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Abstract. This paper presents an intuitive Python toolbox for Teaching
Ensemble-based Data Assimilation (DA), TEDA. This toolbox responds
to the necessity of having software for teaching and learning topics re-
lated to ensemble-based DA; this process can be critical to motivate
undergraduate and graduate students towards scientific topics such as
meteorological anomalies and climate change. Most DA toolboxes are
related to operational software wherein the learning process of concepts
and methods is not the main focus. TEDA facilitates the teaching and
learning process of DA concepts via multiple plots of error statistics and
by providing different perspectives of numerical results such as model er-
rors, observational errors, error distributions, the time evolution of errors,
ensemble-based DA, covariance matrix inflation, precision matrix estima-
tion, and covariance localization methods, among others. By default, the
toolbox is released with five well-known ensemble-based DA methods:
the stochastic ensemble Kalman filter (EnKF), the dual EnKF formula-
tion, the EnKF via Cholesky decomposition, the EnKF based on a mod-
ified Cholesky decomposition, and the EnKF based on B-localization.
Besides, TEDA comes with three toy models: the Duffing equation (2
variables), the Lorenz 63 model (3 variables), and the Lorenz 96 model
(40 variables), all of which exhibit chaotic behavior for some parameter
configurations, which makes them attractive for testing DA methods.
We develop the toolbox using the Object-Oriented Programming (OOP)
paradigm, which makes incorporating new techniques and models into
the toolbox easy. We can simulate several DA scenarios for different con-
figurations of models and methods to better understand how ensemble-
based DA methods work.

Keywords: Data Assimilation · Ensemble Kalman Filter · Education ·
Python.

1 Introduction

Computational tools are widely applied in different contexts of science to develop
curiosity and interest in undergraduate and graduate students towards some spe-
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cific discipline. This seems to be an extraordinary strategy in which instructors
and students feel comfortable boarding topics from different branches of science.
Indeed, it has helped in the context of (applied) math (and in general STEM
courses), wherein students offer some sort of resistance to learning [10]. Nowa-
days, Data Assimilation (DA) has become a relevant field of research, learning,
and teaching owing to recent meteorological anomalies and climate change. In
sequential DA, an imperfect numerical forecast xb ∈ Rn×1 is adjusted according
to a vector of real noisy observations y ∈ Rm×1, where xb ∈ Rn×1 and y ∈ Rm×1

are the background state and the observation vector, respectively, n is the model
size, and m denotes the number of observations. To estimate prior parameters,
typically, ensembles of model realizations are used. Since each ensemble mem-
ber has a high computational cost, ensemble sizes are commonly bounded by
the hundreds while model resolutions are in the millions. This provides a set
of difficulties that are of high interest to the data assimilation community, re-
searchers in general, and instructors. For instance, if seen from a researcher’s
perspective, the impact of sampling errors is something of high relevance, espe-
cially since these methods can be employed, for instance, to predict hurricane
initialization with a fairly high percentage of certainty [2]. Another application
of DA that is highly active is the combination of Global Positioning System
(GPS) and Meteorology (MET) with DA methods to improve weather predic-
tions [12]. However, from an instructor or student perspective, who is trying
to explain or learn these topics, then the availability of software, toolboxes, or
other tools to aid in teaching is still very limited. There are several DA-oriented
toolboxes but usually they are designed for investigative use, and most of them
are not flexible when wanting to introduce new models or methods. In [9], au-
thors implemented an open interface standard for a quickly implement of DA
for numerical models. This implementation has a few well known methods and
focuses on parameter estimation. In [1] authors present a tutorial in Python that
shows the implementation of common sequential methods and the idea behind
them. These implementations have good approaches to introduce researchers,
professors or students to the area of DA, but have some minor inconveniences,
for example, by the time this paper is written [9] is available in Java, C++,
and FORTRAN which are well know programming languages but are not that
simple to understand, also the toolbox needs to be downloaded. We propose a
Python-based toolbox to facilitate the comprehension of DA topics that can be
used offline or online in Google Colab. This toolbox follows the Object-Oriented
Programming (OOP) paradigm, which brings flexibility; it counts with different
ensemble-based methods, numerical models, and covariance and precision matrix
estimators. Our implementation is education-oriented, and therefore, it is more
detailed than other operational DA implementations.

The structure of this paper is as follows: Section 2 briefly discuss ensemble-
based methods, well-known issues in the context of ensemble DA, and numerical
toy models; the topics are restricted to all functionalities in our educational
toolbox, in section 3 presents the toolbox and how to employ it to simulate and
test ensemble methods. Section 4 demonstrates some results of the use of the
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TEDA: Teaching Ensemble-based Data Assimilation 3

toolbox with different methods and models. Conclusions and future directions
of TEDA are stated in section 5.

