
Cloud as a Platform for W-Machine Didactic
Computer Simulator

Piotr Paczuła1, Robert Tutajewicz1, Robert Brzeski1, Hafedh Zghidi1, Alina
Momot1, Ewa Płuciennik1, Adam Duszeńko1, Stanisław Kozielski1, and

Dariusz Mrozek1,2

1 Department of Applied Informatics, Silesian University of Technology
ul. Akademicka 16, 44-100 Gliwice, Poland

2 Institute of Biomedical Informatics, National Yang Ming Chiao Tung University,
Taipei City, Taiwan (R.O.C.)
dariusz.mrozek@polsl.pl

Abstract. Effective teaching of how computers work is essential for fu-
ture computer engineers and requires fairly simple computer simulators
used in regular students’ education. This article shows the evaluation of
alternative architectures (platform-based and serverless) for cloud com-
puting as a working platform for a simple didactic computer simulator
called W-Machine. The model of this didactic computer is presented at
the microarchitecture level, emphasizing the design of the control unit
of the computer. The W-Machine computer simulator allows students to
create both new instructions and whole assembly language programs.

Keywords: teaching, computational science, computer model, cloud com-
puting, serverless computing, platform as a service (PaaS)

1 Introduction

The complexity of computer organization and construction causes that they are
usually presented at the model level. The type of model depends on the purpose
of the presentation. A commonly used model is the instruction set level de-
scription, also known as the Instruction Set Architecture [12,14]. It defines the
architecture of the computer and includes a description of registers, a description
of memory, and a description of the execution of all instructions performed by
the computer. Such a model is sufficient for compiler developers, as well as for
assembly language programmers. A more detailed description of the computer
organization at the level of the so-called microarchitecture takes into account
the registers and functional units of the processor (the central processing unit of
the computer) and the main connections between them. The microarchitecture
model of the computer allows defining the instruction cycle of the processor, i.e.,
the successive steps of instruction execution. To present the development of com-
puter organization, the literature proposes didactic computer models exposing
selected details of the concepts being explained and simplifying other elements
of computer design. Many basic textbooks, e.g. [5,12,14], use such models. While

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


2 P. Paczuła et al.

the initial model is usually very simplified, subsequent versions of the model are
extended to enable the presentation of increasingly complex real-world proces-
sor problems. For example, models Mic-1 and Mic-2 are used in [14] to explain
microprogramming control of the processor, while Mic-3 and Mic-4 are used to
present the pipelined execution of the instruction cycle. The model using the
MIPS processor architecture, presented in the book [5] and its earlier editions, is
close to the actual processor organization. This model provides a simple and very
clear way to explain the concept of pipelined processor organization, including
the transition from non-pipelined to the pipelined organization. It also allows
illustrating the problems associated with the pipelined organization and how to
solve them. These advantages have determined that the MIPS model is used as
a teaching model in computer architecture lectures at many universities around
the world.

The presented W-Machine, created by S. Wegrzyn and next developed by S.
Kozielski as a hardware device, is a didactic model of a simple, fully-functional
computer described at the instruction set level and the microarchitecture level [16].
The specific feature of the microarchitecture model is that it distinguishes all
signals controlling the transmission of data and addresses during the execution
of the instruction cycle of this computer. This model shows in detail the design of
the control unit that generates the mentioned signals that control the buses and
functional units. The model includes two variants of the control unit structure:
hardwired and microprogrammed. The open structure of the W-Machine simula-
tor allows the users to independently define new machine instructions by creating
microprograms that perform the functions of these instructions. Simultaneous
visualization of active processor elements during the instruction execution and
the possibility to use priorly implemented instructions in the creation of own as-
sembly language program allows and simplifies the student’s understanding and
learning of the idea of computer operation in the commonly used von Neumann
architecture [4]. This brings to the curriculum structure elements that connect
the hardware and software. In this way, the course becomes more creative and
effective for both the teacher and the student by using the W-Machine simula-
tor, which can be a very good tool to aid in teaching and learning. However,
teaching the computer organization and operation on such a low level now faces
many challenges. First of all, the pandemic situation changed the conditions in
which we live [2], including teaching opportunities [11]. Remote work is not only
becoming more and more popular but is even often required [1]. Restrictions
in movement mean that the work is more often done from home. Additionally,
taking into account the internationalization of universities and frequent difficul-
ties in crossing borders by foreign students, the possibility of remote access to
educational tools becomes even obligatory. Cloud computing, due to the shared
resources, the range of remote access, and global availability of the platform
and services, can be one of the very good solutions to deploy and distribute
the educational software [3,7,15,17]. In this paper, we test two alternative ap-
proaches for disclosing the W-Machine simulator in the Cloud environment - the
Platform-based (i.e., PaaS) and serverless-based.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


