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Abstract. When used in simulations, the quasi-Monte Carlo methods
utilize specially constructed sequences in order to improve on the respec-
tive Monte Carlo methods in terms of accuracy mainly. Their advantage
comes from the possibility to devise sequences of numbers that are better
distributed in the corresponding high-dimensional unit cube, compared
to the randomly sampled points of the typical Monte Carlo method. Per-
haps the most widely used family of sequences are the Sobol’ sequences,
due to their excellent equidistribution properties. These sequences are
determined by sets of so-called direction numbers, where researches have
significant freedom to tailor the set being used to the problem at hand.
The advancements in scientific computing lead to ever increasing di-
mensionality of the problems under consideration. Due to the increased
computational cost of the simulations, the number of trajectories that
can be used is limited. In this work we concentrate on optimising the di-
rection numbers of the Sobol’ sequences in such situations, when the con-
structive dimension of the algorithm is relatively high, compared to the
number of points of the sequence being used. We propose an algorithm
that provides us with such sets of numbers, suitable for a range of prob-
lems. We then show how the resulting sequences perform in numerical
experiments, compared with other well known sets of direction numbers.
The algorithm has been efficiently implemented on servers equipped with
powerful GPUs and is applicable for a wide range of problems.

Keywords: quasi-Monte Carlo, high-dimensional simulation, low-discrepancy
sequences

1 Introduction

The quasi-Monte Carlo methods are built upon the idea to replace the ran-
dom numbers, typically produced by pseudorandom number generators, by spe-
cially crafted deterministic sequences. Most of the Monte Carlo algorithms can
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be thought of multi-dimensional integral approximations by average of random
samples ∫

Es

f(x) dx ≈ 1

N

N−1∑
i=0

f(xi),

therefore the corresponding quasi-Monte Carlo method would use a special s-
dimensional sequence to compute the same integral. In this setting the dimension
s is called the “constructive dimension” of the algorithm. One justification for
the use of low-discrepancy sequences is the Koksma-Hlawka inequality (see, e.g.,
[3]), which connects the accuracy of the algorithm with one measure of equidis-
tribution of the sequence, called star-discrepancy. For a fixed dimension s, the
best possible order of the star-discrepancy is believed to be N−1 logs N , and
sequences that achieve this order are called low-discrepancy sequences. Other
measures of the quality of distribution of sequences are also used, for example
the diaphony [10] or the dyadic diaphony [1].

The Sobol’ sequences are one of the oldest known families of low-discrepancy
sequences [9], but they are still the most widely used, partially because of their
close relation to the binary number system, but mostly because of their good
results in high-dimensional settings, see, e.g., [8]. As an example, the price of a
financial asset can be modelled by sampling its trajectories along time, where
each time step requires one or more random numbers in order to advance. This
means that the constructive dimension of the algorithm is a multiple of the
number of time steps. Even though the dimension rises fast in such situations, the
Sobol’ sequences retain their advantage compared to Monte Carlo. Other notions
of dimension have been proposed, in order to explain and quantify such effects,
e.g., the effective dimension or the average dimension, see [4]. Although these
quantities can explain the observed advantage of a quasi-Monte Carlo method
based on the Sobol’ sequences, they do not change the necessary dimension.

Although initially the low-discrepancy sequences used in quasi-Monte Carlo
methods were fully deterministic, there are many theoretical and practical rea-
sons to add some randomness to a quasi-Monte Carlo algorithm. Such a proce-
dure, which modifies a low-discrepancy sequence in a random way, while retain-
ing its equidistribution properties, is usually called “scrambling”. In this work
we are going to use only the simplest and computationally inexpensive proce-
dure of Matoušek [5], which is also one of the most widely used and provides
equal grounds for comparison. Essentially, it consist of performing a bitwise xor
operation with a fixed random vector for each dimension.

Even though there are more complex scrambling schemes, e.g., the scrambling
proposed by Owen in [6], they do not solve one important problem that arises
when the constructive dimension of the algorithm becomes high compared with
the number of points. Consider a problem where the constructive dimension
is s and the number of points is N = 2n and s > N/2. The first bit of the
term of the Sobol’ sequence in each dimension is determined by the index and
the first column of the matrix of direction numbers Ai = aijk. Since we have s
such columns and the index is between 0 and 2s − 1 inclusively, only the first n
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bits of the column are important. Moreover, the matrix of direction numbers is
triangular with ones over the main diagonal, so we have only n− 1 bits that can
take values of either 0 or 1, or 2n−1 possibilities. Therefore the Dirichlet principle
ensures that if s > N/2, there will be two dimensions where the first bits of the
sequence will be exactly equal. Even if we add scrambling, the situation does
not improve, because the bits will be either exactly equal for all terms of the
sequence, or exactly inverted. Thus the correlation between these two dimensions
will be much higher in absolute value, compared with Monte Carlo sampling. If
the algorithm uses only the first bit of the terms of the sequence, e.g., for making
some binary choice, choosing subsets, etc., then such correlation is obviously
problematic. There are also many algorithms where a discrete value is to be
sampled. In such case, the subsequent bits reveal even worse problems, since
the available choices become even less. Thus, even if s < N/2, we can still have
dimensions where certain bits always coincide in the original Sobol’ sequence.
Owen scrambling would alleviate such a problem, but only to an extent. We
should also mention that following the typical definition of direction numbers
related to primitive polynomials, the available choices are even more restricted,
especially in the first dimensions.

