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Abstract. The continuous growth in data collection requires effective
and efficient capabilities to support Knowledge Discovery in Databases
(KDD) over large amounts of complex data. However, as activities such
as data acquisition, cleaning, preparation, and recording may lead to
incompleteness, impairing the KDD processes, specially because most
analysis methods do not adequately handle missing data. To analyze
complex data, such as performing similarity search or classification tasks,
KDD processes require similarity assessment. However, incompleteness
can disrupt the assessment evaluation, making the system unable to com-
pare incomplete tuples. Therefore, incompleteness can render databases
useless for knowledge extraction or, at best, dramatically reducing their
usefulness. In this paper, we propose MiDaS, a framework based on a
RDBMS system that offers tools to deal with missing data employing
several strategies, making it possible to assess similarity over complex
data, even in the presence of missing data at KDD scenarios. We show
experimental results of analyses using MiDaS for similarity retrieval, clas-
sification, and clustering tasks over publicly available complex datasets,
evaluating the quality and performance of several missing data treat-
ments. The results highlight that MiDaS is well-suited for dealing with
incompleteness enhancing data analysis in several KDD scenarios.

Keywords: Knowledge Discovery in Databases · Missing data · RDBMS
Framework · Similarity Queries.

1 Introduction

The growing advances in data collection and organization demand effective and
efficient capabilities to support Knowledge Discovery in Databases (KDD) pro-
cesses over large amounts of complex data, such as data preprocessing, mining,
and result evaluation. As more and more data are available for analysis, miss-
ingness increases as well. However, dealing with missing data is a challenging
problem for KDD, as data preparation and analysis tools do not properly han-
dle missingness.

Similarity queries are well-suited to retrieve complex data since comparisons
based either on identity or ordering are mostly inappropriate for complex data.
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Recently, new techniques have been widely explored for information retrieval,
such as performing similarity comparisons over image collections to analyze and
visualize Content-Based Image Retrieval (CBIR) results [18]. They are also being
employed for classification, such as in Instance-Based Learning (IBL), to perform
predictions based on data, mostly of them stored in Relational Database Man-
agement Systems (RDBMSs) [16,5]. Moreover, being able to express similarity
queries in RDBMSs is becoming even more relevant for diverse applications that
take into account the results of data mining in the KDD process.

Incompleteness problems can occur at any KDD step, including during data
acquisition, data integration from different sources and as results of failures in
phenomena observation and measurement [12]. Moreover, missingness can ham-
per data mining since similarity queries and other information retrieval tech-
niques do not handle attributes with missing values, reducing the data available
and thus the effectiveness of the KDD process.

Similarity queries over incomplete databases usually ignore attributes with
missing values because distance functions cannot measure dissimilarity among
incomplete objects. Figure 1 illustrates this problem with a dataset composed of
medical exams of the brain, heart, and stomach. In this example, the heart and
stomach exams with NULL for patient P3 are missing data. The similarity between
Patients P1 and P3 cannot be evaluated because most distance functions, such
as Euclidean, cannot assess the similarity among those patients’ records.

𝑃1
𝛿(𝑃1,𝑃3) = (𝑏1−𝑏3)

2+(ℎ1−???)
2+(𝑠1−???)

2

𝛿 cannot measure distance between incomplete tuples

𝑃3 NULL NULL

𝑥
𝜹(𝑷𝟏,𝑷𝟑) =???

Query: How similar are patients 1 and 3?

Fig. 1: Similarity searches over data with missing values.

Existing techniques to handle missing data include deleting incomplete tuples
or imputing probable values for each missing attribute. Over the years, impu-
tation methods have explored diverse heuristics to infer values, including the
global mean, an average of the neighborhood, and regression models [13,17,4].
Recently, an approach dealing with this problem took advantage of the intrin-
sic information embedded in the data, using correlations among the similarity
of near neighbors to weight similarity queries over incomplete databases, well-
fitting the data distribution, and improving the results [18].

In recent years, several works have explored functionalities to support KDD
tasks for Content Based Retrieval Systems (CBRSs) [14,1,16]. However, they
do not consider the missing data problem in the RDBMS environment, thus
rendering data mining impracticable over incomplete data collections. Here we
aim at including additional functionalities into an RDBMSs to handle missing
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data for KDD scenarios, to support information retrieval scenarios, especially
for executing similarity queries and to help classification or clustering tasks.