Cloud as a Platform for W-Machine Didactic Computer Simulator 3

2 Background

The W-Machine was designed in the seventies at the Silesian University of Tech-
nology. The project was first implemented in the form of an electronic device.
This device was used for many years to teach students the basics of the design
and operation of computers. Currently, the W-Machine simulators are used for
this purpose. The W-Machine is a didactic computer designed according to the
von Neumann architecture. However, its basic version is devoid of IO devices
and consists of the following components: arithmetic-logic unit, main memory,
and control unit. These elements are connected by a data bus and an address
bus. Fig. 1 shows the architecture of the W-Machine. Words representing the
instructions and the data are usually sent on the data bus, and the instructions’
addresses and data addresses are sent on the address bus.

The main memory unit (RAM) includes two registers: a data register and
an address register. The address register contains the address of the memory
location for which read and write operations are performed. The data register
stores data that is written to and read from memory. Memory stores words that
describe the instructions being executed and the data used by those instructions.
The data is written as binary signed numbers in the two’s complement system.
The instruction description word is divided into two parts: the instruction code
field and the instruction argument field. The argument of the instruction is most
often the address in the memory. The arithmetic logic unit (ALU) performs
calculations on the data delivered from memory. The result of the calculations
is stored in a register called the accumulator.

The operation of the W-Machine is controlled by a control unit that generates
appropriate control signals based on the current state of the machine. Control
signals are binary signals that activate relevant operations performed in the pro-
cessor. Each control signal is responsible for performing one elementary action.
Table 1 shows the control signals and the actions they perform. The control unit
also includes two registers: an instruction register and a program counter. The
instruction register stores the description of the currently executed instruction.

Fig. 1: W-Machine architecture.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


4 P. Paczuła et al.

Table 1: Control signals in the W-Machine
Signal name Action

rd reads a memory location addressed by the address register
wr writes the content of the data register to the memory
ia the content of the address bus are written to the memory address register
od outputs the content of the data register to the data bus
id writes the content of the data bus to the data register

ialu the content of the data bus is fed to the ALU
add computes the sum of the accumulator content and the ALU input
sub subtracts the content of the ALU input from the accumulator

wracc rewrites the content of the ALU input to the ALU output
iacc writes the result of the operation in ALU to the accumulator
oacc outputs the content of the accumulator to the data bus
iins writes the content of the data bus to the instruction register
oa outputs the address (the content of the argument field) to the address bus
oit outputs the content of the program counter to the address bus
iit writes the content of the address bus to the program counter
it increments the content of the program counter

Table 2: Default W-Machine instruction list
Instruction name Action

ADD adds the memory word to accumulator
SUB subtracts the memory word from accumulator

LOAD loads the memory word to accumulator
STOR stores the content of the accumulator to memory
JMP jumps to the given address
BLZ (branch on less than zero) branches when a negative number in accumulator
BEZ (branch on equal to zero) branches when the accumulator is zero

Based on the content of this register, the control unit knows which instruction
is currently being executed. The program counter contains the memory address
where the currently executed instruction is located. However, due to the adopted
concept of instruction execution, the program counter stores the address of the
next instruction to be executed for most of the instruction execution time.

The execution of each instruction is divided into several successive cycles. The
end of each cycle is indicated by a clock signal. Students should try to execute
the instruction in as few cycles as possible. In each cycle, the corresponding
control signals are activated, which causes the execution of the related actions.
These actions constitute a single step of the instruction execution. Therefore,
designing the instruction covers determining which control signals are to be
active in each of the clock cycles. For example, the ADD instruction consists of
three consecutive cycles. The signals rd, od, iins and it are active in the first
(fetch and decode) cycle. The signals oa and ia are active in the second cycle.
And finally, in the third cycle, they are active rd, od, ialu, add, iacc, oit and ia.

Table 2 shows the default list of instructions. Since the control unit is im-
plemented as a microprogrammed one, we can modify existing instructions and
add new ones. Moreover, students can use the designed instructions to write
programs in a assembly language. With the W-Machine on the cloud, both func-
tionalities can be practiced online, bearing in mind that it requires an active

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


Cloud as a Platform for W-Machine Didactic Computer Simulator 5

subscription for hosting the simulator operable and covering the hosting costs of
the public cloud.

