
Snowflake Generation

Valerie Maxville1

Curtin University, Perth, WA, Australia
v.maxville@curtin.edu.au

http://www.curtin.edu.au/

Abstract. For over fifty years we have worked to improve the teaching
of computer science and coding. Teaching computational science extends
on these challenges as students may be less inclined towards coding given
they have chosen a different discipline which may have only recently be-
come computational. Introductory coding education could be considered
a checklist of skills, however that does not prepare students for tack-
ling innovative projects. To apply coding to a domain, students need to
take their skills and venture into the unknown, persevering through var-
ious levels of errors and misunderstanding. In this paper we reflect on
programming assignments in Curtin Computing’s Fundamentals of Pro-
gramming unit. In the recent Summer School, students were challenged
to simulate the generation and movement of snowflakes, experiencing
frustration and elation as they achieved varying levels of success in the
assignment. Although these assignments are resource-intensive in design,
student effort and assessment, we see them as the most effective way to
prepare students for future computational science projects.

Keywords: Education · Computational Science · Programming · STEM.

1 Introduction

There has been a movement in recent years pushing for everyone to learn how to
code. A recent post by the Forbes Technology Council [1] cited twelve of fifteen
members supporting coding for everyone. It’s a great idea, however, teaching
coding isn’t always easy. Huggard [2] writes of negative attitudes and “program-
ming trauma” as barriers to learning. Initiatives such as CoderDojo seek to raise
enthusiasm through coding clubs [3],[4], aiming to take students through the lev-
els of Digital Proficiency (Figure 1). These clubs are aimed at school children
to create and/or extend an interest in coding, aiming prepare students for fu-
ture employment opportunities. There is a question on the long-term impact of
programming and STEM interventions, and further study is required to gauge
what duration and regularity is required for students to maintain interest [5].

In the past, university level coding was primarily confined to Computer
Science and Information Technology courses. These introductory programming
classes have a long history of low pass-rates along with the challenge of assessing
programming “ability” [6]. At Curtin University, we are seeing rapid growth in
the number of students taking programming courses, whether through choosing

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

http://www.curtin.edu.au/
https://dx.doi.org/10.1007/978-3-031-08760-8_57

2 V. Maxville

Fig. 1: Digital Proficiency Levels (adapted from ECOL Foundation, 2011) [4]

computing degrees; finding their courses now include programming; or taking the
units as electives. Engineering students need at least one full unit of program-
ming for their degree to be accredited, and science students are also required
to take programming in their first year. So, how do we adapt our courses to be
suitable for a wider range of backgrounds, and even more diverse fields of appli-
cation? There have been initiatives in the computational science area, including
[7] and [8], which highlight key skills and concepts required for science students
and researchers.

This increase in students does not occur in a vacuum, and we have additional
pressures to accommodate. Directives to reduce expenses can have a detrimen-
tal impact on staff : student ratios at exactly the time that we find ourselves
struggling to scale teaching. In addition, a mandate to reduce the number of
assessments forces changes that are not based on improving outcomes or learn-
ing, and may indeed have the opposite effect. The media will have us believe
that the students are part of a “snowflake generation”, unable to cope with the
stresses of life - which would include study. However, that stigmatises the chal-
lenges many are having with mental health in an unpredictable world [9]. This
is compounded by the challenges of a worldwide pandemic, affecting the health,
families and livelihoods of students. And those teaching through these time, re-
quiring agility to move quickly between teaching modes and the loss of the 1-1,
face to face interaction that often makes all the difference.

In this paper, we discuss approaching these challenges through a snowflake-
related assessment, part of an introductory programming unit taken by science
and engineering students. As the students persevered through the assignment
and the unit, each of their journeys was unique, forming a delicate network of
connections of ideas: snowflakes, in a good way.

“Snowflakes fascinate me. . . Millions of them falling gently to the ground. . .
And they say that no two of them are alike! Each one completely different

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

Snowflake Generation 3

from all the others. . . The last of the rugged individualists!” – Charles
M. Schulz 1

2 Fundamentals of Programming

The unit, Fundamentals of Programming, was developed in 2017 for new courses
in Predictive Analytics and Data Science at Curtin University. The predicted
number of students in its first run was 20. By the time semester started there
were 120 students enrolled. Since becoming part of the first year core for both
science and engineering course, the unit is now attracting over 700 students at
the main campus, and is delivered in Malaysia, Mauritius, Dubai and Sri Lanka.

