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Abstract. Cardiovascular diseases are still responsible for many deaths
worldwide, and computational models are essential tools for a better un-
derstanding of the behavior of cardiac tissue under normal and pathologi-
cal situations. The microstructure of cardiac tissue is complex and formed
by the preferential alignment of myocytes along their main axis with end-
to-end coupling. Mathematical models of cardiac mechanics require the
process of parameter estimation to produce a response consistent with
experimental data and the physiological phenomenon in question. This
work presents a polynomial chaos-based emulator for forward uncertainty
quantification and sensitivity analysis of the Holzapfel-Ogden orthotropic
constitutive model during the passive filling stage. The fiber orientation
field is treated as a random field through the usage of the Karhunen-
Loève (KL) expansion. The response and uncertainty of the constitutive
parameters of the model considered here are also investigated. Our re-
sults show the propagated uncertainties for the end-diastolic volume and
fiber strain. A global sensitivity analysis of the constitutive parameters
of the complete model is also presented, evidencing the model’s key pa-
rameters.

Keywords: Cardiac Mechanics · Karhunen-Loève Expansion · Polyno-
mial Chaos

1 Introduction

Cardiovascular diseases are the leading cause of death in the world, however,
many of them can be avoided if there is a previous diagnosis. Computational

? Supported by UFJF, CAPES, CNPq (Grants 310722/2021-7, 315267/2020-8), and
FAPEMIG (Grants APQ-01340-18, APQ 02489/21).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_61

https://dx.doi.org/10.1007/978-3-031-08760-8_61


2 B. O. Santos et al.

models are essential tools to understand better the cardiac system and, above
all, how it is affected by pathologies or disorders [13]. Cardiac tissue is made up of
fibers that are fundamental in various aspects of the heart, and therefore, changes
in its typical orientation can result in improper functioning, as is the case with
hypertrophic cardiomyopathy (HCM) [12] that affects the heart muscle. HCM
is responsible for the thickening of the cardiac muscle (especially the ventricles
or lower heart chambers), increased left ventricular stiffness, fiber disarray, and
cellular changes [9].

During the last years, computational models of the cardiovascular system
have evolved significantly. In particular, the construction of patient-specific mod-
els that could be applied in the clinical setting is a high goal. However, the
construction of patient-specific models involves several sources of uncertainty,
ranging from personalized geometries based on medical images to parametric
uncertainty inherent in the underlying mathematical model.

Recently, many studies on uncertainty quantification for cardiac electrome-
chanics have been performed [14, 15, 4, 3, 10]. The work of [14] was one of the
first to apply uncertainty quantification (UQ) techniques for the problem of pas-
sive filling of the left ventricle (LV). They considered as inputs the constitutive
parameters of a transversely isotropic constitutive model [6]. In [15] similar anal-
yses were carried out, but now considering the fiber orientation field as a random
field through the KL expansion. In [4] another source of uncertainty was added
in the LV model, where geometry was also considered as uncertain through a
parametrized strategy for mesh generation. The previous studies focused on the
passive filling phase of the LV only. A sensitivity analysis and forward uncer-
tainty quantification study of the complete cardiac cycle was presented in [3].
In [10] a sensitivity analysis of a detailed human fully-coupled ventricular elec-
tromechanical model was conducted using the HO model. However, due to the
usage of a more complex coupled electromechanical model with many parame-
ters, only one parameter of the HO model was evaluated.

In this work, we focus on forward uncertainty quantification and sensitiv-
ity analysis of the passive filling phase of the left ventricular mechanics. We
considered as uncertain input parameters the parameters from the Holzapfel-
Ogden (HO) constitutive model [7] and the fiber field as a random field using
the truncated Karhunen-Loève (KL) expansion. The analyses were performed
using surrogate models (emulators) based on the Polynomial Chaos Expansion
(PCE), as in previous works on cardiac mechanics [3, 4].