3 Related Works

Cloud computing is an architecture that works effectively in business. Although
education has different priorities than business, these two areas have a lot in
common. Just like in business, it is essential to reduce costs with high ease of
use and flexibility of access. Of course, cloud computing is not intended for all
applications. The research presented in [13] proves that in educational applica-
tions, high availability and quick adaptability to the changing demand for access
are sometimes more important than performance.

The main goal of computer model simulators is to provide students with the
opportunity to combine theory with practice. In [10], Prasad et al. analyzed over
a dozen simulators for teaching computer organization and architecture, taking
into account, i.a., the criteria, like scope, complexity, type of instruction set, pos-
sibility to write assembly code, user interface, support for distance learning and
free availability. In conclusion, the authors stated that two simulators, MARIE
and DEEDS3 had met defined criteria. MARIE (Machine Architecture that is
Really Intuitive and Easy) [9] is a simulator that has two versions: Java program
and JavaScript version, and its main advantages are intuitive interface and as-
sembly program execution visualization. DEEDS (Digital Electronics Education
and Design Suite) covers combinational and sequential circuits, finite state ma-
chine design, computer architecture, and Deeds-McE (a computer emulator).
The authors have found DEEDS to be less intuitive than MARIE, but its main
advantage is the support for the generation of chip/PCB layout. Other tools
analyzed in the article include Qucs (Quite Universal Circuit Simulator), Cir-
cuitLogix, ISE Design Suite – Xilinx, Quartus II, and HADES. In [6], Imai et al.
present VisuSim used for assembly programming exercises in e-learning coopera-
tive (built-in email communication) mode. Another worth mentioning simulator
is the gem5 simulator - a very powerful, universal, and popular tool [8]. Neverthe-
less, gem5 is too complicated to use for first-year students with little knowledge
of how computers work. The same problem applies to the Sim4edu website 4. On
the other hand, there exists a very simple online simulator5, but it only allows
for running assembly programs. In conclusion, none of the mentioned simulators
allow students for simple, control signals-based definition of new instructions
and utilization of the instructions in developed programs. Moreover, none of the
tools is available for the cloud environment, like the W-Machine presented here.

3 https://www.digitalelectronicsdeeds.com/deeds.html
4 https://sim4edu.com/
5 https://schweigi.github.io/assembler-simulator/

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


6 P. Paczuła et al.

4 W-Machine on the Cloud Environment

The previously used W-Machine simulator was redeveloped for the Azure cloud.
Cloud provides a hosting environment for scalable web applications, so it seems
to be a good alternative for local web servers in the case of many (e.g., thousands)
users. Moreover, the cloud environment lowers the entry barrier for hosting and
ensures the high and global availability of the deployed applications, like the
W-Machine. The tool has been divided into several individual cloud modules
(Fig. 2). The bottom App Service is responsible for delivering the W-Machine
application, which serves the website files using the HTTP protocol. It is the least
loaded element of the system, sending files only the first time the W-Machine
service is launched. Subsequent actions on the website are handled by servers
with domain logic. The architecture includes two alternative server solutions re-
sponsible for the operation of the W-Machine. The first one is deployed using the
Azure App Service (PaaS solution) with domain logic implementing the simula-
tor’s functionality. The second twin service runs on Azure Functions (serverless
solution) with the same functionality. Both service approaches were chosen for
their capability to scale an application easily (vertically and horizontally).

Both solutions use the same execution code supporting the logic of the W-
Machine. The separation allows changing the front-end that cooperates with
the simulator at any time of its operation. Additionally, each back-end service
has its own Application Insights service responsible for monitoring its work.
The Application Insights services are used to test the response time to requests
sent in load tests presented in Section 5. The non-relational Redis database is
responsible for storing user data, such as the state and settings of the W-Machine
for each created session. The database features high efficiency thanks to storing
data in a cache, which significantly speeds up the time of writing and reading
data at the expense of data persistence and the maximum amount of information
stored. The nature of the application does not require collecting a lot of data
in a permanent form. Such architecture allows for effective separation of the
website responsible for the user interface (which is unnecessary when testing the
solution in terms of performance) from the computing services (implementing
the teaching application logic), monitoring services, and databases.