As a new course, that author was given Unit Learning Objectives as a guide
to what was required in the unit. The language was to be Python were clearly
looking for a “vanilla” introductory programming unit. After eight years as the
Education Program Leader at the Pawsey Supercomputing Centre, the author
had observed the skills and tools used by a range of computational scientists, and
the key issue in data science raised by leaders in eResearch and digital humani-
ties. The science students would need to learn about scripting and automation;
notebooks and reproducibility; software carpentry; and would need to work in a
Linux environment.

In terms of assessment, a typical 50% exam, 20% assignment, 15% mid-
semester test and 15% practical test was in place. Students needed to submit a
reasonable attempt for the assignment, and receive 40% on the exam to pass the
unit. From the start, the “practical test” was reworked to be assessed as a series
of 5 practical tests worth 3% each. The tests were to be competency-based, with
students allowed to resubmit until they could demonstrate the required skills.
Student response to this approach was overwhelmingly positive. The assignment
required the demonstration of the work, aiding Academic Integrity.

We were then given a directive from the university that no unit could have
more than three assessments. An initial exemption was approved, but eventu-
ally the mid-semester test was dropped and the assignment and practical test
weightings increased to 30% and 20% respectively. With the pandemic, the exam
could no longer be held in a large, controlled examination venue. In response,
the exam was replaced with a Final Assessment: 24-hour open book, practical
and delivered in Jupyter Notebook. In the current offering of the unit, the as-
signment weighting has been increased and the Final Assessment decreased to
both be 40% to better reflect the effort required. This is in response to students
questioning the weighting with respect to the time required.

The unit is both easy and hard. It is hard in that you cannot pass without
doing the work. It is easy, in that it is very scaffolded, and if you do the work,
you will pass. With Python, plotting is trivially easy, and is used from week
three to provide a visual representation of coding outcomes - a huge advantage

1 Snowflake quotes sourced from: https://kidadl.com/articles/best-snowflake
-quotes-that-are-truly-unique and https://routinelynomadic.com/snowfla

ke-quotes-sayings-captions/

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://kidadl.com/articles/best-snowflake-quotes-that-are-truly-unique
https://kidadl.com/articles/best-snowflake-quotes-that-are-truly-unique
https://routinelynomadic.com/snowflake-quotes-sayings-captions/
https://routinelynomadic.com/snowflake-quotes-sayings-captions/
https://dx.doi.org/10.1007/978-3-031-08760-8_57

4 V. Maxville

compared to Java and other languages where graphics sits beyond a barricade of
pre-requisite knowledge. We have quite a few experienced coders taking the unit,
but even more of the students have no coding experience. Given this range of
backgrounds, we work hard to keep the unit challenging so that we can develop
and extend all of the students.

3 The Assignment

Each semester we have an assignment scenario where students are asked to
develop a simulation for a “real world” problem. Previous topics have included
the spread of disease; parking cars; brine shrimp life cycles; and the game of
cats. The assignment is assessed on three major views of the student’s work: 30%
demonstration of code, 30% implementation of code, and 40% for the reflective
report.

Challenge assignments are not new in programming units - they have been
a staple from the earliest courses. In [10] the patterns of student performance
in coding challenges is explored. These are smaller task than those undertaken
in this unit - where we also challenge the student in terms of planning, time
management and persistence. Just as the assignment takes around four weeks
for the student, they take time to assess. We find each assignment takes 20-
30 minutes to mark. With a large class, that may mean 300 hours of marking.
Some automation of assessment is possible, which tends to lead to a very defined
project where student solutions can be put through a test suite. We believe that
there is much to gain from a “loose” specification, allowing for creativity and
choices, which are then justified in the submitted report.

3.1 Generating Snowflakes

For the 2022 Summer School, we asked students to simulate the growth of a
snowflake (such as in Figure 2); and then generate multiple snowflakes and sim-
ulate their movement in space. The inspiration was taken from a video of a scien-
tist who had discovered the secret to creating custom snow flakes [11]. With some
additional source material provided [12], students were ready to start thinking
about the approach to the problem.