We introduce MiDaS: the Missing Data in Similarity retrieval framework.
It is an RDBMS-centered framework that provides tools based on well-suited
strategies to deal with missing data for similarity comparisons and KDD tasks.
MiDaS comprises two layers of functionalities to handle missing data and sup-
port similarity search. The missing data treatment layer exports functionalities
to handle incompleteness based on six reliable, long-used approaches proposed
in the literature. The query engine layer provides similarity retrieval operators
suitable for queries over complete and incomplete databases. Therefore, now that
information is the “new gold” for companies, MiDaS incorporates tools for data
preparation and analysis into the RDBMS environment, allowing the use of all
available data to mine the “gold” right there where the data is stored. Besides,
we intend to contribute to KDD issues, providing an efficient way to deal with
incompleteness in a single environment and support information retrieval tasks
with quality and performance. The main contributions of this work are as follows:

– Provide a “missing data engine”, including strategies for tuple deletion, sev-
eral relevant imputation heuristics, and a recent approach based on data
correlation that neither discard nor infer values.

– Support k-Nearest Neighbors (k-NN) and Range similarity retrieval opera-
tors even over incomplete data scenarios.

– Conduct a performance analysis of the MiDaS Framework, to reveal the effi-
ciency when treating several missing data rates in complex databases.

– Present a thorough experimental analysis of the MiDaS strategies to show the
advantages and applicabilities when the framework handles missing data for
KDD scenarios, including similarity retrieval, classification based on neigh-
borhood, and clustering analysis.

The remainder of this paper is organized as follows. Section 2 presents the
relevant background and works that explore similarity searches and missing data.
Section 3 presents MiDaS and Section 4 shows its experimental analyses. Finally,
Section 5 concludes the paper.

2 Background and Related Work

Comparing by similarity is the usual way to query and retrieve complex data.
Here we briefly discuss related concepts concerning this work.

We call “complex” an attribute that may be compared under varied “aspects”,
so it must be previously defined, for example, using a distance function over cer-
tain features of the objects. Similarity queries perform comparisons between
complex objects using low-level representations called feature vectors, obtained
by Feature Extraction Methods (FEMs), and stored in RDBMSs. For example,
there are several suitable FEMs to process images, based on features such as
color, texture, shape, or on learning approaches, such as Histogram Oriented
Gradients (HOG), Haralick, and VGG16 [7,19]. We assume that S is a domain
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of features already extracted and stored in attribute S of a RDBMS relation and
S as the active domain of that attribute. Thus, S is the set of values stored,
which are compared by distance functions in the similarity queries. A distance
functions (δ) assess the dissimilarity between two complex objects (si, sj) and
return a real value from R+. There are several distance functions, such as Eu-
clidean, Manhattan, Chebyshev, and others [9], and some are called a “metric”
when it meets the Metric Spaces properties.

Each similarity query, either a Range or a k-Nearest Neighbors query (k-
NN), is posed over a complex dataset S ⊆ S and requires a central object sq ∈ S
called the query center, a distance function δ, and a similarity limit. A Range
Query (Rq) retrieves every tuple where si ∈ S whose distance to sq is less or
equal than the limit given by a similarity radius (ξ), measured as δ(sq, si) ⩽ ξ.
A k-NN Query (Knnq) retrieves the tuples where si is one of the k nearest to
sq, where the limit is the amount k of tuples retrieved.

2.1 Missing Data and Treatments

The missing data problem in RDBMS occurs when a complex value or some of
its components is NULL (e.g., when si is an array). Incompleteness negatively
affects the quality of the data and, consequently, the experts’ analyses.

Several works explore viable solutions to the problem. Deletion methods
drop tuples or attributes with missing values. However, these methods are widely
questionable, as they reduce the data available for analyses and may lose relevant
information [18]. Imputation methods explore statistical heuristics, such as
imputation based on the mean value of an attribute or exploring regression mod-
els to predict probable values [13]. Machine Learning heuristics perform imputa-
tion based on the element neighborhood, searching for the k nearest neighbors
to infer missing values [4]. Imputation methods based on decision trees identify
natural partitions on the data or use supervised classification algorithms to infer
probable values [17].