The front-end of the W-Machine on the Cloud is shown in Fig. 3. The left
panel allows observing automatic or manual execution of the program or instruc-
tion prepared by students. The right panel is used for developing the program
(visible) or developing the instruction composed of control signals.

5 Experimental Evaluation of Alternative Architectures

For each alternative architecture of the execution environment, we carried out
different types of performance tests to check the profitability of each architecture
with possible scaling: 1) baseline, 2) load, 3) stress, 4) peak, and 5) soak testing.
Each test was performed with the same test procedure. In the first step, we
sent a request to get the state of the W-Machine, which simulated loading the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


Cloud as a Platform for W-Machine Didactic Computer Simulator 7

Fig. 2: Architectural alternatives of the W-Machine on the Cloud.

application for the first time. Then, we made a request to execute a simple
program that summed two arrays and saved the result to the third array. The
program used in all testing cases is the same as the one visible shown in Fig. 3.
Tests were executed by repeating the simple program simultaneously and many
times by multiple users. This was done by using K6 open source testing tool that
simulates many users and sends execution requests to the tested environment.
In our experiments, particular requests were sent with a 500 ms pause between
one another since users usually do not act continuously, and a slight time delay
accompanies each action they perform.

To test both investigated architectures (PaaS and serverless), the expected
maximum load limit was set to 1,000 simultaneous users of the W-Machine. The
successive load levels used in the tests were the percentage of the maximum load:

– baseline testing - 200 users (20% of the maximum load),
– load and soak testing - 700 users (70% of the maximum load),
– stress testing - ≤1,000 users most of the time, up to 1,500 users,
– peak testing - up to 1,500 users (150% of the maximum load).

The characteristics of performed tests are presented in Fig. 4. As can be
observed, the baseline and load tests had three phases taking 1 minute, 3 minutes,
and again 1 minute. In the first 1-minute phase, the number of users increased
to the top value, appropriate to the test type. In the second phase, the number
of users was constant, and in the third phase, it decreased again from the top
value to zero. The difference between the tests lies in the top value. The nature
of the soak test was similar except that it was much longer with 2-, 56-, and
2-minutes periods and 700 users. The stress test relied on the load constantly
increasing to a level exceeding the maximum level that the system could achieve
without generating a large number of errors. The expected place for a system
breakdown was a level greater than 1,000. The peak test had a long period of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


8 P. Paczuła et al.

Fig. 3: The W-Machine on the Cloud: left panel for observing or manual testing
of the program execution, right panel with a program or instruction editor.

the normal load of 200 users, followed by a sudden increase in the number of
users to a critical number of 1,500 concurrent users, sustained for a short period.
After that, traffic decreased drastically and went back to the previous level.

0 2 4

0

200

400

600

baseline

load

time (minutes)

#
vi

rt
ua

l
us

er
s

baseline and load testing

0 5 10

0

500

1,000

1,500

time (minutes)

#
vi

rt
ua

l
us

er
s

stress testing

0 2 4

0

500

1,000

1,500

time (minutes)

#
vi

rt
ua

l
us

er
s

peak testing

0 20 40 60

0

200

400

600

time (minutes)

#
vi

rt
ua

l
us

er
s

soak testing

Fig. 4: Characteristics of the performed types of tests.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


Cloud as a Platform for W-Machine Didactic Computer Simulator 9

5.1 Performance Metrics

Each of the performed tests resulted in a collection of metrics, which we then used
to analyze and compare performance against other system configurations. We
used the following performance metrics to compare the alternative configurations
and architectures of the W-Machine simulator:

– The number of requests per second (marked as requests/s) - the average
number of requests sent throughout the test period. High values mean better
application performance under heavy loads.

– The number of successfully completed requests - the sum of all requests
successfully completed during the entire test.

– Number of requests with error status - the sum of all requests with errors.
– Success rate (marked as OK(%)) - the percentage of successfully completed

requests to all requests.
– Response time metrics: well-known average (marked as Avg), minimum (Min),

maximum (Max), and median (Med), i.e., 50th percentile, as well as 90th
percentile (P (90)) and 95th percentile (P (95)) which reflects the behavior of
the system and its stability for sudden jumps in the application load (e.g., the
value P (90) = 1000ms means that 90% of all sent requests were completed
in less than 1000ms, with 10% of all requests exceeding this time).