“No two snowflakes are alike.” – Wilson Bentley

Table 1 gives the outline of the problem given to the students. It is intention-
ally open to interpretation, allowing students to take their work in an individual
direction. Within the simulation, there are five features that are expected to
be implemented and expanded on (Table 2): object behaviour, movement, ter-
rain and boundaries, interaction and visualisation/results. Bonus marks can be
gained for utilising a game engine to implement the problem, and for other ex-
ceptional approaches e.g. complex interactions, entertaining visualisations, or
complex terrain rendering.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

Snowflake Generation 5

Fig. 2: Snowflake growth [13]

Table 1: Assignment: Problem Definition

The Problem

We will be simulating the generation of snowflakes. Each snowflake will have data as
to its shape, then be drawn into a sky/world where it will progress down in a simulated
drifting movement.
You will be given some sample code, showing a range of approaches to similar prob-
lems. For the assignment, you will develop code to model the snowflakes using objects,
and to add features to the simulation (e.g. more functionality, statistics, graphics).
Your task is to extend the code and then showcase your simulation, varying the input
parameters, to show how they impact the overall simulation.

Much of the work for the assignment is to consider the different facets of
the problem, and where they might take them. Sample code was given for the
sub-problem of taking a quarter of a snowflake and duplicating and flipping it
to make the whole snowflake.

At this point in the semester, we have just covered object-orientation (OO),
which is a challenging concept for most students. In practicals and tests, the
students have seen a range of array-based simulations. Many choose to ignore
OO in the assignment, and stay in the comfort zone of arrays. Very high marks
are still possible.

The reminder: ’Think before you code!’ is included in the assignment specifi-
cation. Invariably, students reflect on their assignments and their surprise at the
amount of thinking that was required, and how often a challenging idea took a
small amount of code (and vice-versa). They also get to see large-scale repetition
and the need for functions.

3.2 Scaffolding

Each semester there is an air of bewilderment about where to start with the
assignment. To help with the initial steps, we provide some starter code (Table
3). This has typically been a simplistic model of a simulation, with x,y positions
or population counts held in arrays. These approaches can be extended for those
who find coding difficult, while stronger students will be able to convert to
objects to represent each entity. High marks are possible with either approach.
For the snowflake assignment, students were given code to take a quarter of a
snowflake and flip it three ways to form a symmetrical snowflake twice as high

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

6 V. Maxville

Table 2: Assignment: Required Extensions

The required extensions are:

1. Object Behaviour: Extend to have the snowflakes represented as objects. Each
snowflake will have a position (in the overview plot) and its data/shape. Prompts:
What makes the snowflake unique in its growth? How will you capture/simulate
those factors?

2. Movement: Snowflakes should have a movement based on gravity and (simu-
lated) wind. Prompts: Is the “wind” constant or does it vary? Does the “wind”
affect all snowflakes uniformly?

3. Terrain and Boundaries: You could have a 2d terrain read from a file, including
some representation of the height of the terrain. There should be boundaries
to stop the snowflakes going beyond the grid. Prompts: How do you stop the
snowflakes moving to invalid spaces? What happens when they hit a boundary?

4. Interaction: Your code should recognise when snowflakes meet/overlap and re-
spond accordingly. Decide what this does to their movement and to the visuali-
sation. Prompts: Do the snowflakes affect each other’s path? [How] will overlaps
affect the visualisation?

5. Visualisation/Results: Enhance the display for the simulation to show multiple
snowflakes moving in a world/sky. You should display a log of events and/or
statistics for the simulation and also be able to save the simulation state as a plot
image or a csv file. Prompts: How will you differentiate the snowflakes? What
useful information could you display?

6. BONUS: Utilise a game engine or plotting package to allow interaction with the
movement and generation of the snowflakes. Prompts: What interaction could you
have? Discuss this in future work if you don’t attempt it. Note: Your program
should allow command line arguments to control the parameters of the experi-
ment/simulation.

and twice as wide. This was also used within one of the Practical Tests to ensure
students were familiar with the code as preparation for the assignment.

