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Abstract. Optimal control of infinite-dimensional stochastic differential equa-

tions (SDEs) is a challenging topic. In this contribution, we consider a new con-

trol problem of an infinite-dimensional jump-driven SDE with long (sub-

exponential) memory arising in river hydrology. We deal with the case where 

the dynamics follow a superposition of Ornstein–Uhlenbeck processes having 

distributed reversion speeds (called supOU process in short) as found in real 

problems. Our stochastic control problem is of an ergodic type to minimize a 

long-run linear-quadratic objective. We show that solving the control problem 

reduces to finding a solution to an integro-Riccati equation and that the optimal 

control is infinite-dimensional as well. The integro-Riccati equation is numeri-

cally computed by discretizing the phase space of the reversion speed. We use 

the supOU process with an actual data of river discharge in a mountainous river 

environment. Computational performance of the proposed numerical scheme is 

examined against different discretization parameters. The convergence of the 

scheme is then verified with a manufactured solution. Our paper thus serves as 

new modeling, computation, and application of an infinite-dimensional SDE. 

Keywords: Infinite-dimensional Stochastic Differential Equation, Stochastic 

Control in Infinite-Dimension, Integro-Riccati equation 

 1. Introduction 

Optimal control of stochastic partial differential equations, namely infinite-

dimensional stochastic differential equations (SDEs), has recently been a hot research 

topic from both theoretical and engineering sides because of their rich mathematical 

properties and importance in applied problems [1]. Such examples include but are not 

limited to shape optimization under uncertainty [2], evolution theory of age-

dependent population dynamics [3], and portfolio management [4].  

The main difficulty in handling a control problem of an infinite-differential SDE 

comes from the infinite-dimensional nature of the optimality equation. Indeed, in a 

conventional control problem of a finite-dimensional SDE, finding an optimal control 
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reduces to solving an optimality equation given as a finite-dimensional parabolic par-

tial differential equation. Its solution procedure can be constructed by a basic numeri-

cal method like a finite difference scheme [5]. By contrast, a control problem of an 

infinite-differential SDE involves a partial differential equation having an infinite 

dimension, which cannot be solved numerically in general. A tailored numerical 

scheme is necessary to handle the infinite-dimensional nature [6, 7]; such schemes 

have not always been applied to problems with actual system dynamics. This issue is 

a bottleneck in applications of infinite-differential SDEs in engineering problems. 

Hence, demonstrating a computable example of interest in an engineering problem 

can be useful for better understanding the control of infinite-differential SDEs. 

The objectives of this paper are to present an infinite-dimensional SDE arising in 

hydrology and environmental management, and to formulate its ergodic linear-

quadratic (LQ) control problem. The system governs temporal evolution of river dis-

charge as a superposition of Ornstein–Uhlenbeck processes (supOU process) as re-

cently identified in Yoshioka [8]. Markovian stochastic modeling of river discharge 

has long been a standard method for assessing streamflows [9]. However, some re-

searchers including the first author recently found that the Markovian assumption is 

often inappropriate for discharge time series of actual perennial river environments 

due to the sub-exponential auto-correlation [8]. This sub-exponential auto-correlation 

is consistent with the supOU process as an infinite-dimensional SDE, which is why 

we are focusing on this specific stochastic process. 

The goal of our control problem is to modulate the discharge considering a water 

demand with a least effort in long-run. This can be the simplest management problem 

of water resources in which maintaining the water depth or discharge near some pre-

scribed level is preferred. The LQ nature allows us to reduce the infinite-dimensional 

optimality equation to a two-dimensional integro-Riccati equation which is computa-

ble by a collocation method in space [10] combined with a forward Euler method in 

time. This integro-Riccati equation itself has not been derived in the literature so far. 

Focusing on an actual parameter set, we provide computational examples of the opti-

mal control along with their well-posedness and optimality. Our problem is simple but 

involves several nontrivial scientific issues to be tackled in future. We believe that 

this contribution would advance modeling problems with uncertainty from a view-

point of infinite-dimensional SDEs. 