5.2 Results

For the W-Machine running on App Services (PaaS), the experiments were con-
ducted separately on several pricing tiers with the varying number of instances
of virtual machines (VMs) - 1, 3, up to 10, if it was possible for the particular
tier. Such tests allowed us to select the best offer in terms of the target system
performance and the costs of keeping it working. We started with the B1 tier,
which provides the weakest virtual machines in terms of performance, and does
not allow automatic scaling of the number of instances. Additionally, it has a
maximum number of parallel applications of 3 at the same time. This tier is used
mainly for development and testing. Results of various types of tests are shown
in Table 3. As can be observed, the average response times (Avg) in various tests
usually reach several seconds even when scaling to 3 instances. This shows that
this tier does not guarantee appropriate performance.

The B3 pricing tier, compared to B1, offers 4 times more computing power,
which translates into much better results (Table 3). The median (Med) and
average response times for baseline testing are well below 100 ms. The obtained
results are almost 10 times better compared to the B1 pricing tier. Bandwidth
has also increased drastically (requests/s). Adding another 2 instances seems
to be necessary only for more heavy loads. For example, for the stress test we
can observe that the value for P(95) decreased two-fold to a satisfactory level
after scaling from 1 to 3 instances. The cost of one B3 instance is 30% higher
than that generated by three B1 instances, but the results obtained are many
times better. The instances in the S1 tier have comparable parameters to those

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


10 P. Paczuła et al.

Table 3: Performance tests for W-Machine working as an App Service for different
pricing tiers and variable instance count.

pricing
tier

testing
type

insta-
nces cost requ-

ests/s OK(%) Response time to request (ms)
Avg Min Max Med P(90) P(95)

B1

baseline 1 54.75 94.14 100 1210 43 5210 1110 2470 2790
3 164.25 193.82 100 324.33 40.83 3780 158.07 845.85 1150

load 1 54.75 90.43 99.85 5890 42.52 22850 6180 9060 10090
3 164.25 223.88 100 2030 41.23 21530 900.5 5970 7830

stress 1 54.75 84.2 98.53 8010 42.41 60000 6640 16650 20050
3 164.25 220.42 100 2740 40.65 29280 788.54 8970 11270

peak 1 54.75 88.92 100 5850 43 45170 2090 19260 26560
3 164.25 193.48 100 2440 41.09 45920 314.43 5290 17460

B3

baseline 1 219 271 100 86.82 40.44 839.8 71.1 152.92 192.61
3 657 289.79 100 50.78 40.51 442.5 45.39 73.49 76.37

load 1 219 447.44 100 754.29 40.96 3550 697.09 1430 1740
3 657 868.12 100 142 40.22 1930 75.54 340.37 496.8

stress 1 219 397.84 100 1240 41.04 6780 1060 2590 3280
3 657 773.42 100 389.27 40.45 6650 111 1030 1720

peak 1 219 340.84 100 925.12 40.7 5390 243.4 2710 3130
3 657 516.76 100 422.23 40 5840 69.7 1150 2300

S1

baseline
1 73 102 100 1060 42 6540 971 2030 2370
3 219 202 100 289 41 3800 132.75 736 1110
10 730 277 100 75.86 40.53 1470 51.28 116.22 159.85

load
1 73 105 100 4940 42 17060 5270 7640 8540
3 219 228 100 1980 40.8 24100 886 5960 9270
10 730 670.92 100 333.1 40.37 9580 128 744.91 1290

stress
1 73 93 98.66 7080 42 60000 6110 14580 16910
3 219 209 99.74 2910 41 38890 973.32 8910 11940
10 730 537.67 100 722.53 40 22210 132.4 1840 3860

peak
1 73 85 96.71 5940 43 60000 2110 13180 16700
3 219 206 100 2230 40.98 35770 346.6 5010 15970
10 730 444.12 100 608.86 39.74 12620 88.22 1540 4100