2 Preliminaries

Learning or teaching STEM (Science, Technology, Engineering and Mathemat-
ics) topics can be challenged; instructors often apply motivational strategies to
keep students focused on their course content [5]. DA is not the exception: this
subject combines information from different branches of science: Statistics, Ap-
plied Math, and Computer Science. DA can be seen as a challenging field to
study, do research, and teach at a first look. However, we believe that by using
a proper toolbox wherein numerical experiments are run, and analyses are pro-
vided; students can quickly assimilate concepts from different fields of science.
We consider DA as a field of extreme importance given current meteorological
and climate conditions. Climate change is a real issue that all people must be
aware of. It impacts different branches of our lives, starting with the planet we
live on. Waterfloods, forest fires, and tsunamis are just consequences of every-
thing we have done to our world so far. Despite how we got to this point, the
main question remains: what can we do to mitigate the impact of climate change
in our lives, economies, societies, and planet? We can answer this question in
many manners, one of them is by providing scientists, instructors, and students
with a context such as DA.

Our toolbox provides filter implementations, numerical models, and multi-
ple plots to enrich learning and teaching. We release our learning toolbox with
ensemble-based filter implementations, numerical models, and DA scenarios to
efficiently perform the teaching process; we briefly discuss all of them in this
Section.

2.1 Ensemble-based Data Assimilation

The Ensemble Kalman Filter (EnKF) is a sequential ensemble-based method
which employs an ensemble of model realizations to estimate moments of prior
error distributions:

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (1a)

where xb[e] ∈ Rn×1 denotes the e-th ensemble member, for 1 ≤ e ≤ N , at time
k, for 0 ≤ k ≤ M . The empirical moments of (1a) are employed to estimate the
forecast state xb:

xb =
1

N

N∑
e=1

xb[e] ∈ Rn×1 ,

and the background error covariance matrix B:

Pb =
1

N − 1
∆Xb

[
∆Xb

]T ∈ Rn×n ,
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where the matrix of member deviations reads:

∆Xb = Xb − xb1T ∈ Rn×N . (1b)

The posterior ensemble can then be built by using synthetic observations:

Xa = Xb +∆Xa ,

where the analysis updates can be obtained by solving the following linear system
in the stochastic EnKF [4]:[

HPbHT +R
]
∆Xa = Ds ∈ Rm×N ,

or in the dual EnKF formulation [8]:[[
Pb

]−1
+HTR−1H

]
∆Xa = HTR−1Ds ∈ Rn×N ,

the innovation matrix reads Ds ∈ Rm×N whose e-th column y−Hxb[e] + ε[e] ∈
Rm×1 is a synthetic observation with ε[e] ∼ N (0m, R). Note that, the synthetic
observations are sampled about the actual ones y. Yet another possible imple-
mentation is via the space spanned by the ensemble of anomalies (1b), this is

Xa = Xb +∆XbW∗︸ ︷︷ ︸
∆Xa

(2a)

where the analysis innovations ∆Xa can be computed by solving the following
linear system onto the ensemble space:

[(N − 1)I+QTR−1Q]W∗ = QTR−1
[
YS −HXb

]
where Q = −1

√
N − 1H∆Xb ∈ Rm×N . The implementation (2a) is well-

known as the EnKF based on Cholesky decomposition.
In operational DA scenarios, the ensemble size can be lesser than model

dimensions by order of magnitudes, and as a direct consequence, sampling errors
impact the quality of analysis increments. To counteract the effects of sampling
noise, localization methods are commonly employed. In the context of covariance
tapering, the use of the spatial-predecessors concept can be employed to obtain
sparse estimators of precision matrices [6]. The predecessors of model component
i, from now on P (i, r), for 1 ≤ i ≤ n and a radius of influence r ∈ Z+, are given
by the set of components whose labels are lesser than that of the i-th one.