 2. Control Problem 

2.1 Uncontrolled System 

We consider a control problem of discharge at a point in a river, which is a continu-

ous-time and continuous-state scalar variable denoted as tX  at time 0t   with an 

initial condition 0 0X  . Our formulation is based on the SDE representation of sup-

OU processes suggested in Barndorff-Nielsen [11] and later justified in Barndorff-

Nielsen and Stelzer [12]. The assumptions made in our SDE are based on the physical 

consideration of river discharge as a jump-driven process [8]. 
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The system dynamics without control follow the distributed SDE 

 ( ) ( )
0

d dt tX X Y   
+

= +  , 0t   (1) 

with a minimum discharge 0X   and ( )tY   ( t ) governed by  

 ( ) ( ) ( )d d dt t tY Y t L   = − + , 0t  . (2) 

Here,   is a probability measure of a positive random variable absolutely continuous 

with respect to d  on the half line 0  , such that 

 
( )

0

d 



+

 + , (3) 

and ( )tL   ( 0t  ) is a pure positive-jump space-time Lévy process corresponding to 

an ambit field whose background Lévy measure ( )dv v z=  is a finite-variation type: 

   ( ) ( )2

0 0
min 1, d , dz v z z v z

+ +

 +  . (4) 

The conditions (3) and (4) are imposed to well-define jumps of the SDE (2) and to 

guarantee boundedness of the statistical moments of discharge [8]. The expectation of 

( ) ( )d dt tL L   ( 0t  , , 0   ) is formally given by 

 ( ) ( )
( ) ( )

  ( ) ( )

22

1

2

d
d d

d / d d
s s

M s
L L

M s
 

 
 

     
=

 
=    =

, ( )
0

dk

kM z v z
+

=   ( 1,2k = )(5) 

with the Dirac delta  . The noise process associated with the supOU process there-

fore is not of a trace class [13], suggesting that the system dynamics are highly irregu-

lar. This point will be discussed in the next section. 

The SDE representation (1) implies that the river discharge is multi-scale in time 

because it is a superposition of infinitely many independent OU processes having 

different reversion speeds   on the probability measure   (i.e., different values of 

the decay speed of flood pulses). More specifically, in the supOU process, each jump 

of X  associates a corresponding   generated from   [11], allowing for the exist-

ence of flood pulses decaying with different speeds. In principle, this kind of multi-

scale nature cannot be reproduced by simply using a classical OU process because it 

has only one decay speed. The supOU processes are therefore expected to be a more 

versatile alternative to the classical OU ones. The parameters of the densities   and 

v  were successfully identified in Yoshioka [8], which will be used later. 

 

2.2 Controlled System 

The controlled system is the SDE (1) with Y  now governed by 
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 ( ) ( ) ( )( ) ( )d d dt t t tY Y u t L    = − + + , 0t  . (6) 

Here, u  is a control variable progressively measurable with respect to a natural filtra-

tion generated by ( )tL   ( 0t  ), and satisfies the square integrability conditions 

 ( )( ) ( )
2 2

0 0 0

1 1
limsup d d ,  limsup d

T T

s s
T T

u s X s
T T

  
+

→+ →+

     +
         . (7) 

Our objective functional is the following long-run LQ type: 

 ( ) ( ) ( )( ) ( ) 2 2

0 0

1 1
limsup d d

2

T

s s
T

J u X X w u s
T

  
+

→+

 
= − + 

 
   (8) 

with a target discharge 0X   representing a water demand and 0w   is a weight 

balancing the two terms: the deviation from the target and control cost. The objective 

is to find the minimizer *u u=  of ( )J u : ( )inf 0
u

H J u=  . Note that the jumps are 

not controlled as they represent uncontrollable inflow events from upstream. 

 

2.3 Integro-Riccati Equation 

By a dynamic programming argument [e.g., 14], we infer that the optimality equation 

of the control problem is the infinite-dimensional integro-partial differential equation 

 

( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )  ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

0 0

0 0

2

0 0 0

inf d d
2

d( )
d d

(d( ))

1 1
d d d 0

2 2

u

w
H Y u V Y u

V Y z V Y v z

Y Y X Y X



       

  


        

+ +



+ +

= 

+ + +

 
− + − +  + 

 

  
+  + −  

  

+ − + =

 

 

  

, ( )2Y L  ,(9) 

where ( )2L   is a collection of square integrable functions with respect to  , 

and ( )V Y  is the Fréchet derivative identified as a mapping from ( )2L   to ( )2L  . 