S3

baseline
1 292 258.16 100 115.84 40.46 2790 86.12 229.55 291.29
3 876 288.91 100 52.44 40.39 1540 46.21 76.29 80.52
10 2920 289.48 100 51.22 40.6 437.34 45.73 74.68 78.01

load
1 292 427 100 812 40 4120 797 1510 1710
3 876 810.14 100 188.09 40.22 2650 80.43 481.87 737.51
10 2920 1012.85 100 51.76 40.21 477.4 45.88 75.15 79.3

stress
1 292 377 100 1330 40 6370 1120 2850 3190
3 876 718.28 100 459.4 40.31 6600 113.57 1390 2180
10 2920 1229.77 100 56.7 40.27 1310 48.19 80.61 89.02

peak
1 292 333 100 967 40 5630 235 2830 3300
3 876 515.59 100 430.79 40.32 8200 71.2 1170 2210
10 2920 837.77 100 59.95 40.03 813.87 48.43 83.49 98.2

soak 3 876 970.88 100 214.31 39.16 3600 94.99 563.65 793.94

P3V3

baseline 1 957.76 291.5 100 46.92 40.17 1150 44.46 55.27 56.95
load 1 957.76 1007.66 100 53.63 39.85 1380 46.3 68.77 82.63
stress 1 957.76 1012.8 100 177.03 39.9 2470 94.92 439.7 556.21
peak 1 957.76 717.69 100 157.71 40.08 1980 87.23 376.39 472.05

offered in the B1 plan. However, in the S1 tier, we can scale the application up
to 10 instances, which translates into much greater available performance. In
fact, single instances in this plan are slightly better than those available in the
B1 plan. Increasing the number of instances to 10 brings noticeable performance
gain for more demanding tests - for the load and stress tests the average response
time decreased at least 10 times and the throughput increased at least 6 times.

The S3 tier offers performance identical to that available in the B3 plan. The
main difference lies in the maximum number of instances that can be allocated

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


Cloud as a Platform for W-Machine Didactic Computer Simulator 11

to serve the application. Given the large amount of resources offered in this tier,
the differences in the baseline test results for the varying instance numbers are
negligible. The first differences are visible when the number of users is increased
to 700 (S3, load testing). For 10 instances, the application works visibly below
its maximum capabilities and still has a computational reserve, which can be
seen in a slight increase in bandwidth (requests/s) compared to the configura-
tion using 3 instances. Median and average response times are much lower than
for the S1 tier and comparable to those obtained with the B3 tier for the same
number of instances. The performed stress and peak tests also showed a large
reserve of computing power available with the S3 tier and 10 instances. This can
be noticed by observing the P(95) value, which remains at a level lower than
100ms. For this pricing tier (S3), we also carried out the soak tests using 3 ap-
plication instances (S3, soak). After a 4-hour test, there were no errors in the
application (OK(%)=100), and its operation during this time was stable (the
number of requests per second was equal to 970.88 with the average response
time 214.31ms). The achieved throughput was similar to that obtained in the
load test for the same configuration (3 instances). The relatively low P(95) value
of less than 1 second also proves that the load is distributed fairly evenly over the
available application instances. Due to the high costs of the P3V3 pricing tier,
we only tested the application working on one active instance. This layer pro-
vides extensive computing resources (8 cores and 32GB memory per instance).
Comparing the results obtained for the P3V3-based deployment of W-Machine
with those obtained for the configuration with the use of the S3 plan, we can no-
tice how important the performance of a single machine is. The results obtained
for the load test are almost identical when comparing them with the S3-hosted
application with 10 instances, while the costs generated by both solutions are
entirely different. The P3V3 pricing tier is about 3 times cheaper here, offering
similar performance. Table 3 (P3V3) shows that the W-Machine simulator pro-
vides perfect performance results for all tests, keeping the median response time
below the 100ms limit.

The application responsible for the main logic of the W-Machine uses the
.NET 5 platform, which allows it to be implemented as an App Service using
three different environments: Windows and Linux servers and the Docker con-
tainerization tool. The monthly costs generated by each of them are $730, $693.5,
and $693.5 respectively for Windows, Linux, and Docker (with the S1 tier con-
figured for 10 application instances). To compare their actual performance, we
performed the same tests for each OS platform. When testing the four different
scenarios shown in Table 4, no significant differences in the results obtained were
observed. The differences are within the limits of the measurement error and are
not a sufficient basis for determining the superiority of a given OS platform,
taking into account only the differences in performance. However, costs may
vary significantly, especially for premium tiers, like P3V3 ($957.76 per month
for Windows, $490.56 per month for Linux).

The second of the tested architectures for the W-Machine relied on server-
less Azure Function service. This approach differs in operation from those using

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


12 P. Paczuła et al.

dedicated virtual machines. The first difference is the capability to scale active
instances to zero. This results in a cold start of the application, which occurs
when the website is inactive for a long time. Lack of network traffic deactivates
all active instances executing the W-Machine code, so the first requests after
resuming traffic take much longer. The second difference is the inability to set
a fixed number of active instances, as we can do in App Service (PaaS). Auto-
matic scaling of the application, which is an immanent feature of the approach,
works very quickly, as indicated by very low P(95) values for the performed
tests in Table 5 (we performed the same tests as for the various App Service
configurations).