In previous semesters, only specific starter code was given. Now we also make
a collection of starter code from earlier semesters available. This might seem
to be giving too much help, however there is learning in reading other people’s
code and evaluating its applicability. Students frequently talk about the “gremlin
approach” or the “shrimp approach” when they have taken inspiration from the
sample code.

This semester we gave more of a walkthrough of the approach to developing
the sample code. The code wasn’t actually given - it appeared in a screenshot in
an announcement. Students could then follow the steps towards the final version
of the supplied. We are moving towards providing coding case studies as we feel
providing an exemplar of the process of coding is more valuable than just giving
access to code that is beyond their level.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

Snowflake Generation 7

Table 3: Help given to students as a starting point

The assignment is now available on the Assessments page. You will have until Friday
18th March to complete it (just over 4 weeks).

There is starter code from previous assignments on the page with the assignment
specification. For this assignment, I’m including an approach and some starter code
for a snowflake that may be useful:

Making Snowflakes

As it’s a very visual problem, you should start with making sure you can plot what
you generate. The versions I went through to get to this are:

1. Generate and plot a 2d array of random integers. Have a variable “size” to make
it easy to update the array size.

2. Make an array of zeros 2x the #rows and 2x # cols, then slot the array from (1)
into the top left of the array

3. Now slot duplicates of the quarter into the other three spaces: top right, bottom
left, bottom right. (I multiplied the values by 2,3,4 to make it easier to check it
was correct)

4. Modify the slotting code in (3) to flip rows/cols when copying to give symmetry
5. Modify (4) to put the building of the full snowflake into a function - it will be

easier to use and make the code more readable. The function should stand alone
- so don’t reference variables that are outside the function (I changed their names
to avoid confusion)

I’ve put some screenshots in below to show the steps. Hopefully this will give something
of a starting point for the assignment, noting that snowflake symmetry is a little
different to this - but you only need to generate a quarter, then hand off the duplication
to the function.

You are welcome to take a different approach! Four or eight pointed snowflakes are
OK (and easier), but six is more realistic.

3.3 Reflection

The journey through the assignment, and the coding experience, is different for
each student. 40% of the marks for the assignment are allocated to the report,
to allow reflection and showcasing of their work - giving maximum chance for
letting the marker know what they did and why. A perfect program would only
achieve 60% in the unit without the report. The report structure is given in
Table4.

In coding assignments, we have noted some patterns in the students’ perfor-
mance, which can be related to the Digital Proficiency Levels in Figure 1:

1. I don’t want to talk about it - code doesn’t go much beyond the sample
code combined with snippets from lectures and practicals. Usually accom-
panied by an apology (Proficiency: Awareness).

2. I think I’m getting it! - Has a go at each of the required extensions, may
still struggle with object-orientation, so will often just have the x,y position

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

8 V. Maxville

(a) Version 1 (b) Version 2 (c) Version 3

Fig. 3: Example output of first three versions of snowflake code

in the class and still be doing most of the work with arrays (Proficiency:
Literacy).

3. Hits the marks - works to the rubric to have a solid attempt at all require-
ments. Could get full marks... given more time (Proficiency: Competence).

4. Exceeds expectations - brings functionality, complexity and artistry that
surprises and excites the markers (Proficiency: Expertise).

In attempting the assignment, students not only need to have some coding
skill, they then need to apply that to a simulation. This simulation came in two
parts: generating the snowflake(s) and moving the snowflakes through the scene
(plot window).

Students in the Awareness level would tend to address only the second
part, taking the advice that many of the extensions could be attempted with-
out a fancy snowflake generator. These students generated matplotlib.pyplot
scatterplot() with circles to represent the snowflakes. Working from the
“gremlins” code-base, the snowflakes were generated at random points at the
top of the scene, then worked with one of: a speed in the x and y directions; a
random movement in the x and y directions or a random choice from a list of
possible movements in the x and y directions.

With a bit more understanding (Literacy) we began to see the basic simula-
tions be based on simple objects with positions. Plots were still scatterplot(
) circles moving down the scene, but now there were colormaps and background
colours creating a more “snow-like” scene. One other extension would be at-
tempted, usually wind or terrain. With the wind, the snowflakes would have a
breeze come through, either uniformly or randomly affecting the snowflakes. The
terrain would be represented as blocks, with tests for each snowflake to see if it
hit the ground (and disappeared). These students were excited about their work
as they had achieved more than they expected!

