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Abstract. In this paper we present two didactic examples of the use of Mathe-
matica’s symbolic calculations in problems of mathematical analysis which we
prepared for students of Warsaw University of Life Sciences. In Example 1 we
solve the problem of convex optimization and next in Example 2 we calculate
the complex integrals. We also describe a didactic experiment for students of the
Informatics and Econometric Faculty of Warsaw University of Life Sciences.
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1 Introduction

Computer Algebra Systems (CAS) such as WxMaxima, Mathematica, Maple, Sage and
others are often used to support calculations and visualization in teaching mathematical
subjects [1,2,3,9,10,11,13]. This paper is intended as a follow-up of the article [12] on
supporting higher mathematics education by dynamic visualization using CAS. The di-
dactic value of using software supporting visualization in teaching higher mathematics is
generally beyond doubt. For example, the ability to visualize 3D objects with options of
dynamic plot and animation, with various options for colour and transparency selection,
appears to be very useful didactic tool in teaching students more advanced mathematics
topics. In paper [12] we presented 3D example (Example 1) of dynamic visualization
primal simplex algorithm steps containing 3D feasible region, corner points, simplex
path and level sets using Mathematica [6,14]. Obtaining a comparable didactic effect
without any specialized computer programs such as CAS, would be difficult if possible.
In our opinion, it is much more difficult to assess the didactic value of the use of sym-
bolic computing using CAS in teaching higher mathematics. Symbolic computation in
CAS allow us to solve mathematics problems symbolically, check and trace our calcu-
lations done by hand and present the results in an attractive graphic form. However, it
would be difficult to unequivocally answer the question of whether, from the didactic
point of view, it is better to solve and present mathematical problems symbolically us-
ing CAS or present manual calculations on the board. It would probably be valuable to
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learn both approaches. In the 1990s, there was a discussion between Steven Krantz and
Jerry Uhl about the relevance of teaching Calculus students with Mathematica as part
of the Calculus & Mathematica project [8,4]. In this discussion, the views of both sides
were divided and there was no common consensus as to the advantage of one approach
over the other. The discussion shows that the problem of evaluating an approach with or
without CAS in teaching higher mathematics is not simple or unequivocal. It seems that
the ability to use symbolic CAS calculations can be particularly useful in more advanced
research problems carried out by students, for example as part of a diploma thesis. In this
paper we present and discuss two didactic examples of advanced mathematical analysis
problems in which we use symbolic calculations. These examples were prepared by us
for students of Warsaw University of Life Science. We also present a didactic experiment
with the participation of the Informatics and Econometric Faculty students in their first
contact with CAS.

2 Example 1: Convex Programming

Convex programming is part of mathematical programming. This example was prepared
for students of the Informatics and Econometric Faculty of Warsaw University of Life
Sciences within the course of Mathematical Programming. We solved the following con-
vex optimization problem with Mathematica:
find the global minimum value of the function f (x1,x2,x3) = (x2

1 + x2
2 + x3)ex3 over

the greatest set D, over which f is convex. Determine several examples of level sets of
function f .
This approach based on the fact that for convex function defined on convex set, local
minimum is a global minimum.

Theorem 1 (See [1]). Let S be a nonempty convex set in Rn, and let f : S→R be convex
on S. Consider the problem to minimize f (x) subject to x ∈ S. Suppose that x0 ∈ S is a
local optimal solution to the problem.
1. Then x0 is a global optimal solution.
2. If either x0 is a strict local minimum or f i s strictly convex, x0 is the unique global
optimal solution and is also a strong local minimum.

Theorem 2 (See [1]). Let S be a nonempty open convex set in Rn, and let f : S→ R
be twice differentiable on S. If the Hessian matrix is positive definite at each point in
S, f is strictly convex. Conversely, if f is strictly convex, the Hessian matrix is positive
semidefinite at each point in S.

Theorem 3 (See [1]). Let D be a nonempty convex set in Rn, and let f : D→ R. Then
f is convex if and only if epi f = {(x,xn+1) ∈ Rn+1 : x ∈ D,xn+1 ∈ R,xn+1 ≥ f (x)} is a
convex set.

Theorem 4. Let D be a nonempty closed convex set in Rn, S = intD 6= /0, and let f :
D→ R be continuous on D and convex on S. Then f is convex on D.