The infimum in (9) must be taken with respect to functions belonging to ( )2L  . By 

calculating the inf term, (9) is rewritten as 

 

( ) ( ) ( ) ( )( ) ( )

( ) ( )  ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

0 0

0 0

2

0 0 0

1
d d

2

d( )
d d

(d( ))

1 1
d d d 0

2 2

H V Y Y V Y
w

V Y z V Y v z

Y Y X Y X



     

  


        

+ +

+ +

= 

+ + +

− −  − 

  
+  + −  

  

+ − + =

 

 

  

, ( )2Y L  (10) 
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with (a candidate of) the optimal control as a minimizer of the infimum in the first 

line of (9): 

 ( ) ( )* 1
u Y V Y

w
= −  , ( )2Y L  . (11) 

A formal solution to (9) is a couple ( ),V h  of smooth ( )2:V L  →  and h .  

Invoking the LQ nature of our problem suggests the ansatz: for any ( )2Y L  , 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

1
, d d d

2
V Y Y Y Y            

+ + +

=  +    (12) 

with symmetric   -integrable   and  -integrable  . Substituting (12) into (10) 

yields our integro-Riccati equation 

 ( ) ( ) ( ) ( ) ( )
0

1
0 , , , d 1

w
         

+

= − +  −   + , , 0   , (13) 

 ( ) ( ) ( ) ( ) ( ) ( )1
0 0

1 1
0 , d , d

2
M X

w
           

+ +

= − −  +  −  , 0  , (14) 

 ( )( ) ( ) ( ) ( ) ( ) ( )
2 2

2 1
0 0 0

1 1 1
d , d d

2 2
h M M X

w
           

+ + +

= − +  + +   .(15) 

In summary, we could reduce an infinite-dimensional equation (9) to the system of 

finite-dimensional integral equations (13)-(15). This integro-Riccati equation is not 

found in the literature to the best of our knowledge. The integro-Riccati equation is 

not solvable analytically, motivating us to employ a numerical method for approxi-

mating its solution, which is now the triplet ( ( , ), ( ), )H    . Note that the three equa-

tions (13)-(15) are effectively decoupled with respect to the three solution variables. 

With this finding, we can solve them in the order from (13), (14), to (15). This struc-

ture also applies to our numerical method. 

 

2.4 Remarks on the Optimality 

The optimality of the integro-Riccati equation (13)-(15) follows “formally” by the 

verification argument [10] based on an Itô’s formula for infinite-dimensional SDEs, 

suggesting that the formula (11) gives an optimal control and h H= . To completely 

prove the optimality, one must deal with the irregularity of the driving noise process 

that is not of a classical trace class. In particular, possible solutions to the optimality 

equation (9) should be limited to a functional space such that the non-local term hav-

ing the Dirac delta is well-defined. The linear-quadratic ansatz (12) meets this re-

quirement, while it is non-trivial whether this holds true in more complicated control 

problems of supOU processes. One may replace this term by regularizing the correla-

tion of the space-time noise to avoid the well-posedness issue; however, this method 
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may not lead to a tractable mathematical model such that the statistical moments and 

auto-correlation are found explicitly, and hence critically degrades usability of the 

model in practice. These issues are beyond the scope of this paper because they need 

sophisticated space-time white noise analysis [e.g., 15]. 

 3. Computation with Actual Data 

3.1 Computational Conditions 

We show computational examples with an actual discharge data set at an observation 

station in a perennial mountainous river, Tabusa River, with the mean 2.59 (m3/s) and 

variance 61.4 (m6/s2). The supOU process was completely identified and statistically 

examined in Yoshioka [8]. The identified model uses a gamma distribution for   and 

a tempered stable distribution for v , both of which were determined by a statistical 

analysis of moments and auto-correlation function. The model correctly fits the auto-

correlation with the long-memory behaving as 0.75l−  for a large time lag l , generates 

the average, standard deviation, skewness, and kurtosis within the relative error 
36.23 10−  to 28.28 10− , and furthermore captures the empirical histogram. 

 The equation (13)-(15) is discretized by the collocation method [10]. The measure 

  is replaced by the discrete one ( ) ( )d dn   →  as follows (1 i n  ): 

 ( )  

1

1

d
i

n

n i

i

c
 

  
+

=
=

= , ( )
,

, 1

d
n i

n i
ic




 

−

=  , ( )
,

, 1

1
d

n i

n i
i

ic




  

−

=  , ,n i

i

n
 =  (16) 

for a fixed resolution n  and parameters 0   and (0,1)  , where we define 

1

1

n

n i

i

c c+

=

=  and 1n + = + . The parameter   in the last equation of (16) specifies the 

degree of domain truncation, while the parameter   modulates the degree of refine-

ment of discretization as the resolution n  increases; choosing a larger   means a 

slower refinement of the discretization. 