Students who had gained enough knowledge for Competence attempted all
extensions and spoke with excitement of the additional work they could have
done. Their snowflakes were pixelated images, often based on the supplied code.
This required a shift from scatterplots to displaying a compiled image with
imshow(), with the 2-D array representation of the snowflake being held in an
object, along with its position. These simulations often tested for the terrain

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

Snowflake Generation 9

Fig. 4: Output of versions (4 and 5) is below, along with the related code

and would create a layer of snow when the snowflake landed. Alternatively,
they identified overlapping snowflakes, with print statements to report these
“interactions”.

The assignments where the students had gained some Expertise were de-
lightful. They had taken the time to not only convert to objects, but also to
utilise a game engine (which was not covered in the unit). They had a vari-
ety of snowflakes, including variation in size and colour. Wind was controlled
though interaction with the game, throwing gusts through the snowflake field.
Overlapping snowflakes would change colour or change direction.

Living in Western Australia, most of the class has never seen snow, so that
may have added another level of curiosity (and challenge) to the assignment.

3.4 Assessment

With many years experience in setting and assessing assignments for Computer
Science students, changing the common student attitude that a fully-functional
program is all-important has been a bit of a crusade. We want the students
to write with good style, to make considered decisions in their approach and

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

10 V. Maxville

Table 4: Report structure to guide student reflection

Simulation Project Report

You will need to describe how you approached the implementation of the simulation,
and explain to users how to run the program. You will then showcase the application(s)
you have developed, and use them to explore the simulation outputs. This exploration
would include changing parameters, simulation time and perhaps comparing outcomes
if you switch various features on/off.
Your Documentation will be around 6-10 pages and should include the following:

1. Overview of your program’s purpose and features.
2. User Guide on how to use your simulation (and parameter sweep code, if appli-

cable)
3. Traceability Matrix for each feature, give a short description, state where it is

implemented, and how you’ve tested it (if unfinished, say “not implemented”)
4. Showcase of your code output, including:

– Introduction: A discussion of your code, explaining how it works, any additional
features and how you implemented them. Explain the features you are showcasing,
modifications and parameters you are investigating
– Methodology: Describe how you have chosen to set up and compare the simula-
tions for the showcase. Include commands, input files, outputs – anything needed
to reproduce your results.
– Results: Present the results of at least three different simulations.

5. Conclusion and Future Work: Give conclusions and what further investiga-
tions and/or model extensions could follow.

to reflect on their creation and be able to critique their own work. The marks
awarded for the submissions are as follows:

– Code Features. (30 marks) Based on implementation and documentation.
– Demonstration. (30 marks) Students demonstrate their code and respond

to questions from the markers.
– Report. (40 marks) As described in Table 4.

The bonus of this is the students who are less strong on coding, are often quite
comfortable writing a report about their experience. This is also very important
for science and engineering students, who’s future programs will not be an end
in themselves - they will be the basis for decision-making and analysis. For those
situations, the ability to discuss their code, their decisions, assumptions and
limitations are vital.

3.5 Academic Integrity

The easy accessibility of information and answers has aided programmers in-
credibly. Unfortunately, that also increases the potential for students to find or
source answers which may range from how to use colormaps, through testing for

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

Snowflake Generation 11

the intersection of objects, to being able to pay someone to do their assignment
for them. The more students in the class, the more difficult identifying these
issues becomes.

“We’re like snowflakes. Each of us is unique, but it’s still pretty hard to
tell us apart.” - Tony Vigorito.

Our most time-consuming, but also most effective, mechanism for assessing
academic integrity is the assignment demonstrations. Unless a cheating student
has done some exceptional preparation, they will find it difficult to describe code
they haven’t written themselves. We also see very different style in the code from
students in our course, to code they may have accessed or procured.

“They say that there can never be two snowflakes that are exactly alike,
but has anyone checked lately?” - Terry Pratchett.

In a more formal approach, we also have an in-house tool, Tokendiff [14],
for comparing student assignments for similarity. This tool provides a report on
each pair of assignments to indicate the code that is too similar. It is able to
account for rearranged code, and for renamed variables, which is about as far as
a student goes if they “need” to copy.