We could observe that in baseline testing, after just the first 30 seconds, 4
instances of the application were created, which remained until the end of the
test. In load testing, 9 instances were allocated almost immediately that served
700 simulated users very efficiently. However, the maximum response time for
the test exceeded 10 seconds due to the aforementioned cold start. Requests sent
before creating the instances responding to the traffic adequately often resulted
in a long delay in execution. A similar effect could be seen for stress testing and
peak testing, where the increase in traffic is sudden and requires the creation of
new instances of the application. The load spikes were much more pronounced
here, and the first errors appeared due to the lack of computing power of the
available instances. The stress testing started with 4 instances at the level of 200
simulated users. As the workload increased, the number of instances increased
to 6 for 700 users, 10 instances for 1,000 users, and up to 14 instances for 1,500

Table 4: Performance tests for App Service on S1 tier for different environments.
testing
type environment requests/s OK(%) Response time to request (ms)

Avg Min Max Med P(90) P(95)

baseline
Windows 277 100 75.86 40.53 1470 51.28 116.22 159.85

Linux 277.18 100 76.2 49.22 2060 51.16 118.55 155.25
Docker 278.28 100 73.62 40.44 1630 50.28 114.77 156.01

load
Windows 670.92 100 333.1 40.37 9580 128 744.91 1290

Linux 642.57 100 369.93 40.31 1319 115.69 918.4 1560
Docker 631.29 100 385.66 40.49 10920 114.96 1000 1710

stress
Windows 537.67 100 722.53 40 22210 132.4 1840 3860

Linux 539.2 100 784.23 40.27 19980 102.47 1230 5410
Docker 563.4 100 727.91 40.54 18000 137.21 1730 3220

peak
Windows 444.12 100 608.86 39.74 12620 88.22 1540 4100

Linux 435.82 100 621.29 40.35 15500 89.49 1430 2850
Docker 452.92 100 568.02 40.47 12040 86.62 1650 3260

Table 5: Performance tests for W-Machine working on serverless Azure Function.
testing types requests/s OK(%) Response time to request (ms)

Avg Min Max Med P(90) P(95)
baseline 283.04 100 63.24 43.21 346 56.81 81.44 92.96

load 949.21 100 88.04 42.6 10150 69.68 140.71 186.73
stress 1063.51 99.99 144.06 42.97 56110 113.53 236.19 290.47
peak 665.99 99.95 185.24 43.38 19400 88.5 434.46 567.57

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


Cloud as a Platform for W-Machine Didactic Computer Simulator 13

users. The dynamic addition of resources allowed the application to maintain a
stable response time. The values of P(90) and P(95) did not exceed the limit of
300ms, which proves the very good responsiveness of the system. The biggest
challenge for the application was the peak testing, which subjected the service
to a very rapid increase in load. It took a full minute for the traffic to stabilize,
during which the number of active application instances increased from 4 to 14.

6 Results Summary and Concluding Remarks

Providing computer simulators that can be quickly deployed, globally available
in many regions worldwide, and fast responding to users’ requests is crucial for
globally implemented distance learning. In terms of functionality, our W-Machine
simulator complements the solutions mentioned in Section 3 by providing a low
entry barrier for observing and planning transfers of data and addresses, man-
aging particular steps of the instruction execution (on the control signals level),
and development and debugging of created instructions and programs imple-
mented in assembly language. When surveying the usability of the tool among
71 first-year students, we obtained 73% satisfaction in terms of usability, 71% in
terms of creativity and 51% in terms of the attractiveness of the tool. Moreover,
to our best knowledge, it is the first cloud-based computer simulator. Thus, it is
very flexible in the context of worldwide accessibility for a large group of users
at the same time. The results obtained during our experiments allow formu-
lating conclusions regarding the impact of individual parameters of the offered
approaches on the actual system efficiency.

