights that geometrical conditions yielding smaller difference in
the relative speed distributions are preferred when diseases can be transmitted
through face-to-face interactions.

A few selected experimental scenarios have been analyzed to study the funda-
mental role of pedestrian flow setups (e.g., uni-, bi-, and multi-directional flow)
in the distribution of pedestrian motion types and contact duration. To general-
ize the findings of this study, the presented analysis should be further performed
with larger number of scenarios and different layouts of pedestrian facilities. An-
other interesting extension of the presented study can be planned in line with
machine learning algorithms, for instance, developing a prediction model and
performing a feature importance analysis to identify factors influencing on the
motion types and duration of contact interactions [22, 27, 36–38].
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