In the next section we describe our approach to quantify this problem and
define measures that have to be optimised. Then we describe our optimisation
algorithm. In the numerical experiments we show how these sets perform on
typical integration problems.

2 Optimisation framework

We define measures that should lead to optimal directional numbers in view of
the problems described in the previous section. Because of computational costs,
we try to obtain numbers that are reusable in many settings. Thus we to cover all
dimensions up to some maximal dimension and number of points in a range from
2m up to and including 2n. We define several stages. The first stage performs
filtering. Since we must avoid coincidences in the columns of the matrices Ai, for
a given column of order j in dimension i, we define a measure of coincidences as
follows:

P (a) =

n∑
k=m

i−1∑
r=1

2kck(a, a
r
j),

where ck(a, a
r
j) is one if the columns a and arj = {arij} coincide in their upper k

bits, otherwise zero.
We are going to search for direction numbers column by column, filtering

the possible choices to only those, which attain minimum of the function above.
Optionally, we can restrict those choices to only columns that follow the usual
construction of the Sobol’ sequences using primitive polynomials. This seems
to improve the results for lower number of dimensions, but is very restrictive
when dimensions are higher than 64, so in our experiments we are not using
this option. In the next stage we minimise a measure of the equidistribution
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properties of the sequence, related to Walsh functions. It is very similar to the
notion of the diadic diaphony, adjusted to be easily computable for the Sobol’
sequence. Consider

R (σ, n) =
∑

(m1,...,ms)∈L

w (m1, . . . ,ms) r (σ, n;m1, . . . ,ms) ,

where w (m1, . . . ,ms) =
∏s

i=1 2
−αki if 2ki−1 mi ≤ 2ki . The weight of mi = 0 is

taken to be 1. The set L consists of those integer tuples (m1, . . . ,ms), that have
at least one non-zero value and 0 ≤ mi < 2n. The quantity r (σ, n,m1, . . . ,ms)
depends on the Sobol sequence and the multidimensional Walsh function corre-
sponding to (m1, . . . ,ms) and is 0 or 1 depending whether the integral computes
exactly to 0 when using the sequence σ with 2n terms or not. We obtained good
results when limiting the set L to only contain tuples with up to 4 non-zero
integers, since quasi-Monte Carlo methods have difficulty outperforming Monte
Carlo when the effective dimension is higher than 4.

When the number of dimensions s gets higher, the value of this measure
grows, especially if the power α is lower. Rounding errors accumulate too. Thus
for reasonable values of the dimension s and range of number of points between
2m and 2n, we obtain multiple values of the column of direction numbers with
measures that either equal or close. Thus the outcome of the optimisation is
usually a set of acceptable numbers for the given column. In order to cover
multiple possibilities for the number of points we take the measure R computed
for different values of the number of points, between m and n, weighted by the
number of points used. We usually set α = 1, although the choice α = 2 is
also logical due to the connection with the diadic diaphony. With α = 1 we get
reproducible results, while choices like α = 1.5 may produce different results
for different runs due to accumulation of rounding errors and non-deterministic
order of summation when computing in parallel. The last stage is a validation
stage, where we test the obtained direction numbers on a suitably chosen integral
and select those that gave the best results. As these computations are expensive,
we do not test all possibilities. Our approach to the validation stage is explained
more in details in the next section. The outcome of the optimisation is a set of
direction numbers that can be used for all dimensions less than some maximal
dimension and for number of points that is less than some fixed power-of-two.