Replacing   by n  in (13)-(15) at each node ( , ) ( , )i j   =  (1 ,i j n  ) leads 

to a system of nonlinear system governing ( , )i j  (1 ,i j n  ), ( )i  (1 i n  ), 

and ( )h H= . Instead of directly inverting this system, we add a temporal partial dif-

ferentials 





 and 








 to the left-sided of (13) and (14), respectively with a pseudo-

time parameter  .The temporal discretization is based on a forward Euler scheme 

with the increment of pseudo-time 1/ (24 )n  (day). Stability of numerical solution is 

maintained with this increment. The system is discretized from initial conditions 

0   and 0   until it becomes sufficiently close to a steady state with the incre-

ment smaller than 1010−  between each successive pseudo-time steps. The quantity H  

in (15) is then evaluated using the resulting   and  . 
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3.2 Computational Results 

Because the system (13)-(15) does not admit an explicit solution, we examine conver-

gence of numerical solutions against the following manufactured solution that is ob-

tained by adding appropriate source terms to the right-sides of (13) and (14): 

 ( ) ( )
,

b
ae

 
 

− +
 =  and ( ) bce   −= , , 0    (17) 

with constants , , 0a b c  . Namely, we add proper functions 1( , )f    and 2 ( )f   to 

(13) and (14) so that the manufactured solution (17) solves the modified equations: 

 ( ) ( ) ( ) ( ) ( ) 1
0

1
0 , , , d 1 ( , )f

w
           

+

= − +  −   + + , , 0    (18) 

and 

 

( ) ( ) ( ) ( )

( ) ( )

0

1 2
0

1
0 , d

1
, d ( )

2

w

M X f

       

    

+

+

= − − 

+  − +





, 0  . (19) 

Here, we still use (15). By the manufactured solution (17), each integral in (18), (19), 

(15), and hence H  is evaluated analytically owing to using the gamma-type   and 

the tempered stable-type v . The system consisting of the equations (18), (19), (15) is 

different from the original integro-Riccati equation. However, they share the common 

integral terms, suggesting that computational performance of the proposed numerical 

scheme can be examined against the manufactured solution (17). 

We set 1.0a = , 0.2b = , 0.5c = , 1w = , and 15X =  (m3/s), leading to 

115.6514H =  (m6/s2). For the discretization, we fix 0.05 =  (1/h). Tables 1-2 show 

the computed H  with its relative error (RE) and convergence rate (CR) for 0.25 =  

and 0.50 = , respectively. The CRs have been computed by the common arithmetic 

[16]. Similarly, Tables 3-4 show the computed   and   with its maximum nodal 

errors (NEs) and CRs for 0.25 =  and 0.50 = , respectively. 

The numerical solutions converge to the manufactured solutions, verifying the pro-

posed numerical scheme computationally. The CRs of , ,H   are larger than 2.2 for 

0.25 =  and is larger than 0.7 for 0.50 =  except for the finest level at which the 

discretization error of ,i ic   dominates. The obtained results suggest that choosing the 

smaller 0.25 =  is more efficient in this case possibly because the smaller   better 

harmonizes the domain truncation and node intervals. Note that numerical solutions 

did not converge to the manufactured solution if 0.75 = , suggesting an important 

remark that using a too large   should be avoided. 
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Table 1. Computed H  with its RE and CR ( 0.25 = ). 

n  Computed H  RE  CR 

10 115.1436 4.39.E-03 2.29.E+00 

20 115.5474 3.15.E-02 4.04.E+00 

40 115.6451 5.48.E-05 6.88.E+00 

80 115.6514 4.64.E-07 3.33.E+00 

160 115.6514 4.61.E-08  

Table 2. Computed H  with its RE and CR ( 0.50 = ). 

n  Computed H  RE CR 

10 114.3099 1.16.E-02 7.43.E-01 

20 114.8497 6.93.E-03 1.08.E+00 

40 115.2710 3.29.E-03 1.57.E+00 

80 115.5230 1.11.E-03 2.29.E+00 

160 115.6251 2.27.E-04  

Table 3. Computed ,  with their NEs and CRs ( 0.25 = ). 