In the EnKF based on a modified Cholesky decomposition (EnKF-MC) [8]
the following estimator is employed to approximate the precision covariance
matrix of the background error distribution:

B̂−1 = L̂T D̂−1L̂ ∈ Rn×n ,
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where the Cholesky factor L ∈ Rn×n is a lower triangular matrix,

{
L̂
}
i,v

=


−βi,v,k , v ∈ P (i, r)

1 , i = v

0 , otherwise

,

whose non-zero sub-diagonal elements βi,v,k are obtained by fitting models of
the form,

xT
[i] =

∑
v∈P (i, r)

βi,v,kx
T
[v] + γi ∈ RN×1 , 1 ≤ i ≤ n ,

where xT
[i] ∈ RN×1 denotes the i-th row (model component) of the ensemble

(1a), components of vector γi ∈ RN×1 are samples from a zero-mean Normal
distribution with unknown variance σ2, and D ∈ Rn×n is a diagonal matrix
whose diagonal elements read,

{D}i,i = v̂ar

xT
[i] −

∑
v∈P (i, r)

βi,v,kx
T
[j]

−1

≈ var (γi)
−1

=
1

σ2
> 0 , with {D}1,1 = v̂ar

(
xT
[1]

)−1

,

where var(•) and v̂ar(•) denote the actual and the empirical variances, respec-
tively. The analysis equations can then be written as discussed in [8].

2.2 Numerical Models

The Lorenz 96 model is a dynamical system formulated by Edward Lorenz in
[7]; it mimics the behaviour of particles fluctuacting in the atmosphere. The
dynamics of particles xi ∈ R, for 1 ≤ i ≤ n, are described by the following set
of Ordinaty Differential Equations:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F ,

wherein periodical boundary conditions are assumed x−1 = xN−1, x0 = xN , xN+1 =
x1. This is one of the most widely employed toy models in the context of DA
given its chaotic nature when the external force F equals 8.

The Lorenz 63 model is a dynamic system of three Ordinary Differential
Equations introduced by Edward Lorenz, again. The equations are described as:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

where σ, ρ, and β are parameters corresponding to the Prandtl number (usually
10), Rayleigh number , and some physical dimension of the layer itself (usually
8/3), respectively. The system exhibits a chaotic behavior when ρ = 28. This
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model can be seen as a simplified mathematical model for atmospheric convec-
tion.

The Duffing Equation is a non-linear second order differential equation pre-
sented by Georg Duffing in [3]. This equation is used to model damped and
driven oscillators. This initial value problem reads:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt), with x(0) = 0, and ẋ(0) = 1,

where δ controls the amount of damping, α denotes the linear stiffness, β stands
for the amount of non-linearity in the restoring force, and γ is the amplitude of
the periodic driving force.

3 Teaching Data Assimilation (TEDA) Python toolbox

We provide a simple manner to learn and teach DA-related concepts: a compu-
tational toolbox named TEDA (Teaching Ensemble-based Data Assimilation).
Our toolbox is written using Python, and we employ the Object-Oriented-
Programming (OOP) paradigm to make easier the merging of our toolbox into
any other educational or research program. The github repository of our pack-
age reads https://github.com/enino84/TEDA.git. We allow the users to analyze
results from different perspectives. For instance, our visualizations allow users
to understand error correlations, the structure of correlations, model trajecto-
ries, ensemble uncertainties, the effects of assimilation on model trajectories and
correlations, the results of applying covariance tapering on precision matrices or
localization methods on covariance ones, the error evolution of small perturba-
tions, prior and posterior estimation of errors, among others. We employ some
useful metrics to provide a wide spectrum of the forecast and the assimilation
processes through specialized metrics, for instance, the ℓ2-norm of errors or the
Root-Mean-Square-Errors, both of them well-known in the DA community. We
release TEDA with five well-known sequential data assimilation methods: the
EnKF, the stochastic EnKF, the EnKF via Cholesky, the EnKF via a modified
Cholesky decomposition, and the EnKF via B-Localization. Besides, three nu-
merical models are available for testing and creating DA benchmarks: Lorenz 96,
Lorenz 63, and Duffing’s Equation. We briefly discuss all methods and models
in our toolbox in Section 2. We release TEDA in two different manners: as a
Python package and a Jupyter notebook.

As a Python package, TEDA consists of five major classes: the Model and
the Analysis ones, both of them abstract classes; these ones define the meth-
ods that must be implemented for the definition of new models and ensemble
methods. The Background class has the methods to create the initial ensemble,
the initial forecast, and other required methods for simulations. The Observa-
tion class defines methods to generate synthetic observations jointly their error
distributions (Gaussian by default). The Simulation class triggers simulations in
DA scenarios given objects of the previous four classes; from here, we can run
simulations by calling the "run" method, which will generate outputs such as
error plots and statistics. We can modify all parameters for classes and methods
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in TEDA as needed. We document classes and methods by using Docstring; a
convention described within PEP 257 [11]. The purpose of these is to provide
to final users brief overviews of objects, attributes, and methods. We show the
class diagram of TEDA in figure 1. A representation of how folders are arranged
can be seen in figure 2.