The remaining of this manuscript is organized as follows: in section 2 the
mathematical models, the numerical methods, the techniques used for uncer-
tainty quantification, and sensitivity analysis are presented. Next, section 3 de-
scribes the computer implementation and computational experiments; while the
numerical results are presented on section 4. Section 5 ends this work with con-
clusions, limitations, and possible future works.
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2 Models and Methods

2.1 Cardiac Mechanics

The focus of this study is to model the phenomenon of cardiac mechanics that
corresponds to the (passive) filling of the left ventricle (LV) by the blood during
the diastolic phase. At this stage, blood fills the LV cavity and exerts pressure
on the endocardial surface. The following problem describes the passive filling
of the LV:

∇ · (FS) = 0, in Ω0, (1)

u = 0, on ∂Ωbase, (2)

(FS)N = pendoF
−TN, on ∂Ωendo, (3)

where F is the deformation gradient tensor, S is the second Piola-Kirchhoff
stress tensor, u is the displacement field, N is the unit normal vector of the
endocardium surface, and pendo is the applied pressure on the endocardium. For
simplicity, we considered zero displacement boundary conditions at the base of
the endocardium.

The Holzapfel-Ogden (HO) constitutive model was used to describe the LV
tissue stress-strain relationship. The strain energy function of the HO model for
the incompressible case is described by:

Ψ =
a

2b
[exp {b (I1 − 3)} − 1] +

af
2bf

[
exp

{
bf (max (I4f , 1)− 1)

2
}
− 1
]

(4)

where a, b, af , bf , as, bs, afs, and bfs are the material parameters, and I1, I4f ,
and I8fs are invariants given by: I1 = tr(C), I4f = f0 · (Cf0), I4s = s0 · (Cs0),
I8fs = m0 · (Cs0) where C = FTF is the right Cauchy-Green tensor, f0 and s0
are the fiber and sheet directions in the reference configuration, respectively. The

second Piola-Kirchhoff stress tensor S of Eq.(1) is given by S = 2∂Ψ(C)
∂C − pC−1,

where p is the pressure.

2.2 Left Ventricular Geometry and Fiber Orientation

A simplified geometric model of the left ventricle, generated from the equations
of a family of a truncated ellipsoid, where the wall thickness is homogeneous,
was considered. Figure 1 (left) shows its dimensions with measurements that
typically represent the human LV. The finite element mesh generated from this
geometry, as shown in Figure 1 (middle), is composed of a total of 1786 nodes
and 6395 tetrahedral elements.

A typical fiber orientation field for the LV is illustrated on Figure 1 (right).
The microstructure of the cardiac tissue is represented as a constant function per
element, where each element has unit vectors f0, s0, and n0 that describes the
fiber, sheet, and normal directions in the reference configuration. To generate the
fiber orientation, the Laplace-Dirichlet Rule-Based (LDRB) rule-based algorithm
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Fig. 1. The left ventricular geometry and its corresponding finite element mesh are
shown on the left and middle panels; whereas a typical visualization of the fiber field
orientation is shown on the right. The following dimensions were used: a = 2.0 cm,
c = 6.0 cm, d = 1.3 cm, and e = 1.0 cm, which results in the approximately 50 mL of
cavity volume.

developed by [1] was used. The baseline fiber orientation used in this study has
a helical angle of 60◦ on the endocardium surface and varies linearly throughout
the myocardium (transmural direction) up to the value of -60◦ on the epicardium
surface.

2.3 Numerical Solution

Numerical solutions of the problem given in Eq. (1) were obtained by the finite
element method (FEM) implemented in the open-source library FEniCS. For
discretization, a mixed method of the Taylor-Hood type was used to approximate
(u, p) with approximations P2×P1, that is, of degree 2 for the displacement field
and degree 1 for the pressure field, respectively. The non-linear LV filling problem
is solved with Newton’s method. In addition, an incremental procedure was used
and the total pressure to be applied, of pendo = 2.7kPa, was divided into 50 steps
as performed in [8].