Using Mathematica we can find the stationary points of f and the greatest set D, over
which f is convex.
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Listing 2.1: Calculation of the stationary points of f in Mathematica:

In [1]:= f = (x2
1 + x2

2 + x3)Exp[x3];
In [2]:= { f1 = D[ f ,x1], f2 = D[ f ,x2], f3 = D[ f ,x3]}//Simplify
Out[2]= {2ex3 x1,2ex3 x2,ex3(1+ x2

1 + x2
2 + x3)}

In [3]:= r = Solve[{ f1 == 0, f2 == 0, f3 == 0},{x1,x2,x3},Reals]
Out[3]= {{x1−> 0,x2−> 0,x3−>−1}}
In [4]:= f/.r[[1]]
Out[4]= −1/e

From the listing 2.1 we have that the only stationary point of f is P0 = (0,0,−1).

f (P0) = f (0,0,−1) =−1
e

Listing 2.2: Calculation of Hessian Matrix of f in Mathematica:

In [5]:= H = {{D[ f ,{x1,2}],D[ f ,x1,x2],D[ f ,x1,x3]},{D[ f ,x1,x2],D[ f ,{x2,2}],
D[ f ,x2,x3]},{D[ f ,x1,x3],D[ f ,{x2,x3}],D[ f ,{x3,2}]}};
{MatrixForm[H],Det[H]}//Simplify

Out[5]= {

 2ex3 0 2ex3 x1
0 2ex3 2ex3 x2
2ex3 x1 2ex3 x2 ex3(2+ x2

1 + x2
2 + x3)

 ,4e3x3(2− x2
1− x2

2 + x3) }

In [6]:= H0 = H/.r[[1]];MatrixForm[H0]

Out[6]=

 2
e 0 0
0 2

e 0
0 0 1

e



From listing 2.2 we have:

H(x1,x2,x3) =

2ex3 0 2ex3x1
0 2ex3 2ex3x2
2ex3x1 2ex3x2 ex3(2+ x2

1 + x2
2 + x3)


and

H(P0) = H(0,0,−1) =

 2
e 0 0
0 2

e 0
0 0 1

e

.

H(P0) is positive definite, so in P0 f attains local strict minimum.
Now we will find all P = (x1,x2,x3)∈R3 such that Hessian Matrix of f H(x1,x2,x3)

is positive definite.
From listing 2.2 we also have:

W1(P) = 2ex3 > 0
W2(P) = 4e2x3 > 0
W3(P) = 4e3x3(2− x2

1− x2
2 + x3)> 0

⇔ 2− x2
1− x2

2 + x3 > 0.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_59

https://dx.doi.org/10.1007/978-3-031-08760-8_59


4 W. Wojas and J. Krupa

Let define function g(x1,x2) = x2
1 + x2

2−2 on R2.

We can prove that g is strictly concave on R2 directly from the definition of concave
function.

Listing 2.3: Checking concavity of function g on R2 in Mathematica :

In [1]:= g[{x1−, x2−}] = x12 + x22−2;
In [2]:= {x = {x1, x2},y = {y1, y2}};
In [3]:=Assuming[0 < λ < 1 && Element[{λ , x1, x2, y1, y2},Reals] &&

Or[x1 6= y1, x2 6= y2], g[λx+(1−λ )y]< λg[x]+ (1−λ )g[y]//FullSimplify
Out[3] = True

Listing 2.4: Checking concavity of function g on R2 in Mathematica:

In [4]:= λg[x]+ (1−λ )g[y]−g[λx+(1−λ )y]//FullSimplify
Out[4] = −

(
(x1− y1)2 +(x2− y2)2)(−1+λ )λ

From listing 2.4 or 2.3 we have that:

g(λx+(1−λ )y)< λg(x)+(1−λ )g(y)

for each x,y ∈ R2 such that x 6= y and for each λ ∈ (0,1) (R2 is convex set)

So the sets D = epig = {(x1,x2,x3) ∈ R3 : x3 ≥ x2
1 + x2

2 − 2} and S = intD =
{(x1,x2,x3) ∈ R3 : x3 > x2

1 + x2
2−2} are convex (see theorem 3). From figure 1 we can

also conclude that the set D is concave.
Hence on the set S = {(x1,x2,x3) ∈ R3 : x3 > x2