The TEDA notebook is an implementation of our toolbox on Jupyter note-
books. This allows students and instructors to simulate, test, and study sequen-
tial data assimilation methods easily. This notebook can be deployed in any
web-based interactive development environment for notebooks, code, and data.
For instance, we can run on-line the TEDA notebook by using Google Colab,
a well-known free cloud service to host and execute Jupyter notebooks. This
aspect is relevant since computer power is not needed from students to run our
toolbox (which can be seen as a social inclusion initiative); a conventional laptop
or low-memory computer with a web browser is sufficient for TEDA. This also
can support breaking the social gap regarding students and computational re-
sources; this is a well-known issue in developing countries. Since TEDA is based
in OOP, instructors and students can develop their own methods and integrate
them into our toolbox as required.

Fig. 1: Class diagram of the TEDA learning toolbox.
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TeDA

Main.py Analysis Background Models Observation Simulation

Analysis.py

AnalysisEnKF.py

Analysis EnKF-
BLoc.py

Analysis EnKF-
Modified
Cholesky.py

Analysis EnKF-
Naive.py

Analysis EnKF-
Cholesky.py

Background.py Model.py

Lorenz96.py

Lorenz63.py

Duffing.py

Observation.py Simulation.py

Fig. 2: Tree of the TEDA folder. The necessary files to run (or use) the assimi-
lation toolbox.

4 Demonstration of the TEDA Toolbox

In this Section, we briefly show the capabilities of our package and all potential
analyses that students and instructors can conduct via TEDA. Our toolbox
attacks four important points during learning ensemble DA: initial ensemble
generation, assimilation step, effects of sampling errors, and covariance matrix
estimation. Our toolbox provides visual reports of all previous concepts jointly
quantitative (statistical) analyses. All plots in this Section can be generated from
the TEDA visualization toolkit.

In the context of initial ensemble generation, TEDA allows instructors and
students to set up initial perturbation errors to create initial ensembles of model
realizations. In figure 3a and 3b, we show a visual report of generating an initial
ensemble for the Duffing equation via TEDA. In the first row, we show how the
initial random perturbations are adjusted according to Duffing dynamics. For
this model, by adding Normal white noise to the initial condition (x(0) = 0 and
x′(0) = 1), we can see how the small initial perturbations are amplified by the
non-linear dynamics encapsulated in the numerical model. Besides, the chaotic
behavior of this model is clear; small perturbations (t = 0) tend to completely
different conditions in time (t = 18). This can help students to understand how
non-linear dynamics can drive forecasts to completely different states in future
steps. The second row shows that initial Gaussian perturbations (in blue) are
mapped to non-Gaussian kernels after numerical model integration (in red). For
instance, the ensemble distribution is non-Gaussian (and even more, it is multi-
modal). This makes clear the fact that non-Gaussian distributions are frequently
found in real-life contexts. This is a well-known issue in the DA community; de-
spite non-Gaussian errors being present in background distributions, scientists
rely on Gaussian assumption on prior errors mainly to computational resources:
for Gaussian assumption on prior and observational errors, closed-form expres-
sion can be obtained for computing analysis members. In the third row, the first
column shows the different trajectories for all initial perturbations. Trajectories
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are identified by colors; again, it is evident the chaotic behavior of the Duffing
model; the second column allows us to identify zones from which initial pertur-
bations start (blue dots) and where they end (red dots) after model integration.
Despite the fact that initial solutions are close (in space), we can see how the
non-linear nature of the Duffing equation makes them follow different paths. In
the last row, the first column denotes a three-dimensional plot wherein we can
see how ensemble members take different trajectories as time evolves. The Duff-
ing equation is time-dependent, and therefore, we can see the multi-modal spiral
behavior for each solution. Besides, the second column shows where the initial
conditions start and where they end after the model propagation. The last two
rows can be employed to show how non-linear dynamics affect model trajectories
even for small synthetic perturbations. As can be seen, many explanations can
be obtained by just analyzing plots or their combination. This provides a wide
vision of how spatial paths relate to small perturbations in initial conditions
and how Normal initial perturbations are non-linearly mapped to non-Gaussian
shapes after model propagation.

(a) Initial ensemble representation and statistics.