When starting the research on alternative approaches to the application de-
ployment (App Services and Azure Functions), the primary assumption was to
find the best solution in terms of performance and generated costs. To qualify the
configuration as meeting the stable and quick operation criteria, we assumed the
maximum median and average response time limit not exceeding 200 ms. Among
all the tested versions, we can distinguish three candidate solutions. The first
is a 3-instance B3 pricing tier setup, which translates into a monthly cost of
$657.00. The price is for the Windows version; therefore, the final price may
be reduced to $153.30 when using the Linux version. Unfortunately, this tier
has limited scaling capabilities. Another configuration worth a closer look at is
the one based on the S3 tier, which is 33% more expensive than B3 but also
more scalable. The application running on the Azure Function service is also a
promising alternative. In some cases, the best request throughput and average
response times may also prove to be the best budgetary solution. For example,
in the case of applications with short but intense periods of high load, a much
better alternative is to choose the serverless service (Azure Function). However,
with the assumed constant load, the situation may also change in favor of App
Services with an appropriate pricing tier for the Application Service Plan.

Future works will cover further development of the W-Machine on the cloud
covering the implementation of other architectures of the simulator itself toward
the inclusion of the interrupt and I/O modules.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://dx.doi.org/10.1007/978-3-031-08760-8_56


14 P. Paczuła et al.

Acknowledgments

The research was supported by Statutory Research funds of the Department of
Applied Informatics, Silesian University of Technology, Gliwice, Poland (grant
no. 02/100/BK_22/0017).

References

1. Al-Mawee, W., Morgan-Kwayu, K., Gharaibeh, T.: Student’s perspective on dis-
tance learning during covid-19 pandemic: A case study of western michigan univer-
sity. International Journal of Educational Research Open ISSN 2666-3740 (2021)

2. Alashhab, Z.R., Anbar, M., Singh, M.M., Leau, Y.B., Al-Sai, Z.A., Alhayja’a,
S.A.: Impact of coronavirus pandemic crisis on technologies and cloud computing
applications. Journal of Electronic Science and Technology 19(1), 100059 (2021)

3. Encalada, W.L., Sequera, J.L.C.: Model to implement virtual computing labs via
cloud computing services. Symmetry 9(7), 117 (2017)

4. Goldstine, H.H.: The computer from Pascal to von Neumann. Princeton University
Press (2008)

5. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Sixth Edition, Elsevier (2019)

6. Imai, Y., Imai, M., Moritoh, Y.: Evaluation of visual computer simulator for com-
puter architecture education. In: IADIS International Conference e-Learning. pp.
17–24 (2013)

7. Jararweh, Y., Alshara, Z., Jarrah, M., Kharbutli, M., Alsaleh, M.N.: Teachcloud:
a cloud computing educational toolkit. International Journal of Cloud Computing
1 2(2-3), 237–257 (2013)

8. Lowe-Power, J., Ahmad, A., Armejach, A., Herrera, A., , et al.: The gem5 simula-
tor: Version 20.0+. (2021), https://hal.inria.fr/hal-03100818/file/main.pdf

9. Nyugen, J., Joshi, S., Jiang, E.: Introduction to MARIE, A Basic CPU Simulator.
The MIT (2016)

10. Prasad, P., Alsadoon, A., Beg, A., Chan, A.: Using simulators for teaching com-
puter organization and architecture. Comput. Appl. Eng. Educ. 24(2), 215–224
(2016)

11. Soni, V.D.: Global impact of e-learning during covid 19. Available at SSRN 3630073
(2020), https://dx.doi.org/10.2139/ssrn.3630073

12. Stallings, W.: Computer Organization and architecture. Designing for Perfor-
mance. Pearson, Hoboken, NJ, 10 edn. (2016)

13. Tamara Almarabeh, Y.K.M.: Cloud computing of e-learning. Modern Applied Sci-
ence ISSN 1913-1844 pp. 11–18 (2018)

14. Tanenbaum, A.: Structured Computer Organization. Pearson, Uppersaddle River,
NJ (2013)

15. Wang, B., Xing, H.: The application of cloud computing in education informatiza-
tion. In: 2011 International Conference on Computer Science and Service System
(CSSS). pp. 2673–2676. IEEE (2011)

16. Węgrzyn, S.: Foundations of Computer Science. PWN, Warsaw (1982)
17. Yadav, K.: Role of cloud computing in education. Int. Journal of Innovative Re-

search in Computer and Communication Engineering 2(2), 3108–3112 (2014)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_56

https://hal.inria.fr/hal-03100818/file/main.pdf
https://dx.doi.org/10.2139/ssrn.3630073
https://dx.doi.org/10.1007/978-3-031-08760-8_56