By providing quite obscure problems, following a family of simulations and
scripting that is fairly unique, students have indicated there is nothing on the
Internet to help with their assignments. The challenge is to continue to come up
with new ideas!

4 Results

Students took an impressive range of paths with the same starting point for the
assignment. Typically we see strains of similar assignments, particularly at the
lower end of scores. That was not noticed in this smaller class group, where,
beyond the supplied scaffolding code, they went in different directions.

4.1 Variations on a Theme

In line with the proficiency categories, the images below provide a indication of
the output of simulations in the students’ assignment work.

4.2 Reflections and Reactions

“Every avalanche begins with the movement of a single snowflake, and
my hope is to move a snowflake.” - Thomas Frey.

Getting that first snowflake movement was cause for celebration. That was
soon followed by a drive to have more or different snowflakes, to adjust their
movement or change the colours to be more relatable. Students expressed relief

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

12 V. Maxville

(a) Awareness level (b) Literacy level

(c) Competence level (sample 1) (d) Competence level (sample 2)

Fig. 5: Example output of submitted assignments at competency levels 1-3

and pride in their coding outcomes, at all levels of proficiency. The subject for
the assignment was so approachable, it was possible to show family members
their work and share the excitement of the activity (not always possible with
university assignments).

As the students moved through the unit, and the assignment, the snowflake
took on a greater meaning. Where once it may have been an insult or slur against
a generation, they were being creative and taking it as a challenge. The analogy
extends further in an education environment, where we might see the students’
knowledge and skills growing from a small core. As they extend themselves to
new concepts, tentatively at first, then with more strength, their snowflake of
understanding grows. It spans from the simple concepts of variables and control
structures, then reinforces and extends on those with collections and functions.
And this is a viable snowflake, but it can go further: into object-orientation,
scripting and automation and beyond. Eventually they follow their unique path
of connections and concepts to make their snowflake - similar but different to
that of any other student. We, as educators, need to create the right conditions
for that growth to happen.

“Advice is like snow - the softer it falls, the longer it dwells upon, and
the deeper it sinks into the mind.” -Jeremiah Seed.

5 Conclusion

When teaching Fundamentals of Programming, we aim to impart far more than
how to put lines of code together. We realise many students find coding daunting

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

Snowflake Generation 13

Fig. 6: Output at Expertise level

and confronting: and programming languages are not gentle when they find an
error! So we work to provide a safe environment and find interesting, relevant
and often quirky scenarios to help students overcome their fears and go boldly
into the code. We also aim to spark their imaginations to see the potential of
simulations, analysis, visualisation and automation.

The assignments are a necessary leap into the unknown, with some scaffolding
provided. Students are free to explore their own line of implementation - there
is no correct or model solution. For many students, this in itself is unsettling,
however we seem to win most of them over by the end of semester. Regardless
of the proficiency of the student, they find the assignment challenging, and will
usually present something they are proud of, or be able to reflect on what they
would have liked to do - which is clearer once they done things the “wrong” way.

The students in the course, reputably part of a “snowflake generation”, are
initially hesitant. They may be expert users of technology, but coding strips
that away to the essence of problems solving without wizards and templates. To
move beyond the unforgiving nature of the interpreter, through the bewildering
pedantic-ness of code and then confidently put forward a solution to a not-yet-
resolved challenge, takes grit and perseverance. Many would back away from this
uncomfortable space, but these students push on. They hopefully have become
more confident when encountering the unknown, and will take this strength on
with them in their future study and careers.

6 Acknowledgements

The author is grateful for the efforts of all students who have undertaken Funda-
mentals of Programming at Curtin. In particular, the Summer School students

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://dx.doi.org/10.1007/978-3-031-08760-8_57

14 V. Maxville

of 2022 were brave enough to try the new format for the unit, and to produce
the astonishing work discussed in this paper.