2.4 Polynomial Chaos Expansion Surrogate Models

An emulator or surrogate model is an approach that aims to solve a complex
problem in a simplified and, consequently, faster way. In the specific case of this
work, an emulator based on polynomial chaos expansion (PCE) was adopted,
which has been successfully used in other works [14, 4, 3] on cardiac mechanics
to perform forward uncertainty quantification and sensitivity analyses.

PCE is a technique for generating low-cost computational approximations for
a quantity of interest Y , usually obtained after solving the governing equations
(the forward problem). Let f(Z) be the simulator of this quantity of interest Y ,
where Z are the input parameters. This quantity is expanded into a series of
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orthogonal polynomials Ψj with random entries. The PCE for Y is given by:

Y =

∞∑
j=0

bjΨj ({Zn}∞n=1) = fPCE(Z) (5)

where bj are the coefficients to be determined and Ψj are the orthogonal poly-
nomials with their respective random variables Z1, Z2, . . . , Zn. In practice, the
expansion is truncated at a finite number of terms, and the approximation of Y ,
obtained by the emulator fPCE and denoted by Ŷ , can be expressed by:

f(Z) = Y ≈ Ŷ =

Np−1∑
j=0

cjΨj(Z) = fPCE(Z) (6)

where cj are the coefficients of the expansion to be determined and Ψj(Z) are
the orthogonal polynomials. The polynomial expansion of Eq. (6) has degree p

for D input parameters. The number of terms is given by: Np = (D+p)!
D!p! .

For an improved accuracy of the surrogate model, it is recommended to
use a number of terms (samples) greater than Np to create it. In general, a
multiplicative factor m is adopted. That is, the number of samples is given
by Ns = mNp. There are different ways to determine the coefficients cj that
determine the emulator of a quantity. In this work, the stochastic collocation
method [14] was adopted, which together with the choice of Ns for m > 1
results in a least-squares problem. More details on this procedure can be found
in [14, 4].

At this point, it is important to note that the emulators for the mechanical
problem, defined in Eq. 1, are polynomials that approximate the outputs of the
simulator. Furthermore, once the emulators are built, due to their polynomial
nature, these values can be calculated cheaply by evaluating the polynomial (em-
ulator) for a given set of parameters which makes them appropriate for forward
uncertainty quantification and sensitivity analysis.

2.5 Sensitivity Analysis via Sobol

Sensitivity analysis measures the impact of input parameters on some output
data of a problem. In this work, the first order and total Sobol [16] indices were
adopted.

Let Y be a scalar quantity of interest for which we want to assess the impact
of the input parameters X = {X1, X2, . . . , XD}. The first order Sobol index
expresses the direct influence of a parameter Xi on the variance of the quantity
of interest Y . This index is given by:

Si =
V[E(Y |Xi)]

V(Y )
(7)

where E denotes the expected value, V represents the variance, and E(Y |Xi)
denotes the expected value of the output Y when the parameter Xi is fixed.
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The first order Sobol sensitivity index represents the expected reduction in the
variance of the analyzed quantity when the parameter Xi is fixed.

The total Sobol index represents possible interactions between the input pa-
rameters and their effects on the Y quantity. For the input Xi it is denoted by
STi, and is given by:

STi =
E[V(Y |X∼i)]

V(Y )
= 1− V[E(Y |X∼i)]

V(Y )
(8)

where X∼i represents all input parameters except the Xi parameter.
In this work the Sobol sensitivity indices were calculated from the PCE sur-

rogate models using the implementation of the ChaosPy [5] library.

2.6 Random Fiber Field

Uncertainty in the fiber field of the cardiac microstructure was considered so
far, with two approaches employed in previous works [3, 15]. One way [14, 4, 3,
10] is to consider the parameters αendo and αepi used in the rule-based fiber
generation algorithm as uncertain input parameters. The other approach treats
the fiber orientation as a random field and is generated via the Karhunen-Loève
expansion [15]. This approach has the advantage of considering local variations
in the cardiac microstructure, in contrast to the parametric approach where
such variation is not present and is only represented through the αendo and αepi
parameters.