1 + x2
2−2} Hessian of f is positive

definite, hence the function f is strictly convex on S and from theorem 4 we conclude
that f is convex on the set D = {(x1,x2,x3) ∈ R3 : x3 ≥ x2

1 + x2
2− 2}. Hence from the

theorem 1, local strict minimum of f is also global strict minimum (the least value) of
f on the set D.
Of course the calculations and simplifications in listing 2.4 we can do by hand. Calcu-
lations in Mathematica or other CAS are only one option for checking our hand calcu-
lations.

So we get the finale answer: fmin = f (0,0,−1) =−1
e

.

CAS allows us to solve problem symbolically and also visualise it. Since symbolic com-
putations are performed in CAS, so visualisations are performed there as well.
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Fig. 1: The set D

We show below dynamic plots presenting level sets of function f .
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Fig. 2: Dynamic plots of the level surfaces of convex function f on the convex set D
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Fig. 3: Plots of the level surfaces {(x1,x2,x3)∈R3 : f (x1,x2,x3) = c} of convex function f on the
convex set D: for c = 5,−1/e+1/10,−1/e+1/100

Dynamic version of the figures 3, 2 can be found at:
https://drive.google.com/file/d/1F7xOQaU7YSN3ar-z12rDgZJAFj06aDdU/view?u
sp=sharing
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3 The didactic experiment with Example 1

This experiment was carried out on in two independent groups of second-year students of
the Informatics and Econometric Faculty of Warsaw University of Life Sciences within
the course of Mathematical Programming. Students were after courses of one and mul-
tivariable analysis and linear algebra. As part of the mathematical programming course,
students were acquainted with the basic definitions and theorems in the field of convex
programming. The students declared that they had not had contact with the CAS sym-
bolic calculations before. In the first group of 36 students the Example 1 (only in CAS
version) was demonstrated to the students and discussed in detail by the lecture. The pre-
sentation together with the discussion lasted about 20 minutes. After the presentation,
the students answered two questions.

1. Were the presented symbolic calculations in Mathematica helpful in understanding
the example? They chose one of four options:
a) they were not helpful,
b) they were a bit helpful,
c) they were helpful,
d) they were very helpful.

2. Did the symbolic calculations demonstrated in this presentation broaden your knowl-
edge of computational techniques? They chose one of four options:
a) did not broaden
b) did broaden a little,
c) did broaden,
d) did greatly broaden.

We received the following results. For the question 1.: 0% of the students chose the
answer a), 44% answer b) , 53% answer c) and 3% answer d). For the question 2.: 0%
of the students chose the answer a), 61% answer b) , 39% answer c) and 0% answer d).

In the second group of 25 students the Example 1 was presented in two versions.
First, in a traditional way - with manual calculation without CAS, and then with the use
of CAS. The presentation of each version together with the discussion lasted about 20
minutes. After these two presentations, the students were to refer to the following state-
ment by selecting one of the sub-items.
Comparing the two presented versions of the solution of the Example 1, I think that:

a) it should first of all get acquainted with the first version of the solution (without CAS)
and getting acquainted only with the second version (with CAS) is not enough,

b) it should first of all get acquainted with the second version of the solution (with CAS)
and getting acquainted only with the first version (without CAS) is not enough,

c) each of the presented versions of the solution is equally good and you only need to
get acquainted with one of them,

d) it should get acquainted with both versions of the solution and getting acquainted
only with one of them is not enough,

e) I cannot judge which version of the solution is good enough, I have no opinion on
this.
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We received the following result: 32% of the students chose sub-item a), 52% sub-item
b) , 0% sub-item c), 16% sub-item d) and 0% sub-item e).