A recent alternative for both deletion and imputation, called SOLID [18],
exploits correlations among attributes to handle incompleteness. It uses existing
values to identify pairwise attribute correlations to weigh their contribution to
the similarity assessment. Hence, SOLID takes advantage of correlations to
execute weighted queries over an incomplete dataset, employing all the data
available, thus avoiding either discarding tuples or imputing values.

2.2 Content-Based Retrieval Systems

Several Content-Based Retrieval Systems (CBRSs) based on RDBMS were pro-
posed to perform information retrieval at diverse scenarios and applications
[14,16,5,11,3]. Table 1 summarizes the most relevant related works, regarding
the following aspects:

– Open-Source RDBMS: whether it is based on Open-Source RDBMS,
which brings flexibility and eases incorporating new techniques and algo-
rithms;
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– Similarity-Retrieval Tasks: whether it provides mechanisms for informa-
tion retrieval over complex datasets (range and k-NN comparisons);

– Handle Missing Data: whether it supports or applies strategies to deal
with incompleteness, including data cleaning and preparation aiming at
KDD;

– Self-Contained Functions: whether it seamlessly integrates with the
RDBMS architecture without requiring external interactions or add-ons
tools, easing user customization.

Table 1: Related works and our proposed MiDaS according to relevant aspects.

Work Year Open-Source
RDBMS

Similarity
Retrieval

Missing
Data

Self-
Contained

SIREN [3] 2006 é Ë é é
FMI-SiR [11] 2010 é Ë é é
SimbA [5] 2014 Ë Ë é é
Kiara [16] 2016 Ë Ë é é
SimAOP [1] 2016 Ë Ë é é
MSQL [14] 2017 Ë Ë é é

MiDaS 2022 Ë Ë Ë Ë

Open-Source RDBMS. Most of the related works are based on open-source
architectures, mainly on PostgreSQL [14,1,16,5]. Open-Source RDBMS increases
availability and makes it easier for the user to tune its functionalities or to in-
clude new algorithms and procedures. However, [3] and [11] were developed using
Oracle and its specific tools. Both suggest it can be extended to PostgreSQL but
do not describe how. We choose PostgreSQL because it enhances transparency
and applicability for missing data management and similarity query execution.

Similarity-Retrieval. Many of the works support mechanisms to execute
similarity queries in an RDBMS, highlighting the relevancy and suitability of
similarity retrieval over complex data. They aim at extending existing retrieval
operators with new abilities, either modifying the RDBMS core and other mod-
ules [11] or creating other relational operators using plain SQL [3,5,16,14], to
allow posing both range and k-NN queries. We followed the Kiara concept [16]
as the underpinning for the similarity operations in our framework, extending
it to handle missing data. Our solution is adaptable to other similarity retrieval
frameworks, as it does not depend on a specific RDBMS architecture.

Handle Missing Data. None of the previous works that explore similar-
ity retrieval on RDBMSs provide mechanisms to handle missing data. In fact,
they just discard incomplete tuples, losing potentially helpful information and
knowledge from the databases. MiDaS provides suitable strategies to infer missing
data to enable similarity queries over incomplete data, mainly using the SOLID
approach, which improves flexibility and the quality of the analysis.

Self-Contained Functions. The previous works only provide functionality
for the RDBMS environment to execute similarity queries, but none of them
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deals with incompleteness. MiDaS can help with both missing-aware data prepa-
ration and similarity retrieval, providing a novel environment that the user can
customize using strategies to deal with missing data in KDD processes.

3 The MiDaS Framework

The MiDaS Framework incorporates tools to handle incompleteness in complex
data databases and support knowledge retrieval based on similarity queries. It
aids KDD processes, particularly data preparation and data analysis combined
with the functionalities of an RDBMS. Currently, MiDaS is implemented in Post-
greSQL1. As shown in Figure 2, the MiDaS architecture is composed of two layers:

Content-Based Retrieval System (CBRS)

MiDaS Framework

Query Engine

Missing Data Treatment

Delete

Method

Imputation

Methods

Correlation-

Based Method

Read/Write Data

Complete Queries Incomplete Queries

RDBMS Result

Distance

Functions
FEM

MAM

Similarity Retrieval

+

Similarity Extension

Imputed Table Supplementary Table

Incomplete Table

RDBMS

Fig. 2: Overview of MiDaS Framework.