We consider that the orientation of the fibers (only) will be represented as
a random field. Fiber orientation is considered as the sum of a random field
representing a perturbation F and the original fiber orientation field fmicro that
follows the properties of the microstructure of cardiac tissue. Then, the orienta-
tion of the fibers is given by

f(x, θ) = fmicro(x) + F(x, θ), (9)

where θ represents the dependence of the perturbed field f on some random prop-
erty. The perturbation F is represented as a random field using the truncated
KL expansion as follows:

F(x, θ) = F̄(x) +

nkl∑
k=1

ηk(θ)
√
λkφk(x), (10)

where F̄(x) is the expected value of the stochastic field in x and {ηk(θ)} rep-
resents a set of independent Gaussian random variables and (λk, φk(x)) are the
eigenvalues and eigenfunctions of the following integral:∫

D

C(y,x)φi(y)dy = λiφi(x), (11)

where D is the domain of the cardiac tissue of interest and C(y,x) the covariance
function. Without loss of generality, it is assumed that F̄(x) = 0 and that the
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covariance function has the following exponential form given by:

C(x,y) = σ2
KL exp

(
−|x− y|

2

2l2KL

)
∀x,y ∈ D, (12)

where σ2
KL is the variance of the field and lKL is the correlation size that defines

the spatial scale over which the field exhibits significant correlation [15].
In practical terms, to compute the KL expansion given in Eq. (9), the fol-

lowing generalized eigenvalue problem needs to be solved:

Tφk = λkMφk, with T = MTCM, (13)

where M is the mass matrix calculated using the finite element method.
The truncated KL expansion reduces the dimensionality of the stochastic

space from infinity to nKL and provides a parametric representation of the ran-
dom field F(x, θ) through nKL random variables. The uncertainty (or random-
ness) in the fiber orientation field comes from nKL independent random variables
η1, . . . , ηnKL

, which follow normal distributions with mean zero and unit stan-
dard deviation, ie ηi ∼ N (0, 1).

2.7 Quantities of Interest

To evaluate the parametric uncertainty in the response of the model given by
Eq. 1 we considered the following outputs or quantities of interest (QoI): cavity
volume (as a function of applied pressure), the end-diastolic volume (EDV), and
an average fiber strain measured at the end of diastole [3]. Fiber strain was
computed as:

εfiber = fT0 Ef0, (14)

where E is the Green-Lagrange strain tensor and f0 is the fiber orientation in
the undeformed configuration. The average fiber strain is computed using a set
of 20 points uniformly distributed in the LV domain and Eq. (14) to compute
their values.

3 Implementation and Experiments

3.1 Implementation

The computational experiments of this work were all carried out in a code im-
plemented in the Python programming language with support for scientific com-
puting through the NumPy and SciPy libraries. The library ChaosPy [5] was used
for uncertainty quantification, sensitivity analysis, and the construction of the
KL expansion. The library FEniCS [11] was used for solving the forward problem
(passive filling of the LV) using finite elements. The library ldrb [1] was used to
generate the fiber field in finite element meshes LDRB.
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3.2 Numerical Experiments

Two experiments were carried out for UQ and SA. The first one considered
only the 4 input parameters of the HO model (transversely isotropic case) and
no uncertainties in the fiber field. We assumed uniform distributions for the
uncertain parameters of the HO model, allowing them to vary from half its
reference value to a two-fold increase in the reference value. Uniform distributions
were chosen due to the lack of data for parameters [4, 14, 15], and also to represent
the population average values [2]. Table 1 summarizes the baseline parameters
values and the corresponding distributions used in the experiments for UQ and
SA.