3 Optimisation algorithm

We proceed to compute direction numbers column by column, initially comput-
ing all first columns dimension by dimension and then proceeding to the second
columns and so on. In this way the choice of a column from one dimension is
only dependent on the columns that are at the same position or ahead in previ-
ous dimensions. The filtering stage is straightforward - computing the measure
F for each possible value of the column. For a column at position j ≥ 1 in the
dimension i ≥ 1 we have 2n−j possibilities since the main diagonal consists of
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ones only. We form an array M of all columns for which F attains its minimum
and proceed to the next stage, where we compute the value of R for all columns
x ∈ M , selected at the previous stage. If the value of n is too high and this
stage becomes prohibitively expensive, we can select random subset of the array
of possible columns. In order to take into account possible rounding errors, we
select those values for the column, for which R(σ) ≤ (1 + ε)minR(σ), forming
a set Q, and proceed to the next stage. As we only know the first few columns,
we only compute terms in R that correspond to these columns, i.e., mi have
only as many bits as is the number of columns. This computation, when done
on GPUs, is relatively fast, provided we maintain an array of weights and use
dinamic programming. The set Q can be large, but we choose randomly only
a small subset for validation. In our experiments we used up to 10 values. For
these values of the column we compute the etalon integral of

f(x) =

(
1√
s

s∑
i=1

(2xi − 1)

)2

which quantifies the amount of correlation between dimensions. We select the
column that produces the best result (performing multiple computations, e.g.,
40, randomly filling the yet unfilled positions in the binary matrices). The vali-
dation step allows to obtain direction numbers with smoother behaviour.

4 Numerical results

We tested direction numbers obtained by using our algorithm in comparison
with the direction numbers, provided at [7], using criterion D7, following [2]. In
all cases we consider integration problems in a high-dimensional unit cube Es

and we apply the Matoušek scrambling, obtaining 100 different estimates for the
integral, which assures us that the RMS error computed is representative. The
first subintegral function is used regularly for such kinds of tests:

f1(x) =

(
1√
s

s∑
i=1

Φ−1 (xi)

)2

,

where Φ−1 is the inverse of the c.d.f. for the normal distribution,

f2(x) = max

(
0, S exp

(
1√
s

s∑
i=1

Φ−1 (xi)−
σ2

2

)
−K

)
.

The function f2 corresponds to an approximation of the value of an European
call option, such that the exact value of the integral can be computed from the
Black-Scholes formula. We used S = 1,K = 1.05, T = 1, σ = 0.10, r = 0. In
order to better compare the results across the dimensions, we always normalise
by dividing by the exact value of the integral. On Fig. 1-4 we see how the
direction numbers produced by the algorithm compare with the fixed direction
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numbers. The number of points of the sequence is 210 and 212 and the maximum
number of dimensions is 1024 or 16384 respectively. One can see how the accuracy
evolves with the increase in the constructive dimension. Our algorithm seems to
produce suboptimal results for small dimensions, up to 64. However, it starts to
outperform when the number of dimensions becomes larger. It is possible to use
fixed direction numbers for the first dimensions and extend the set following the
algorithm, but we observe worse results for the larger dimensions in this way. For
brevity we do not present results for other integrals, but our experience is that
for such integrals where the constructive dimension is high and there are many
interactions between dimensions without clear domination of a small number of
variables the direction numbers produced by our algorithm are promising. This
is a typical situation for all the integrals that we have tested. When the number
of dimensions becomes bigger than 64, the new direction numbers show clear
advantage.
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Fig. 1. Estimate the integral 1 for differ-
ent dimensions using 210 points
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Fig. 2. Estimate the integral 1 for differ-
ent dimensions using 212 points

64 256 1024
Dimension

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Er
ro

r

Integral 2 with 210 points

Joe Kuo D6
Optimised

Fig. 3. Estimate the integral 2 for differ-
ent dimensions using 210 points
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Fig. 4. Estimate the integral 2 for differ-
ent dimensions using 212 points
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The algorithm yields results relatively fast for small values of the number of
points, like 210 or 212. For larger values of the number of points, the number of
computations should be reduced to make it run faster. This can be accomplished,
e.g., by first selecting a suitable set of direction numbers for smaller number of
points and then extending it, thus drastically limiting the number of possibilities
to consider. Validation can also be limited or even skipped entirely if needed.

5 Conclusions and directions for future work

Our algorithm produces direction numbers that are suitable for use in algorithms
with high constructive dimension, especially in situations where the number of
dimensions are comparable with the number of trajectories/points. When the
same computations are to be performed using different parameters, it is feasible
to compute a set of direction numbers specific for the problem, especially when
servers with powerful GPUs are available. We aim to make publicly available sets
of direction numbers that are optimised and validated for some combinations of
dimensions and number of points that are widely used. In this work we did not
explore the possibility to set different weights for the different dimensions, thus
allowing for, e.g., declining importance of the dimensions, but our framework is
well suited to that problem and we hope that even better results will be obtained
for simulations such.
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