– Missing Data Treatment Layer: provides six reliable approaches for data
preparation, with emphasis on complex datasets and applications for data
mining scenarios.

– Query Engine Layer: implements the k-NN and Range query operators,
enabling similarity queries over complete and incomplete data, providing
tools for information retrieval at varying applications.

3.1 The Missing Data Treatment Layer

This layer is able to handle missing data through Missing Data Treatment
(MDT) modules, which can be helpful for a variety of applications. MiDaS in-
cludes six MDT, covering the main approaches available from the literature: one
1 PostgreSQL: Available at: https://www.postgresql.org/. Access date: 09 Fev.

2022.
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based on tuple deletion, four on imputation following varying heuristics, and one
on attribute correlation, described as follows.

The (i) Deletion MDT just ignores the tuples with missing values without
changing the original table. The imputation MDTs assign a value for each miss-
ing value. There are four options, as follows: (ii) Mean Imputation (MI): fills
the missing values using the mean of the existing values of the attribute in the
entire table. (iii) k-NN Imputation (kNNI): fills the missing values using
the average value of the k-Nearest Neighbors of each tuple, where k is defined by
the user. (iv) Regression Imputation (RI): predicts missing values based on
linear regression using other attributes and the observed values of the attribute.
(v) Decision-Tree Imputation (DTI): identifies data partitions based on
the similarity between elements and applies a classification algorithm to infer a
probable value for each missing case. Each imputation MDT receives an incom-
plete table and the required user-defined parameters and returns the imputed
table. The user chooses how to process the output further, either updating the
original table or storing the output as a temporary table.

Finally, (vi) SOLID MDT evaluates pairwise correlations among selected
attributes. SOLID receives the incomplete table and the correlation threshold
as a real-valued parameter and discards the attributes with low correlations
just for each pairwise comparison. Hence, SOLID generates a supplementary
table (“weights_tableName”) with two attributes: the compatible attribute
pair and the corresponding weights, as explained in Section 2. As with the other
MDTs, SOLID does not update the input table. Every MDT can be activated
using either PL/Python or SQL statements with storing functions/procedures
into the RDBMS.

MiDaS executes the MDTs in either Pre-Computation or Query Run-time mode,
bringing flexibility to the user when choosing how to treat and prepare the
incomplete datasets. In Pre-Computation mode, an MDT is processed, and the
result is saved as a new table in the RDBMS as the imputed or supplementary
table. When similarity queries are posed, this table is used instead of the original.
On the other hand, execution in Query Run-time mode re-executes the MDT
method at each query execution. MiDaS covers most of the missing data handling
needs in various scenarios, producing data more suitable for KDD processes
improving the quality of data analysis. Moreover, as the MiDaS is Open-Source
and based on an open RDBMS, other MDTs can be included.

3.2 The Query Engine Layer

Similarity queries over either complete or incomplete datasets require appropri-
ate retrieval operators, and this topic is especially relevant for RDBMSs. Current
RDBMSs do not support those operators, although similarity queries may be ex-
pressed in SQL combining existing relational operators and functions. However,
considering all the variations involved, especially when missing data must be
handled, expressing similarity queries can be troublesome. Thus, the MiDaS was
also developed to provide resources to express similarity queries, implementing
the Query Engine layer to provide similarity retrieval operators. It executes both
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Range and k-NN queries over complete and incomplete data using any of the
provided MDTs.

We provide the similarity retrieval operators based on the concept that the
result of a (sub-)query over a database relation is also a relation. Hence, we
implement each operator as an SQL function that returns a table, callable at
the FROM clause of a SELECT command. Statement 1.1 presents the general
syntax of the command to pose a similarity query over complete or incomplete
tables. It can be integrated with the elements of the SQL language, such as
referring to other tables and clauses of the select statement and other RDBMS
commands. As the result, the MiDaS is a robust and practical similarity engine
for complex data retrieval, able to handle complete and incomplete data.
SELECT queryResult .* FROM simQueryWithMissing(

table_name anyelement , -- input table
mdt_method VARCHAR , -- MDT method
sim_operator VARCHAR , -- knn or range
sim_criterion NUMERIC , -- k or radius value
obj_query COMPLEX_DATA , -- query center
dist_func VARCHAR -- distance function
) as queryResult;

Statement 1.1: Similarity Query with MiDaS Framework.