Table 1. Baseline parameter values of the HO model and the distributions used to
construct the PCE surrogate models. The uniform distributions are bounded by below
and above with half and twice of the baseline value, respectively.

Parameter a b af bf
Baseline value 228 7.78 116.85 11.83
Distribution U(114, 456) U(3.89, 15.56) U(58.42, 233.7) U(5.92, 23.66)

The second experiment extends the previous one, where uncertainty in the
fiber field is now included in the analysis via the KL technique. The settings for
the HO parameters were the same of the first experiment. For the KL expansion a
total of nKL = 8 terms was used, and the following parameters were considered:
σKL = 0.5 radians and lKL = 1.0 cm, as previously used in [15]. We considered
p = 2 and m = 2, which for the first experiment with D = 4 resulted in Ns = 30
samples, whereas for the second experiment with D = 12 resulted in a total of
Ns = 182 samples (train data) that were generated for the construction of the
surrogate models. Finally, the accuracy of the surrogate models were carried out
via a new set of N test

s = 100 simulations (test data).

4 Results

In the following, we present the numerical results obtained in this work. First,
a preliminary study to define the number of terms in the KL expansion was
carried out, followed by a study to show the prediction capabilities of the PCE
surrogate models employed for further analyses. Then, results of the forward UQ
and SA of the passive filling LV problem using the HO model are presented.

4.1 Karhunen-Loeve Expansion

First, to define the number of terms in the truncated KL expansion for repre-
senting the random fiber field, we computed the eigenvalues of the generalized
problem defined in equation (13). Figure 2 shows the first 128 eigenvalues, where
it is clear their fast decay. To avoid a large number of input parameters, we
adopted nKL = 8 for further studies with random fiber fields.
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Fig. 2. Eigenvalues of the KL expansion for the LV mesh considered in this work.

4.2 Polynomial Expansion Emulator

After creating the emulator using Ns samples, a new set of N test
s new samples

was generated with the FEM simulator. This study aims to assess the prediction
capabilities of the surrogate models on test data.
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Fig. 3. Prediction results of the end-diastolic volume (left) and fiber strain (right)
using the PCE surrogate model on the set of test samples.

Figure 3 shows the true values of the outputs (EDV and average fiber strain)
versus the predicted values obtained by the PCE surrogate models. The black
line suggests the exact predictions of the true values, while the points are the
predictions. The closer the points to the solid black line, the better predictability
is for the surrogate models. One can observe that the PCE surrogate models can
predict the outputs very well in general.

4.3 Forward Uncertainty Quantification

Forward uncertainty quantification for experiments 1 (HO parameters only) and
2 (HO parameters and random fiber field via KL) were carried out to evaluate the
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uncertainties on the QoIs. Figure 4 (left panel) shows the propagated uncertainty
to the cavity volume as a function of pressure for experiments 1 and 2, labeled
as HO and HO+KL, which consider as input the HO parameters only and the
HO parameters and random fiber field, respectively. The solid line represents
the mean response, whereas the shaded region represents the mean ± standard
deviation. One can observe more variations for the volume on the upper limit
for the second experiment, as expected since the inclusion of a random fiber
field increases uncertainty. The right panel of Figure 4 shows the distributions
of the end-diastolic volume obtained for the two cases, where one can observe its
asymmetry (for both cases) and the fact that the HO+KL case presents more
spread towards larger volume values.
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Fig. 4. (Left) Forward uncertainty quantification for the pressure-volume curve during
the passive filling stage of the left ventricle dynamics for the parameters of the HO
model (only) and HO+KL for the case with random fiber field. The solid line represents
the mean value, and the shaded region the confidence interval within one standard
deviation. (Right) Distributions of the end-diastolic volume.