Analysing the obtained percentages of answers in the first group of students, it is worth
emphasising that in both questions (1 and 2), none of the students chose the answer a).
All students found that the presented CAS example was in some way helpful in under-
standing the problem of convex programming as well as it broaden their knowledge about
computational techniques to some extent. Most of the students (53%) found that the pre-
sentation with the use of CAS was significantly helpful in understanding the problem
of convex programming. 39% of the students of the first group found that the presenta-
tion significantly broadened their knowledge of computational techniques. In the second
group, students compared two approaches to solving the convex programming problem:
without CAS and with CAS. Analysing the percentage of responses in this group of stu-
dents, we can see that the majority of students (52%) decided that it should first of all get
acquainted with the second version of the solution (with CAS) and getting acquainted
only with the first version (without CAS) is not enough. It also seems important that
none of the students of this group considered both versions to be equally good and it is
enough to get acquainted with one of them (0% for answer c)). Given that this was the
first contact of students of both groups with CAS methodology, the results of the exper-
iment would suggest that supporting the teaching of higher mathematics through CAS
programs with the use of symbolic computing may have significant educational value.

4 Example 2: Calculating complex integrals with Mathematica

In this example we present some our experiences in teaching elements of complex anal-
ysis students of Environmental Engineering Faculty of Warsaw University of Life Sci-
ence. Complex analysis in this faculty was one of the parts of higher mathematics course.
In the framework of this course complex potential fluid flow model in two dimensions
was presented. To understand this model and to be able to solve connected with it tasks,
the ability to calculate complex integrals along a curve is required, so in this course
we spent some time practicing computing complex integrals ([7,5]). Let us solve the
following complex integral problem using Mathematica.

Is the following equation true? Justify the answer.∫
K1

z̄Rezdz =
∫

K2

z̄Rezdz,

where K1 is a directed segments from point A to point B and K2 is a directed broken line
ABC presented in Figure 4.
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Re z

Im z

K1
K1

K 2

1A = −1

C = i

B = 0
Fig. 4: Directet segments K1 and K2

Let’s note that the integrands in both integrals are the same. If the function f (z) =
z̄Rez is holomorphic in simply connected region containing K1 and K2, then equation
is true. Let’s see if Cauchy-Riemann conditions are satisfied for function f . We have:

f (z) = f (x+ iy) = (x− iy)x = x2− ixy = u(x,y)+ iv(x,y),

where u(x,y) = x2 and v(x,y) =−xy are real and imaginary parts of function f re-
spectively. Determining partial derivatives of functions u(x,y) and v(x,y) we get:
∂u
∂x

= 2x,
∂u
∂y

= 0,
∂v
∂x

= −y,
∂u
∂y

= −x. Both Cauchy-Riemann conditions:
∂u
∂x

=
∂v
∂y

,

∂u
∂y

=−∂v
∂x

are satisfied only in point B. So, function f is not holomorphic in any sim-
ple connected region containing K1 and K2. Let us calculate both integrals. Let’s use the
following parametrizations of segments AB, AC and BC.
For AC: z1(t) = t + i(t +1), t ∈ [−1,0].
For AB: z2(t) = t, t ∈ [−1,0].
For BC: z3(t) = it, t ∈ [0,1].

So, we get:∫
K1

z̄Rezdz =
∫

K1

z̄1 Rez1 dz1 =
∫ 0

−1
[t − i(t + 1)]t(1 + i)dt = (1 + i)

∫ 0

−1
[t2 −

i(t2 + t)]dt = (1+ i)
[1− i

3
t3− i

2
t2
]0

−1
=

1
6
+

1
2

i.

∫
K2

z̄Rezdz =
∫

AB
z̄Rezdz +

∫
BC

z̄Rezdz =
∫

AB
z̄2 Rez2 dz2 +

∫
BC

z̄3 Rez3 dz3 =∫ 0

−1
t2 dt +

∫ 1

0
0dt =

1
3

.

Finally:
∫

K1

z̄Rezdz =
1
6
+

1
2

i 6= 1
3
=
∫

K2

z̄Rezdz. Equation is not true.
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Listing 4.1: Calculation of the integral
∫

K1
f (z)dz in Mathematica using parametrisation:

In [1] := f [z−] = Rez Conjugate[z];
In [2] := z1[t−] = t + I(t +1);
In [3] := f 1t = f [z1[t]]z1′[t]//ComplexExpand
Out[3] = (1− I)t +2t2

In [4] := Integrate[ f 1t,{t,−1,0}]

Out[4] =
1
6
+

I
2

Listing 4.2: Calculation of the integral
∫

K2
f (z)dz in Mathematica using parametrisation:

In [5] := z2[t−] = t;
In [6] := f 2t = f [z2[t]]z2′[t]//ComplexExpand
Out[6] = t2

In [7] := i1 = Integrate[ f 2t,{t,−1,0}]

Out[7] =
1
3

In [8] := z3[t−] = It;
In [9] := f 3t = f [z3[t]]z3′[t]//ComplexExpand
Out[9] = 0
In [10] := i2 = Integrate[ f 3t,{t,0,1}]
Out[10]= 0
In [11] := i1+ i2

Out[11]=
1
3

Listing 4.3: Calculation of the indefinite complex integral of f (z) in Mathematica:

In [12] := Integrate[ f [z], z, Assumptions−> Element[z,Complexes]]
Out[12] = Integrate[Rez Conjugate[z], z, Assumptions−> Element[z,Complexes]]

Listing 4.4: Calculation of the complex integrals
∫

K1
f (z)dz,

∫
K2

f (z)dz in Mathematica:

In [13] := Integrate[ f [z],{z,−1, I}]

Out[13] =
1
6
+

I
2

In [14] := Integrate[ f [z],{z,−1,0, I}]

Out[14] =
1
3

Note that the Mathematica program did not compute the indefinite complex integral of
the function f (z). By examining the holomorphism of the function f (z), we showed that
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the result of the integration can depend on the curve along which we integrate, so it was
necessary to calculate the integrals on both sides of the equality. Both of the integrals we
calculated using Mathematica in two ways: parameterizing K1 and K2 and also directly
- using the Integrate procedure for two points: −1 and I or for three points: −1, 0 and I.

5 Summary and conclusions

This paper analyses the problem of supporting the teaching of higher mathematics with
the help of symbolic computation using CAS. The article presents two original exam-
ples of supporting teaching advanced problems of mathematical analysis with the use
of symbolic computation in CAS. It also includes a didactic experiment with the partic-
ipation of the Informatics and Econometric Faculty students in their first contact with
CAS. We have not encountered a similar approach to the analysis of this issue - based
on didactic experiments, in the available literature.
Supporting the teaching of higher mathematics with the help of symbolic calculations
using CAS programs is an alternative approach to the traditional method of calculations
by hand for solving mathematical tasks and presenting calculations to students. The Ex-
ample 1 presents a convex optimization problem solved step by step using Mathematica
procedures. This example was presented to two groups of students as part of a didactic
experiment carried out in Mathematical Programming class. In the first group, most of
the students (53%) rated the presented symbolic calculations in Mathematica as help-
ful in understanding the example; 3% of students found the presentation very helpful
and 44% a little helpful in understanding the example. All the students of the first group
stated the presentation to some extent broadened their knowledge of computational com-
puting techniques. In the second group, more than half of the students (52%) decided
that it should first of all get acquainted with the version of the Example 1 using CAS
and getting acquainted only with the version without CAS is not enough. The obtained
percentage results of the student questionnaires seem to suggest that the use of symbolic
calculations in CAS to solve the Example 1 was significantly helpful in understanding
this example. The advantage of using the integrated CAS program environment for a
symbolic solution of the task is the possibility of graphical illustration of the individual
steps of symbolic calculations using graphical procedures of CAS programs. Neverthe-
less, independent use of the symbolic computational procedures of CAS programs by
students to solve more advanced tasks in the field of higher mathematics requires not
only a good knowledge of these programs but also a deep understanding of mathemati-
cal issues in the field of a given subject. The Example 2 shows that the ”automatic” use of
symbolic computational procedures in Mathematica does not make sure that this usage
is fully correct and that the result obtained is correct. For example, without checking the
holomorphicity in Example 2, we cannot know whether computing the complex integral
from point to point in Mathematica, using the procedure Integrate depends or not on the
curve along which we are integrating. The support of traditional methods of teaching
mathematics with CAS programs is rather unobjectionable and is quite widely regarded
as a useful didactic tool for teaching mathematics in various fields. Nevertheless, re-
placing traditional methods of teaching higher mathematics with CAS-based teaching
is debatable, as shown by the discussion between Steven Krantz and Jerry Uhl [8,4].
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However, it seems that such controversy will not arise when students are taught both ap-
proaches independently with a collaborative orientation - supporting one approach over
the other.
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