The simQueryWithMissing function requires the following parameters:

– table_name: the table where the similarity search must be performed;
– mdt_method: the MDT method, choosing deletion, mean, knn, regression, dt

or solid to handle missing data, or NULL for complete data;
– sim_operator: the similarity comparison operator: specify knn or range;
– sim_criterion: the similarity limit: the k for knn queries or radius for range;
– obj_query: the query center;
– dist_function the distance function. MiDaS Framework provides L1 to Man-

hattan, L2 to Euclidean, or Linf to Chebyshev. Also, the user can define other
distance functions as stored functions.

Execution in Pre-Computation or Query Run-time mode is transparent for the
query layer, as when the table for a Pre-Computation MDT exists, the query is
executed using the pre-processed table to speed up execution. Figure 3 illustrates
the query execution that retrieves the five patients closest to patient pat110886,
using the SOLID approach as the MDT method over the table of MRI chest
exams stored in table chestMRI, using the L2 distance function. When the weights
table for SOLID is not already prepared, MiDaS automatically chooses the Query
Run-time mode, calls the MDT to generate the table with the default parameters,
and stores it in the RDBMS, to speed up further queries. When the table is
already computed, then the query is executed in Pre-Computation mode.

4 Experimental Analysis

This section describes the datasets used in the experiments, how the experi-
ments were evaluated, the analysis of their performances, and how MiDaS can be
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RDBMS Result

Closest Patients
Data 

Analytics

MiDaS Framework

Run SOLID

System Verification:

Runtime Mode

Execute Query

SQL Command from User

Fig. 3: Query execution example with MiDaS Framework.

applied for the KDD process, including information retrieval, classification, and
clustering tasks, highlighting the framework applicability.

4.1 Datasets and Implementation Specifications

The experiments were performed using four datasets of images, including medical
images, objects, and a font types collection. Table 2 shows their number of tuples
(n), attributes (d), and a brief description.

Table 2: Image datasets used in this work.
Dataset n d Description

ds-Spine [6] 54 10 Lumbar muscles and vertebral bodies MRI
ds-Coil [15] 100 72 Objects posing over 360 rotation, with 5 interval degrees
ds-Letters [10] 152 52 Font types of alphabetic in lower and upper cases letters
ds-Brats [2] 1251 5 Glioma MRI scans with pathologically confirmed diagnosis

Data collected and processed in January 25, 2022

Every tuple in a relation may have missing values. For example, each attribute
of the dataset ds-Letters is the image of a letter in a font, each font having d =52
letters, but some letters may be missing for a specific font. We extracted features
from the four image datasets using five FEMs: Local Binary Patterns (LBP),
Zernike, Haralick, Histogram of Oriented Gradients (HOG), and VGG16 (a CNN
model) [7,19]

MiDaS was implemented using PostgreSQL 13.2, incorporating PL/Python
scripts and the well-known open libraries Pandas, Numpy, Scipy, Sklearn, and
others, for missing data treatment. We used the C++ language for operations
of bulk-loading features from complex collections and SQL scripts for distances
functions and similarity retrieval operations. We create the scripts as MiDaS
RDBMS, developing the imputations heuristics based on models from Sklearn
and using SOLID scripts from the repository of [18]. Scripts and more details
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about data management are available in a Git repository2, which also provides
the extracted features.

4.2 MiDaS Performance

This experiment evaluates MiDaS performance running each MDT for k-NN
and Range queries in both runtime modes. Each query was executed 50 times,
randomly changing the query center at each execution over the datasets with
up to 50% of randomly missing values. We setup both queries with no pre-
processing and MDT=SOLID, changing parameters sim_operator and defin-
ing sim_criterion with k = 21 and range = 0.55. Changing each query for
each MDT just requires modifying the mdt_method parameter. Tables 3 and 4
present the average wall-clock time (in seconds), showing the Query Run Time
(QT columns) and the MDT execution time, concerning the Pre-Computation
(PCM columns).