Table 2 shows some statistics estimated from the PCE surrogate models for
the end-diastolic volume and average fiber strain. In general, local variations in
the fiber orientation can significantly impact the outputs. The expected EDV
volume value in both cases is very similar, with a slight increase in the coeffi-
cient of variation in experiment 2 concerning experiment 1. The average fiber
strain εfiber resulted in a smaller expected value for the second experiment. This
reduced fiber strain is a result of the inclusion of uncertainties in the fiber field
combined with the fact that it consists of an averaged quantity over a set of
elements in the LV.

4.4 Sensitivity Analysis

Finally, we present a global sensitivity analysis based on Sobol indices for ex-
periment 1 dealing with the four parameters of the transversely isotropic HO
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Table 2. Propagated uncertainties on the quantities of interest (EDV and εfiber) for
experiments 1 (HO) and 2 (HO+KL). The coefficient of variation denotes the ratio
between standard deviation and expected value.

Experiment Exp. 1 Exp. 2
Statistics EDV εfiber EDV εfiber

Expected value 94.992 0.138 97.890 0.079
Standard deviation 9.456 0.035 12.188 0.041

Coefficient of Variation 0.099 0.254 0.125 0.518

model. The computation of the main and total Sobol indices was carried out
using the PCE surrogate models for EDV and ε.

Table 3. Sensitivity analysis via main and total Sobol indices for the end-diastolic
volume and average fiber strain quantities of interest.

Parameters
End-diastolic volume Average fiber strain

Main Total Main Total

a 0.04109086 0.04786979 0.04350967 0.05388241
b 0.91614816 0.93681466 0.92107288 0.93461802
af 0.00537262 0.01050244 0.00269112 0.01456773
bf 0.01411364 0.02808783 0.01202287 0.01763529

Table 3 presents the main and total Sobol indices for the a, b, af , and bf
parameters with respect to end-diastolic volume and average fiber strain. The
results show that the b parameter present in Eq. (4) is the one that clearly
has the most impact on the QoIs analyzed. It is also worth noting through the
total Sobol indices that some level of interaction between the parameters is also
present.

5 Conclusions

In this work, we presented a forward uncertainty quantification and sensitivity
analysis of a constitutive model usually employed in finite element analysis of
cardiac mechanics. In particular, we focused on the passive filling problem of the
left ventricle and its derived quantities of interest, such as cavity volume and
strain. The analyses explored as uncertain inputs the constitutive parameters
of the Holzapfel-Ogden model and the fiber orientation field that defines the
cardiac microstructure as a random field using the Karhunen-Loève expansion.
Due to the high computational cost of solving the passive filling problem of the
LV, the UQ and SA studies were carried out with the surrogate models based
on polynomial chaos expansions.

The UQ and SA results can be summarized in the following findings. The
model outputs analyzed in this work were highly sensitive to local variations and
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uncertainties in the fiber orientation. The inclusion of local variations in the fiber
field increased the upper limit of the range of uncertainty for the end-diastolic
volume. The parameter appearing in the exponent of the isotropic term of the
transversely isotropic Holzapfel-Ogden constitutive model is the most sensitive
parameter in the material model considered in this work.

5.1 Limitations and Future Works

Some limitations of this work are worthy of discussion for improvements in fu-
ture works. One of the main limitations of this work is the fact that only the
fiber orientation was treated as a random field, in spite of the fact the cardiac
tissue is usually modeled as an orthotropic material. This limitation comes from
the fact that perturbing the fiber, sheet, and normal directions simultaneously
would demand a more complex approach for applying the KL expansion and
keeping the orthogonality between the vectors defining these directions. As a
consequence of this first limitation, the Holzapfel-Ogden model was limited to
the transversely isotropic case. Future works should overcome these limitations
by exploring all the parameters in the HO model, including uncertainty in the
entire local microstructural vectors of cardiac tissue, including other quantities
of interest, and also studying the entire cardiac cycle. Another limitation of this
work is the choice of the distributions of the uncertain model parameters. Al-
though it is based on a set of reference values of the literature, further studies
should consider an inverse uncertainty quantification approach to better charac-
terize parameter distributions.
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