n  NE of   NE of   CR of   CR of   

10 1.47.E-01 4.35.E-02 2.22.E+00 2.51.E+00 

20 3.15.E-02 7.66.E-03 3.94.E+00 4.58.E+00 

40 2.06.E-03 3.21.E-04 6.79.E+00 6.98.E+00 

80 1.86.E-05 2.54.E-06 3.21.E+00 -3.51.E-02 

160 2.01.E-06 2.60.E-06   

Table 4. Computed ,  with their NEs and CRs ( 0.50 = ). 

n  NE of   NE of   CR of   CR of   

10 4.89.E-01 1.53.E-01 6.70.E-01 7.29.E-01 

20 3.07.E-01 9.20.E-02 8.55.E-01 1.04.E+00 

40 1.70.E-01 4.47.E-02 1.24.E+00 1.77.E+00 

80 7.21.E-02 1.32.E-02 1.93.E+00 3.08.E+00 

160 1.90.E-02 1.56.E-03   

 

With 100n = , 0.05 =  (1/h), and 0.25 = , we present numerical solutions to the 

integro-Riccati equation. Figs. 1-2 show the cases with a small controlling cost 

0.5w =  and a large cost 5w = , respectively. The functional shapes of ,  are 

common in the two cases, while their magnitudes are significantly different. In both 

cases, numerical solutions are successfully computed without spurious oscillations. 
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Fig. 1. Computed ,  with 10X =  (m3/s) and 0.5w = . 

 

Fig. 2. Computed ,  with 10X =  (m3/s) and 5w = . 
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Finally, Fig. 3 shows the computed optimized objective H  for a variety of couple 

( , )X w . Fig. 3 suggests that the optimized objective H  is increasing with respect to 

w . This observation is theoretically consistent with our formulation because increas-

ing the controlling cost should associate a larger value of the objective. Dependence 

of H  on the target discharge X  is less significant, but seems to be moderately in-

creasing with respect to X  for each w . This is considered due to that maintaining a 

higher level is more costly in general for the computed cases here because the mini-

mum discharge is only 0.1 (m3/s).  

In all the computational cases, the computed   are positive semi-definite, suggest-

ing that the optimal controls are stabilizable owing to the formula (11). As demon-

strated in this paper, the proposed numerical method suffices for computing the opti-

mal control of the infinite-dimensional SDE under diverse conditions.  

 

Fig. 3. Computed H  for a variety of the couple ( , )X w . 

 4. Conclusion 

We presented a novel control problem of an infinite-dimensional SDE arising in envi-

ronmental management and discussed that it is a highly non-trivial problem due to the 

noise irregularity. We derived the integro-Riccati equation as a computable optimality 

equation. Our numerical scheme sufficed to handle this equation. 

 Currently, we are dealing with a time-periodic control problem of a supOU process 

as an optimization problem under uncertainty in long-run. Rather difficult is a math-

ematical justification of the optimality equation under the non-standard space-time 

noise. Accumulating knowledge from both theoretical and engineering sides would be 

necessary for correctly understanding control of infinite-dimensional SDEs. Exploring 

the theoretically optimal discretization of the proposed scheme is also interesting. 

Applying the proposed framework to weather derivatives [17] based on river hydro-

logical processes will be another future research direction. 
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 In this paper, we considered a control problem under full information which is a 

common assumption in most of the stochastic control problems. This means that the 

observer of the target system has a complete information to construct an optimal con-

trol, which is not always technically possible in applications. A possible way to aban-

don the full-information assumption would be the use of a simpler open-loop control 

in which the coefficients of optimal controls may be optimized by a gradient descent. 

Interestingly, for deterministic LQ problems, it has been pointed out that the open-

loop problem is often computationally harder than the closed-loop ones [18, 19] be-

cause of the non-convex domain of optimization. This finding would apply to stochas-

tic LQ control problems as well. In future, we will compare performance of diverse 

types of controls including the presented one and the open-loop ones using actual data 

of environmental management. In particular, modeling and control of coupled hydro-

logical and biochemical dynamics in river environments are of great interest as there 

exist a huge number of unresolved issues where the proposed stochastic control ap-

proach potentially serves as a powerful analysis tool. 

 We focused on the use of a dynamic programming principle, while the maximum 

principle can also give an equivalent control formulation based on forward-backward 

stochastic differential equations. These two principles characterize the same control 

problem from different viewpoints with each other, naturally leading to different nu-

merical methods for its resolution. Currently, we are investigating an approach from 

the maximum principle for exploring a more efficient numerical method to compute 

the LQ and related control problems under uncertainty. 
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