Table 3: k-NN queries elapsed time (in seconds) of each MDT in 50% missingness.

Dataset Deletion SOLID MI kNNI RI DTI
QT PCM QT PCM QT PCM QT PCM QT PCM QT PCM

ds-Spine 0.04 – 0.11 0.70 0.24 2.10 0.22 4.56 0.22 9.06 0.20 42.54
ds-Coil 0.18 – 0.43 18.66 0.76 0.58 0.84 0.74 0.66 6.32 0.74 15.74
ds-Brats 0.16 – 0.14 6.14 0.64 0.44 0.62 0.58 0.60 1.10 0.62 2.46
ds-Letters 0.12 – 0.42 14.72 0.76 0.52 0.78 0.84 0.78 5.46 0.76 12.84

Table 4: Range queries elapsed time (in seconds) of each MDT in 50% missing-
ness.

Dataset Deletion SOLID MI kNNI RI DTI
QT PCM QT PCM QT PCM QT PCM QT PCM QT PCM

ds-Spine 0.04 – 0.11 0.70 0.18 2.10 0.24 4.56 0.20 9.06 0.26 42.48
ds-Coil 0.18 – 0.43 18.66 0.72 0.58 0.74 0.84 0.68 6.32 0.43 15.70
ds-Brats 0.08 – 0.15 6.14 0.60 0.44 0.64 0.58 0.60 1.10 0.68 2.46
ds-Letters 0.18 – 0.72 14.72 0.74 0.52 0.76 0.84 0.78 5.46 0.72 12.84

Notice that only the QT time is spent in Pre-Computation mode (PCM),
whereas both (QT+PCM values) times are spent in Query Runtime mode (QT).
Overall, the query time of the Pre-Computation mode varies from 0.04 to 0.78
seconds for k-NN and Range queries. The Query runtime mode adds the time
to execute SOLID or an imputation MDT, leading to a total time-varying from
0.44 up to 42.54 seconds (PCM columns). For other missing rates, the queries
give similar times.

These experiments show that MiDaS achieves high performance in both modes,
allowing a quick comparison between the various MDT approaches. We highlight
that Pre-Computation mode is better suited for scenarios where frequent queries
are posed over datasets that undergo few or no updates because they only require
2 Git repository of MiDaS: https://github.com/lsrusp/MiDaS.
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the MDT method to be executed once. The Query Runtime mode is better suited
for fast-changing datasets because it allows the MDT to track data evolution.

4.3 MiDaS for Knowledge Discovery on Databases

We show the applicability of MiDaS MDT approaches for distinguished scenarios
where missingness can cause hardness or even make tasks impracticable for KDD.
Therefore, we present MDTs analysis, highlighting the quality and advantages
for similarity retrieval, classification, and clustering scenarios.

Similarity Retrieval. We analyzed SOLID MDT results to deal with incom-
pleteness using dataset ds-Spine, exploiting the advantages of weighted queries
based on correlation data. Figure 4 shows its tuples distribution using the MDS
Projection [8], making it possible to visualize the multidimensional space distri-
bution of elements using the distance matrix. The distance matrix is based on
the Euclidean distances between tuples over (a) complete data, (b) 10% missing-
ness, (c) posing SOLID for 10%, (d) 50% missing rate, and (e) SOLID execution
for 50% missing, respectively for each case. Blue points are complete tuples, red
are incomplete tuples, and black points are the SOLID application. We highlight
that the SOLID takes advantage of the correlation between complex attributes
to any missingness scenarios, well-fitting the data distribution to allow posing
queries that achieve high-quality results even at large amounts of missingness.

(a) (b) (c) (d) (e)

Fig. 4: Similarity retrieval over ds-Spine in scenarios of (a) complete data,
(b) 10% missingness, (c) SOLID for 10%, (d) 50% missing rate and (e) SOLID
execution for 50% missing. Blue points are tuples complete, red are incomplete
ones, and black points are evaluation results from SOLID.