References

1. Forbes Technology Council. Should Everyone Learn To Code? 15 Tech Pros Weigh
In On Why Or Why Not. ForbesMay 20, 2020. https://www.forbes.com/sites/f
orbestechcouncil/2020/03/20/should-everyone-learn-to-code-15-tech-pros

-weigh-in-on-why-or-why-not/?sh=492945a7693e Last accessed 10 Feb 2022
2. Huggard, M. (2004). Programming Trauma: Can it be Avoided?.
3. CoderDojo. https://coderdojo.com/ Last accessed 10 Feb 2022
4. Sheridan I., Goggin D. and L. Sullivan. (2016). Exploration of Learning Gained

Through CoderDojo Coding Activities. 10.21125/inted.2016.0545.
5. Fletcher A., Mason R., and G. Cooper. 2021. Helping students get IT: Investigating

the longitudinal impacts of IT school outreach in Australia. In Australasian Com-
puting Education Conference (ACE ’21). Association for Computing Machinery,
New York, NY, USA, 115–124. DOI:https://doi.org/10.1145/3441636.3442312

6. Pirie, I. The measurement of programming ability. University of Glasgow (United
Kingdom). ProQuest Dissertations Publishing, 1975. 10778059.

7. Wilson G. Software Carpentry: lessons learned [version 2; peer review: 3 approved].
F1000Research 2016, 3:62 (https://doi.org/10.12688/f1000research.3-62.v2)

8. SHODOR: A National Resource for Computational Science Education. http://ww
w.shodor.org/. Last accessed 4 Feb 2020

9. Haslam-Ormerod S. ‘Snowflake millennial’ label is inaccurate and reverses progress
to destigmatise mental health. The COnversation. https://theconversation.co
m/snowflake-millennial-label-is-inaccurate-and-reverses-progress-to-

destigmatise-mental-health-109667 accessed 20/2/2022.
10. Kadar, R., Wahab, N. A., Othman, J., Shamsuddin, M., Mahlan, S. B. (2021). A

Study of Difficulties in Teaching and Learning Programming: A Systematic Litera-
ture Review. International Journal of Academic Research in Progressive Education
and Development, 10(3), 591–605.

11. Veritasium: The Snowflake Mystery - YouTube video. https://www.youtube.co
m/watch?v=ao2Jfm35XeE. Last accessed 10 Feb 2022

12. weather.gov Snowflake Science. https://www.weather.gov/apx/snowflakescien
ce. Last accessed 10 Feb 2022

13. Krzywinski M. and J. Lever. In Silico Flurries - Computing a world of snowflakes,
December 23, 2017 https://blogs.scientificamerican.com/sa-visual/in-sili

co-flurries/ Accessed 19 Feb 2022
14. Cooper D. (2022) TokenDiff – a source code comparison tool to support the detec-

tion of collusion and plagiarism in coding assignments. (https://bitbucket.org/
cooperdja/tokendiff. Last accessed 6 Nov 2022

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_57

https://www.forbes.com/sites/forbestechcouncil/2020/03/20/should-everyone-learn-to-code-15-tech-pros-weigh-in-on-why-or-why-not/?sh=492945a7693e
https://www.forbes.com/sites/forbestechcouncil/2020/03/20/should-everyone-learn-to-code-15-tech-pros-weigh-in-on-why-or-why-not/?sh=492945a7693e
https://www.forbes.com/sites/forbestechcouncil/2020/03/20/should-everyone-learn-to-code-15-tech-pros-weigh-in-on-why-or-why-not/?sh=492945a7693e
https://coderdojo.com/
http://www.shodor.org/
http://www.shodor.org/
https://theconversation.com/snowflake-millennial-label-is-inaccurate-and-reverses-progress-to-destigmatise-mental-health-109667
https://theconversation.com/snowflake-millennial-label-is-inaccurate-and-reverses-progress-to-destigmatise-mental-health-109667
https://theconversation.com/snowflake-millennial-label-is-inaccurate-and-reverses-progress-to-destigmatise-mental-health-109667
https://www.youtube.com/watch?v=ao2Jfm35XeE
https://www.youtube.com/watch?v=ao2Jfm35XeE
https://www.weather.gov/apx/snowflakescience
https://www.weather.gov/apx/snowflakescience
https://blogs.scientificamerican.com/sa-visual/in-silico-flurries/
https://blogs.scientificamerican.com/sa-visual/in-silico-flurries/
(https://bitbucket.org/cooperdja/tokendiff
(https://bitbucket.org/cooperdja/tokendiff
https://dx.doi.org/10.1007/978-3-031-08760-8_57