(b) Initial model representation in 2D and 3D.
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In figure 4, we show the effects of ensemble-based DA for different cases:
No Data Assimilation (NODA), a single assimilation step, and two assimilation
steps. Students will get to this point after creating an initial ensemble, as we did
before, and even more, by providing the error distribution of observations jointly
their time frequencies. In figure 4a, the solid black line denotes the actual state
of the system while blue lines represent ensemble member trajectories. Note
that uncertainty increases as no DA is performed, and ensemble trajectories
are distant from actual states. However, as can be seen in figure 4b, a single
assimilation step can reduce uncertainty in ensemble trajectories, and even more,
it can route ensemble trajectories to actual system states. Uncertainties in blue
forecasts are more significant than those in red ones. Of course, uncertainty
increases as time evolves (i.e., ensemble trajectories in red). Figure 4c shows
that we can reduce uncertainties, in time, by frequently injecting observations
into an imperfect numerical forecast. This plot can support the understanding
of uncertainties in errors as a function of time. Students can realize that as no
actual information is injected into the numerical forecast, model errors will make
forecasts diverge from real-life scenarios.

(a) No Data Assimilation (NODA).

(b) A single assimilation step.

(c) Two assimilation steps.

Fig. 4: The effects of DA in the Duffing equation.
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In figure 5, we can see how error correlations are developed in time (forecast)
and how these are updated after DA (analysis). We show in blue and green how
observations (red dots) drive the states of the numerical forecast. Besides, we can
see how correlation matrices evolve after assimilation steps (i.e., from positive
to negative correlations); we want observed components from the model space
to get closer to observations. Similarly, figure 6 shows plots for the x2 variable
of the Lorenz-96 model. We can see how uncertainties increase and even more,
how correlations are developed in time for model variables in figures 6c and 6d.
These scenarios can show students how error correlations are developed in model
components after forecast steps and analysis ones.

(a) Correlations before DA. (b) Correlations after DA.

(c) Correlation matrix before DA.
(d) Correlation matrix after DA.

Fig. 5: Initial pool of background members for the experiments. Two dimensional
projections based on the two leading directions are shown.
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12 E. Nino-Ruiz, S. Racedo.

(a) Ensemble trajectories. (b) Uncertainty in forecast.

(c) Correlation x20 and x22. (d) Correlation x20 and x21.

Fig. 6: Some visualizations of TEDA for the Lorenz-96 model.

Figure 7 shows examples of some TEDA plots about localization aspects for
the Lorenz-96 model. In figures 7a and 7b, we show prior structures (pre-defined
student parameters) of background errors for covariance matrix localization via
Schur product and precision matrix estimation, respectively. TEDA also enriches
analyses by providing additional plots. For instance, a 3d representation of the
decorrelation matrix can be seen in figure 7c. This figure clearly shows how
we expect error correlations to decrease in space. This can provide a visual
explanation of error decay regarding a given radius length. Figure 7d shows
the ensemble covariance before localization is applied. As can be seen, sampling
errors develop correlation in spatially distant model components. For instance,
there is no clear structure of error relationships regarding model dynamics. We
can then consider applying any pre-defined structures on the samples to mitigate
the impact of sampling errors. Results can be seen in figures 7e and 7f for the
Schur product and modified Cholesky estimators, respectively.

After all experiment are run, TEDA generates a static HTML file where step
by step plots are shown, explanations are given, and comparisons are made in
selected DA methods for experiments. Images are stored in sub-folders, these
can be utilized as needed.
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(a) 2D decorrelation matrix. (b) Precision structure.

(c) 3D decorrelation matrix.

(d) Background covariance.

(e) Schurch estimation. (f) Modified Cholesky estima-
tion.

Fig. 7: Some TEDA plots for covariance matrix and precision matrix estimation.

5 Conclusions and Future research

The TEDA toolbox is an educational software to support the learning and teach-
ing process of DA aspects. TEDA is released with five ensemble-based methods,
three numerical models, and a powerful visualization toolbox to facilitate anal-
yses. Since it is OOP (and written in Python following the standard PEP 257),
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we can easily add new methods and models. Our toolbox is released jointly with
a Jupyter notebook to show a practical case of TEDA and, even more, to exploit
cloud resources (i.e., Google Colab by just uploading the Jupyter notebook).
TEDA can create multiple DA scenarios with different parameters, for instance,
various observational networks, ensemble sizes, inflation factors, among many
others. This flexibility makes TEDA exceptional to compare results from mul-
tiple methods and simulations. This can be exploited in academic contexts to
support the learning process. Our toolbox generates a static HTML file for each
simulation wherein information about ensemble generation, analysis steps, and
other relevant aspects are discussed. We expect to increase the number of models
and methods in future releases of TEDA.
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