Classification Scenarios. We analyzed the instance classification based on a
k-NN Classifier model using MiDaS imputations based on Mean, k-NN, and Re-
gression for cases of 50% missing rate. The k-NN Classifier employs Euclidean
distance to measure dissimilarity. This experiment shows how a treated dataset
can be better suited to employing our framework for supervised tasks since un-
treated missingness can bias classification. In this task, we classified the elements
from the ds-Letters dataset using the font type as the “class” of the tuple, such
as “Times New Roman”, “Verdana”, etc. We split the train/test sets at 50% each,
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changing k between 3 to 21, and executed the evaluation using F1-Measure, Pre-
cision, and Recall, as shown in Figure 5. The results show that the employed
imputation methods were well-suited for classification scenarios, resulting in high
values up to 0.89, 0.89, and 0.90 for F1-Measure, Precision, and Recall, respec-
tively. Therefore, the MiDaS can be applied and is fast enough in practice to
support missingness treatment for labeled datasets, such as ds-Letters (see Sec-
tion 4.2).

(a) F1-Measure (b) Precision (c) Recall

3 7 11 15 19
0.00

0.25

0.50

0.75

1.00

3 7 11 15 19 3 7 11 15 19

Mean Imp kNN Imp Regression Imp

Fig. 5: Classification evaluation for ds-Letters dataset using F1-Measure, Preci-
sion, and Recall of k-NN Classifier.

Clustering Patient Analysis. We analyzed the missing data distortion in the
clustering scenario using ds-Brats, a medical data collection of patients with sev-
eral exam images. We intend to discover patients based on the similarity of the
exams distribution but having 50% of incomplete exams. In Figure 6, we show the
application of the KMeans technique over (a) only complete patients, (b) dele-
tion of incomplete patients, and (c) using the Decision Tree Imputation (DTI)
to impute values for the tuples that were deleted in (b) case. As seen in (b) with
only complete tuples, missingness can be highly harmful to clustering because
the clusters’ distortions blur the patient group’s discovery. (c) DTI takes advan-
tage of the data partitions based on highly similar objects and aid in reducing the
clusters distortions, spending just a few seconds to deal with missingness (see Ta-
bles 3 and 4). Each distinguished color in Figure 6 represents a patients’ cluster.
We evaluate the clustering distribution in (a), (b), and (c) using the silhouette
metric (the closer to one, the better the clusters), resulting in 0.473, 0.204, and
0.571, respectively, highlighting that missingness treatments are advantageous
and improve clustering tasks. Hence, the MiDaS makes it possible to discover
patient groups and enables, for example, the behavior analyses of each patient
group to support the physician’s decisions using the most helpful information.

As shown in the varied scenarios evaluated in this section, we highlight that
the MiDaS provides many methods well-suited to handle data incompleteness and
that it is very useful for several KDD scenarios. Therefore, this Section supports
our assertion that the MiDaS provides a simple but effective approach to dealing
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(a) (b) (c)

Fig. 6: Clustering analysis for KMeans application over ds-Brats in scenarios
over (a) only complete patient data, (b) deletion of 50% incomplete patient
records, and (c) use Decision Tree Imputation (DTI), focusing on the missing
impact and the DTI advantages to impute values for tuples deleted case in (b).

with incompleteness, leading to obtain high-quality results improving analytics
by extracting golden insights from the data in a timely manner.

5 Conclusions

In this work, we presented MiDaS: the Missing Data in Similarity retrieval
framework, implemented as an extension of the PostgreSQL RDBMS that is
able to provide well-suited treatments for missing data, enabling analysis tasks
for Knowledge Discovery in Databases. MiDaS aims to meet the requirements
of KDD tasks by embedding proper tools into an RDBMS and bringing data
processing directly to where the data is stored. It provides six MDT methods
well-suited for dealing with missing data and provides features for similarity
retrieval that do not discard nor impute values and for performing classifica-
tion and clustering tasks. For similarity retrieval, it provides query operators
that are able to handle both complete and incomplete datasets, seamlessly inte-
grated with the other features of the RDBMS. Therefore, we claim that MiDaS
is a novel and practical environment for users to handle missingness using the
provided MDTs, which allows performing KDD analyses integrated to execute
similarity queries over complete or incomplete data. The experimental evalua-
tion shows that MiDaS provides strong resources to deal with incompleteness in
large databases, increasing the quality of results from various KDD scenarios
and the efficiency of similarity query execution.
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